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Abstract. In this paper, we propose some techniques for injecting finite state automata into Recurrent Radial 
Basis Function networks (R2BF). When providing proper hints and constraining the weight space properly, 
we show that these networks behave as automata. A technique is suggested for forcing the learning process 
to develop automata representations that is based on adding a proper penalty function to the ordinary cost. 
Successful experimental results are shown for inductive inference of regular grammars. 
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1. I n t r o d u c t i o n  

The ability of learning from examples is certainly the most appealing feature of neu- 
ral networks. In the last few years, several researchers have usecl connectionist models 
for solving different kinds of  problems ranging from robot control to pattern recogni- 
tion. Coping with optimization of functions with several thousands of  variables is quite 
common. Surprisingly, in many practical cases, global or near-global optimization is 
attained also with non sophisticated numerical methods. For example, successful appli- 
cations of  neural nets for recognition of handwritten characters (le Cun, 1989) and for 
phoneme discrimination (Waibel et al., 1989) have been proposed which do not report 
serious convergence problems. 

Some attempts to understand the theoretical reasons for the successes and failures of 
supervised learning schemes have been carried out which explain when such schemes are 
likely to succeed in discovering optimal solutions (Bianchini et al., 1994; Gori & Tesi, 
1992; Yu, 1992), and to generalize to new examples (Baum & Haussler, 1989). These 
results give some theoretical foundations to learning from tabula rasa configurations, but 
unfortunately, the conditions they provide for optimal convergence and for generalization 
are quite limited in practice. Although these theoretical results open the doors to deal 
with more interesting practical problems, we believe that they also give a warning about 
the limitations of  learning from tabula rasa in artificial neural networks. 



6 P. FRASCONI, M. GORI, M. MAGGINI, AND G. SODA 

As stated by Minsky and Papert, "...significant learning at significant rate presupposes 
some significant prior structure. Simple learning schemes based on adjusting coefficients 
can indeed be practical and valuable when the partial functions are reasonably matched 
on the task,..." (Minsky and Papert, 1988, p. 16). 

Recently, Geman et al. (1992) have used the statistical viewpoint to highlight strengths 
and weaknesses of neural models. In that framework the use of nonparametric statistical 
inference leads them to formulate the bias~variance dilemma. They conclude that "Im- 
portant properties must be built-in or hard-wired, perhaps to be tuned later by experience, 
but not learned in any statistical meaningful way". 

In the attempt to relate the optimal convergence of learning algorithms using no prior 
knowledge with the generalization, Frasconi & Gori (1993) have found an uncertainty 
principle of learning stating formally that one should not expect both good convergence 
and generalization. When learning from tabula rasa in feedforward networks, measures 
can be given of both convergence and generalization that lead to conclude that they are 
like conjugate variables in Quantum Mechanics. 

The ideas reported in this paper can be traced back to our belief in "biased models" 
for solving most meaningful practical problems. When assuming this viewpoint, neural 
modeling is no longer focused exclusively on learning, but also on the identification of 
significant architecture and weight constraints. In order to conceive models of this kind, 
one has to specify the kind of prior knowledge to be used. Quite a common situation is 
that this knowledge is more or less affected by uncertainty and, therefore, it should be 
embedded carefully into a connectionist model in order not to force artificial behavior. 
The uncertainty can be approached naturally by neural network learning schemes. Instead 
of developing representations from tabula rasa, the role of learning becomes that of 
refining prior knowledge. In this way, learning algorithms become tightly related to rule 
embedding. 

Bearing in mind these general ideas, in this paper we consider prior knowledge given 
in terms of automata. This is related to our previous work on the subject, that is briefly 
reviewed in the next section together with similar approaches existing in literature. In 
order to deal with automata, we introduce particular networks, referred to as recurrent 
radial basis function networks, that are composed of two layers: a locally-tuned pro- 
cessing unit layer and a sigmoidal unit layer. Feedback connections are assumed from 
the sigmoidal unit layer (state layer) to the radial basis function layer. We show that, 
like second-order recurrent networks (Giles et al., 1992a), these networks are very well 
suited for dealing with automata. A theoretical analysis is given for proving that under 
certain weight constraints, the R2BF networks behave exactly as automata. 

A technique is also suggested for forcing the outputs of the state neurons to be as close 
as possible to boolean values. The learning scheme that we propose is based on adding 
a proper penalty function to the ordinary cost that favors the development of symbolic 
representations. 

We evaluate the proposed architecture for inductive inference of regular grammars. 
Unlike tasks of isolated word recognition we had previously dealt with (Frasconi et al., 
1991, 1995) we want the network to learn an automaton without giving any prior in- 
formation on the state transition rules. It is worth mentioning that, also for this task, 
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the role of the prior knowledge is of remarkable importance. Using our approach, we 
force the network to learn automata, thus restricting significantly the wide range of com- 
plex dynamic behavior that the recurrent networks can exhibit. Basically, the only prior 
knowledge we want to introduce into the network is a strong bias towards a finite state 
behavior of the network dynamics. This is achieved using the particular architecture and 
a penalty function on the state neurons. Unlike other approaches to gammatical infer- 
ence using recurrent networks (Cleeremans et al., 1989; Elman, 1991; Pollack, 1991; 
Giles et al., 1992a), following our proposal the representations developed by the network 
are intrinsically of symbolic nature, and the automata states are actually associated with 
very "small" clusters in the network state space. This favors the successful extraction 
of automata from the network state space. Notice that it is also possible to embed some 
hints on state transitions into the network, thus adding explicit prior knowledge on a 
particular automaton. 

The paper is organized as follows. In the next section, we briefly review related work 
and give some insights on the relationships of the topics discussed in this paper with 
our previous research. In section 3, we introduce the recurrent radial basis functions, 
while in section 4 we show that these networks behave as automata under some weight 
constraints. In section 5, a technique for forcing automata behavior is described and 
in section 6, successful results are presented concerning the application of the proposed 
networks and learning scheme to inductive inference of regular grammars. 

2. Related Work 

In the last few years many researchers have proposed different ways of introducing prior 
knowledge into artificial neural networks for specific tasks with successful results. 

For example, le Cun (1989) has proposed the use of receptive fields in feedforward nets 
for applications to handwritten character recognition. The implementation of that concept 
results in special equality constraints on the weights. Perantonis & Lisboa (1992) have 
introduced a method for reducing the number of weights of a third-order network used 
for pattern recognition by imposing invariance under translation, rotation, and scaling. 
For incorporating the temporal properties of speech signals, Waibel et al. (1989) have 
proposed the Time Delay Neural Networks (TDNN), where proper weight constraints 
make it possible to deal effectively with the temporal nature of speech. In order to deal 
with phoneme recognition Bengio et al. (1992) have used special recurrent architectures, 
with only self-loop recurrent connections, to introduce a "forgetting behavior" into the 
network. This turns out to be useful, since only recent information is likely to affect 
phoneme recognition. 

These papers, for specific problems and network architectures, report significant at- 
tempts to incorporate domain knowledge in terms of weight constraints into neural net- 
works, which, in turn, leads to reduce the number of free parameters to learn. 

A natural evolution of proposals based on specific tasks is that of looking for general 
methods to describe prior knowledge that can be integrated with artificial neural networks, 
and particularly with their powerful learning schemes. A general framework for propos- 
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ing integration of prior knowledge with learning from examples has been suggested in 
(Towell et al., 1990; Towell and Shavlik, 1993; Shavlik, 1994). 

They conceive such integration as a three-step process: insertion of the knowledge into 
the network, refinement by learning from examples, and extraction of the knowledge 
after learning refinement. In many cases the learning refinement may destroy the prior 
knowledge injected into the network. Rather than reviewing most significant approaches 
that have recently appeared in the literature, we focus our attention on methods for 
injecting automata into recurrent networks that are strictly related to what is proposed in 
this paper. 

2.1. Finite automata and recurrent networks 

Neural networks have been suggested for implementing automata a long time ago. The 
research in this field can be traced back to early works by McCulloch & Pitts (1943). 
The recent renewal of interest in Neural Networks has led several researchers to carry 
out detailed analyses on this and related subjects (Fogelman-Soulie et al., 1987; Goles 
& Martinez, 1990). The learning capability of many recently proposed models has been 
particularly stressed. The availability of new connectionist procedures and of more pow- 
erful computers have allowed many researchers to investigate the possibility of learning 
interesting sequential tasks from examples. 

Instead of learning from tabula rasa, however, one should exploit the partial information 
available on the task. Learning from partial information is referred to as "learning from 
hints". Although the availability of that information does not overcome the theoretical 
limitations arising from computational complexity arguments (Abu-Mostafa, 1990), there 
is no doubt about the actual role of learning from hints in practice. Interesting "hints" for 
solving special problems have been proposed in (A1-Mashouq & Reed, 1991; Omlin & 
Giles, 1992). In particular, Omlin and Giles (1992) have proposed the learning of Finite 
State Automata using hints placed in a very elegant way into second-order recurrent 
networks. They have shown how to set up some of the weights to larger values rather 
than starting with small random initial values for all the weights. 

Other researchers (Das & Mozer, 1994; Zeng et al., 1993) have devised appropriate 
architectures and learning schemes, for biasing the behavior of recurrent neural networks 
towards a finite state dynamics. These approaches are motivated by the difficulty of 
selecting a stable state dynamics (useful for automata) in the very rich set of complex 
dynamics that are possible in unconstrained neural networks. 

Our first approach to introduce prior knowledge into recurrent networks is described 
in (Frasconi et al., 1991, 1995; Gori & Soda, 1993). It was inspired by problems of 
automatic speech recognition. Finite state automata were used for modeling the word 
lexical knowledge. These automata were nondeterministic (Hopcrofl and Ullman, 1979) 
in that each state transition took place in an unspecified number of steps. The learning 
was responsible for discovering the optimal duration associated with these state transitions 
and for dealing with the uncertainty of the given prior knowledge. The main limitation 
of this model concerns the automaton injected into the network for which all the state 
transitions a part from self-loops are specified. Basically, the learning process cannot 
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develop suitable automata from examples, but can only act on the number of steps needed 
to perform state transitions. 

A major concern that should not be neglected in speech recognition, as well as in 
other high level perception tasks, is that prior knowledge is uncertain. As a conse- 
quence, any appropriate model should be able to discover additional rules not included 
in the prior knowledge model, and also to perform a sort of nonmonotonic process 
by changing the prior information when "enough" evidence comes from examples. In 
(Gori & Soda, 1993) we propose a model for integrating a symbolic with a sub-symbolic 
module into recurrent networks. The symbolic module ig ~ similar to that proposed in 
(Frasconi et al., 1995), while the sub-symbolic one acts like a connectionist glue for 
dealing with the uncertain nature of the prior knowledge. Moreover, a pruning scheme is 
suggested that favors the development of high level representations during the learning 
process. 

Unfortunately, as already pointed out, the automata used in (Frasconi et al., 1991, 1995) 
have few degrees of freedom. This has motivated the research reported in this paper, 
where the main efforts are in forcing automata behavior into neural networks without 
specifying state transition rules. One of the objects of the research reported in this paper is 
to develop "K" modules for enriching the K-L models suggested in (Frasconi et al., 1991, 
1995). Interestingly, as shown in section 6, the analysis on forcing automata behavior 
into R2BF networks turns out to be very useful also for purely symbolic problems like 
inductive inference of regular grammars. 

3. Recurrent Radial Basis Functions 

In this section, we introduce the recurrent radial basis function networks (R2BF) and 
define the formalism adopted throughout the paper, The architecture we consider is 
shown in Fig. 1. Like for first- and second-order recurrent networks, in R2BF networks 
the learning takes place according to a supervised protocol. Basically, three entities need 
to be defined: a network A/, a learning environment £~ (set of data used for learning), 
and an error index ET (Rumelhart et al., 1986). 

• Network A[. 
The layers are identified by index I. We distinguish among the input layer (l = 0), 
the radial basis function (RBF) layer (1 = 1), the state layer (l = 2) and the output 
layer (l = 3). For the sequence parsing tasks we consider, the output layer consists 
only of one sigmoidal neuron whose output is represented by :co(~). 

The number of neurons per layer is denoted by n(l). Each neuron of layer l is 
referred to by its index i(1), i(1) = 1 , . . . ,  n(I). As already mentioned, two different 
kinds of neurons are considered, namely sigmoidal processing units and locally-tuned 
processing units. When the input vector at time t of a given sequence is presented 
to the input layer of the network, for each neuron we consider: 

neuron i(1)'s activation 
neuron i(l) 's output. 
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Output layer (1=3) 

State layer (1=2) 

- t © ©  ........ © ©  

~ ~ ~ Input layer (1=0) 

Figure 1. The Recurrent Radial Basis Function architecture. 

Depending on the kind of neuron, the following processing is performed: 

ai(1)(t  + 1) = 
[ ~(o) 
| E (~j(o)(t)  - ~(~),j(o)) ~ + 

~(, L~(O)=l 
I ] [ X o ( t ) , X : ( t  - 1 ) ] ' -  C~(1)]12 

n(1) 

at(2) (t) = w/(2) + 

E (x j (2 ) ( t  - 1) - c/(1),j(2)) 2 
j(2)=1 

j(1)=1 

(1) 

where wi(z), j(z-1) denotes the weight of the link between the neurons ~(1), j ( l  - 1), 
and Xz(t) - [ x l (0 ( t ) , - . .  :x~(z)(t)]' represents the output vector associated with 
layer 1. The vectors Ci(1) = [c~(1),l(o),...,ci(1),,~(o);ei(1),l(2),...,ei(1),~(2)] ~ are 
the centers of the radial basis functions and ~(1) are the associated widths of the 
Gaussian functions 1 

The output of neuron i ( l )  is related to the activation as follows: 

x~(t) = / ( a ~ ( 1 ) )  = e -~(~), 

xi(2) = f (a~(2))  - l+e~a~(2) 
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In the following, we will mainly refer to a special architecture, referred to as R2BF1, 
which is characterized by a single feedback connection from each state unit to one 
RBF unit. For this particular connection scheme, the centers of the RBF units are 
represented as Ck(1) ~ [ck(1),l(o),... , eko),n(o) ; ek(1),k(2)]', being k(1) the index of 
the RBF unit and k(2) the index of the corresponding state neuron. 

Learning Environment £~. 
The computational style considered in this paper is that of feeding the network on 
sequences of frames (tokens) beginning from a given initial state. A token ST(q)(q) 
with q = 1 , . . . ,  Q is a sequence of T(q) frames: 

ST(q)(q)-- { U ( t , q ) c R  n(°), t = l , . . . , T ( q ) } .  

The number of frames composing a given token "q" is referred to as the token length 
T(q) <_ T,,~ax, being T,~a:~ = maxl<_q<_Q{T(q)}. The activation of each neuron is 
reset to its initial value after feeding the network with a token. 
The learning process is based on a set of supervised tokens. They are collected into Q 
input/target pairs, where each token is associated with its class. Positive and negative 
examples are taken into account. Let d- ,  d + E R be such that [d-, d +] c [0, 11 and 
define: 

£~ =-- {(ST(q)(q),d(q)), ST(q)(q) E SQ, d(q) E { d - , d + } ,  q : 1 , . . . , Q } ,  

where ST(q)(q) is the input sequence, d(q) is its corresponding target value for the 
output at T(q), and SQ is the token space. 
According to the previous definition, the learning environment £~ can be partitioned 
into the following sets: 

C + - { q E £ e  :d(q)=d+}, 
C - -  {qE£¢ :d(q)=d-} .  

These sets collect the positive and the negative tokens of the learning environment. 

Cost index. 
Given the pair (N', Z;¢), the output-target data fitting is measured by means of the 
cost function 

E(A/',£~ 
Q 

• ~ E q =  
q=l 

+) + 9-(.o(T(q))- d-). 
qEC+ qEC- 

(2) 

where 

{ /3+(a) = 0 if a > 0 J"/3_(a) = 0 if a < 0 
/3+(c~)>0 / 3 + ( a ) < 0  i f a < 0  ' ) . / 3 _ ( a ) > 0  3 ' _ ( a ) > 0  i f a > 0  ' 
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and " t " stands for differentiation with respect to c~. This threshold-LMS error has 
been introduced by Sontag & Sussman (1989). This cost does not penalize outputs 
"beyond" the target values. It is very well suited both for theoretical analyses and 
practical applications (Bianchini et al., 1994). 

As for other recurrent networks (e.g.: first and second-order recurrent networks), the 
learning is based on the optimization of that function. The gradient of the cost can be 
computed by following approximate schemes like the one proposed by Elman (1990) 2, 
or exact schemes based on time-unfolding (see, e.g.: Rumelhart et al., 1986; Williams & 
Peng, 1990) or on the forward propagation scheme (Williams & Zipser, 1989; Kuhn et al., 
1990). However, because of the constraints we impose on our architecture, we can relate 
the used learning procedure to that proposed by Moody for static radial basis function 
networks. Moody's hybrid learning scheme for static RBF (Moody & Darken, 1989) is 
significantly less demanding than Backpropagation from a computational point of view. 
The main reason of the success of such scheme is that the RBF centers are adjusted very 
efficiently with self-organization algorithms, and the upper level weights are subsequently 
adjusted simply by using LMS. In section 4, we will show that if we are interested in 
learning automata then the radial basis function centers in R2BF networks can be fixed 
on the vertices of the boolean hypercube, and the learning can be restricted to the weights 
of the neurons of the state layer. This is somewhat related to Moody's hybrid scheme 
for static networks. 

4. R~BF Working as Automata 

In this section, we explore the relationships between R2BF and automata. We show that 
the R2BF are very well-suited for expressing the automata next-state function, and give 
a set of weight constraints guaranteeing automata behavior. 

4.1. R2BF as automata canonical form 

The recurrent network introduced in the previous paragraph is very well-suited for im- 
plementing automata. Let us assume that the automaton is given in terms of its next-state 
function in the following canonical form (sum of products) a: 

silt+l =Ern(S j , I k ) l t  g / =  1 , . . . , n  , (3) 
j , k  

where si is the/-th bit of the state binary code, Sj is the binary code of the j-th state, 
Ik is the code for the k-th input symbol, and m(@, Ik) is the minterm associated with 
the pair (Sj, Ik) 4 
In order to implement automata by R2BF networks, let us consider the equation for the 
activation of any state neuron. From equations (1) it follows that 

n( l )  rt(2) _(~i(21 ~t) ~:,(1)i(2))__ 2 n(0) _(~:~(o)(t)-ci(1)i(o)) 2 
~r2 ~2 

i(1)=1 i(~)=1 i(0)=1 
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1 

sO 
Ou~utlayer 

State layer 
(exclusive coding) 

,q 
RBF layer 
(minterms) 

Inputlayer 

Figure 2. Implementation of a given automaton by means of a R2BF network. The units of the RBF layer 
extract the minterms, while the sigmoidal neurons of the state layer perform the "or" of the connected inputs. 
(a) Parity automaton. (b) R2BF network that recognizes parity; the corresponding center is shown inside each 
RBF unit. 

We can associate a minterm rn(@, Ik) with each i(1) and, therefore, with each radial 
basis function neuron. The product in equation (4) is close to 1 provided that both the 
state zi(2)(t) and the inputs Zi(o)(t) are close to the centers ci(1)~(2) and ci(1)~(o). On 
the olher hand, extracting minterms with locally-tuned processing units is a very simple 
task, since it suffices to locate their centers on the associated hypercube vertices and to 
assume "arbitrarily small" values for (ri. Finally, the sigmoidal neurons must perform 
the "or" of the minterms using the wi(2)i(1) weights. It turns out that the R2BF networks 
give a straightforward realization of the automata canonical form (3). 
In Fig. 2, we give an example to show how a given automaton can be injected into 
a R2BF architecture. We assume an exclusive coding for the two states of the parity 
automaton, so that two state neurons are required. The four radial basis function units 
realize the minterms required to detect all the possible state-input pairs, and, because of 
the exclusive coding of the states, the radial basis function units receive feedback from 
one state unit only. As motivated in section 4.2 and shown with experimental results in 
section 6, in many cases, this kind of architecture may be preferable to fully connected 
R2BK Obviously, we do not want to stress the capability of these networks to implement 
automata, but the natural way they incorporate the automata next-state function. When 
using the R2BF for learning automata from examples, the previous analyses on the 
translation of the canonical form turns out to be very useful. In this case, of course, if no 
further information is available on the automaton, the minterms are unknown but, they 
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are certainly located on the vertices of the hypercube. When choosing an architecture 
with a locally-tuned processing unit for each hypercube's vertex, we provide a very 
significant hint on the problem by forcing the network towards automata behavior. When 
considering automata with "many" states and "many" symbols, the number of radial basis 
functions, that is equal to the number of automata minterms, may become prohibitive. 
However, with additional prior knowledge on the automata, one can limit significantly 
the number of radial basis functions. The most general automata can have a number of 
minterms equal to the number of the states times the number of symbols. This number 
can be significantly reduced when considering that the number of radial basis functions 
that are really required is related to the number of arcs of the automata state diagram. 
Many interesting problems can be modeled by automata having don't care conditions 
in the next-state function and, consequently, the number of RBF units can be reduced 
significantly. For example this happens when we want to build a model for a particular 
word in speech recognition on the basis of a phoneme coder that performs prediction at 
the flame level. Because of the word lexical structure, we can limit the number of state 
transitions, which in turn reduces the complexity of the network without penalizing its 
capability to solve the task. Obviously, this is related to the insertion of knowledge at a 
higher level and is outside the scope of this paper (Frasconi et al., 1995; Frasconi et al., 
in press). 

Remark 1. (R2BF and high-order recurrent nets.) The "order" of a neural network refers 
to the dimensionality of the product terms in the weighted sum (Cover, 1965; Giles & 
Maxwell, 1987; Rumelhart et al., 1986; Minsky & Papert, 1988). Unlike feedforward 
networks where the order has a geometrical nature, in recurrent networks it could be also 
of temporal nature. The activation of a neuron can in fact depend on product terms of 
outputs at different times. When looking at equation (4), it turns out that the R2BF have a 
very intriguing relationship with high-order 5 recurrent networks. Basically, the locally- 
tuned processing units act like sigma-pi neurons (Rumelhart et al., 1986) with inputs 
filtered by a Gaussian function. When the input to the network is a single boolean {0, 1} 
and each RBF neuron receives one feedback connection only (R2BFI), the recurrent 
radial basis function networks turn out to be strictly related to second-order recurrent 
networks (Giles et al., 1992a). Moreover, the R2BF networks have an additional feature 
that makes them very suitable for dealing with automata: if we use small values of 
~7 (Gaussian width), and locate the RBF centers on the hypercube vertices, then these 
networks react to boolean values only. 

Remark 2. (The R2BF output neuron.) In the R2BF architecture proposed in the previous 
section, the state layer is connected to an output neuron by forward links with no delay 
(see Fig. 1). Since an automaton has commonly more than one accepting state, the 
network state layer is not suitable for a direct output computation, unless one neuron 
of the layer is reserved for that task. In order to reach the state coded by this neuron, 
a possible solution is that of adding one more end symbol to each string (Giles et al., 
1992b; Watrous & Kuhn, 1992). 
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4.2. The automata weight space 

In the previous section, we have discussed of automata realization by considering boolean 
values. A straightforward consequence of this theoretical assumption is that the weights 
connecting the radial basis functions to the sigmoidal neurons must be infinite. However, 
when considering logical values with thresholds, the R2BF automata behavior is gained 
for a larger weight domain. Also in this case, it is possible to choose the widths of 
the Gaussian functions and the weights of the sigmoidal neurons in order to guarantee 
an automata behavior. A more formal statement of this fact can be given by defining 
hyperboxes where the state of the network is forced to evolve. Let p- ,  p+ E (0, 1) be the 
logical thresholds. When dealing with a network having n states, an automata behavior 
is characterized by a state evolution that is forced in {[0, p - )  U (p+, 1]} '~. 

Definition. [Boolean quantization function] Let 

p-, p+ ~ (o, 1) 

be two threshold values. The boolean-valued function 1-' defined as 

v : [ o , l } ,  , { o , t } :  
p(z;p_ p+)= ~'0 if z < p -  

1 if z > p  + t 

(5) 

is called a boolean quantization function of cc with thresholds p-, p+. 

A boolean quantization function is not defined in [p-,p+]. For values belonging to 
that interval no boolean interpretation is given. 

Definition. [Boolean-like AND functions] Let p- ,  p+ E [0, 1) be the quantization thresh- 
olds. A real function 

sA: {i0, ~-)  u ( / ,  11} ~ ~ - ,  [o,; ) u (p+, 1]: 

y = BA(zl,z2,...,z~;p-.p +) 

is called a boolean-like AND function if 

C ( y ; p - , p + )  : A [ ~ ( X l ; p - , P + )  • 
i=1 

(6) 

A similar definition is given for OR functions: 

Definition. [Boolean-like OR functions] Let p+, p- E [0, 1) be the quantization thresh- 
olds. A real function 

~ v :  { [O,p- )U(p+, l l}  '~, , [ O , p - ) U ( / , 1 ] :  
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y = 13v(Xa, z 2 , . . . ,  x,~; p - ,  p+) 

is called a boolean-like OR function if 

r 0 ; P - , P  +) = V • 
i = 1  

(7) 

Similar definitions can be given for the NOT operator and for any minterm. These 
boolean-like functions can be computed both by single sigmoidal neuron and radial basis 
functions, As shown in the previous section, a natural solution turns out to be that of 
using the sigmoidal neurons for implementing the "or" and the radial basis functions for 
the minterms. 

Let us begin considering the realization of the boolean-like OR function. Denote with 
W o , W l , . . . , w n  the weights of this neuron, being w0 the bias. The following theorem 
gives a set of weight constraints guaranteeing the realization of the OR operator. See 
(Watrous et al., 1993) for a related result. 

THEOREM 1 Assume a vector of weights w~ > O,i = 1 . . . n .  A sigmoidal neuron 
implements a boolean-like OR function with thresholds p-  , p+ if the weights satisfy the 
following n + 1 linear constraints: 

n 

wo + E w~P- <_ f -  l (p- ) (8) 
i = 1  

wo + wjp + >_ f -~(p+)  Vj = l...n. 

In particular, the weight vector defined as follows 

/ - l ( p + )  __ f - l ( p - )  
W I = ? 3 )  2 : .., : W  n : p+ - n p -  

p+ f - l ( p - )  _ np -  f -~(p+ ) (9) 
Wo = p+ - n p -  

satisfies inequalities (8). 

Proof: We begin by observing that the relationship 

)2 

F(y; p- ,  p+) = A F(x.i; p - ,  p+) (10) 
i = 1  

is implied by the following two conditions: 

y < p -  if x . z < p -  Vi, l < i < n  
y > p +  if 3i, l < i < n  : x ~ > p  +. (11) 

Therefore, it suffices to prove that the hypotheses of the theorem imply (11). Since all 
the weights wi,{ = 1 . . . n  are positive, if zi < p - , V i  = 1 . . . n ,  we have 
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Figure 3. (a) Boolean quantization on a 2-dimensional input space for the OR function implemented by a 
sigmoidal neuron. The diagram is drawn for p = 1/3  (limit threshold value). (b) Maximum fan-in to a RBF 
unit for a given threshold value. Notice that the RBF units with more than two inputs turn out to be very 
saturated, thus compromising seriously the learning process. 

f - l ( y )  < Wo + ~ w i p -  < f - l ( p - )  
i = l  

where the last inequality comes from the first of (8). 
Similarly, if 3i : xi > p+ then 

f - l ( y )  > Wo + wjp + >_ f - l ( p + ) ,  

(12) 

(13) 

where once again the last inequality comes from (8). Finally, equations (9) can be easily 
verified by substitution with equal weights (Wl ~-~ W2 . . . . .  Wn) .  [] 

R e m a r k  3. (Large networks and complex dynamics.) For the sake of simplicity, let us 
assume 6 p+ = 1 - p and p -  = p. It is easy to see that since the linear constraints 
(8) are satisfied with w~ > 0, for i = 1 . . .  n (as required by Theorem 1), then the input 
threshold p must belong to the following interval: 

1 
0 < p < - - .  (14) 

n + l  

This concept is clearly explained in Fig. 3a for n = 2. This condition arises from 
the domain we have chosen defining our boolean-like functions. Actually, it imposes 
a limitation on the fan-in of the sigmoidal neuron when the input threshold p is fixed. 
From a practical point of view, it also indicates that the automata behavior becomes 
more and more unlikely for "large" networks. This restriction could be overcome by 
splitting each neuron into more units, thus increasing the number of  layers. In so doing, 
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Figure 4. Maximum and minimum c~i values of a RBF unit with two inputs (used in R2BF1 networks) for a 
given tkreshold p. These bounds were found using Theorem 2. 

however, the training could become more difficult because of the increased depth of the 
network. Results similar to those stated by Theorem 1 can be obtained for the radial 
basis function neurons devoted to implementing the automata minterms. The following 
theorem gives the constraints for the Gaussian width ~ needed to meet the thresholding 
logical conditions. 

THEOREM 2 A locally-tuned processing unit "i" implements a minterm associated with 
the hypercube vertex C,, provided that the center is located in C~ and the Gaussian width 
~r~ satisfies the conditions 

p v ~  I - p (15) 

Proof: The proof can be given exactly as for Theorem 1 by imposing the thresholding 
limit conditions. • 

Remark 4. (Large networks and complex dynamics.) Like for sigmoidal neuron, the 
previous theorem gives some interesting conclusions about the neuron fan-in (minterm 
order). Basically, the choice of ~i becomes more and more restricted as the fan-in 
increases. Only one choice (limit case) is possible when the upper and lower bound in 
equation (15) becomes equal. For each p, in Fig. 3b, we can see what is the maximum 
value of the fan-in that is compatible with the minterm realization. Fig. 4 reports the 
diagram of maximum and the minimum a, values of a RBF unit with two inputs (used 
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in R2BF1 networks) as a function of the threshold p. These bounds (see equation (15)), 
ensure the minterm implementation and are very useful for setting up the o-~(1) parameters 
(see section 6). 

For any R2BF network, we can force the weights of sigmoidal and RBF neurons to 
satisfy the constraints (8) and (15), respectively. Let f~a be the admissible weight domain 
deriving from imposing such constraints. The theorems concerning the implementation 
of the OR function with sigmoidal neurons and any minterm with radial basis functions 
offer conditions for guaranteeing the automata realization. This is stated formally by the 
following theorem. 

THEOREM 3 Let us assume that a recurrent radial basis function network 2(  performs 
a processing of symbolic inputs under the following conditions 

• The initial state of JV" is in 7) - {[0, p - )  U (p+, 1]} n 

• The network N has weights in the admissible domain f~a. 

Under these assumptions, the network evolution is guaranteed to kept the state in 7?, 
that is Vt = 1 , . . . ,  oe ~ X2(~) E 7). 

Proof: The proof can be given by induction on t. Let us assume that Xz( t )  E 7). 
Because of the network architecture, this vector is processed by the radial basis function 
layer. Once the centers of the radial basis functions are on the proper vertices of the 
boolean hypercube and the constraints (15) hold for all the neurons of the layer, Theorem 
2 guarantees that X1 (t) E 7), since the inputs are strings. Finally, if the weight constraints 
(8) are satisfied, because of Theorem 1, X 1 (t + 1) E 7) follows. • 

Under the hypotheses of Theorem 3, the network evolves from one "cluster of points" 
to another one. Once these clusters have been labeled, this complex evolution can be 
associated with the next-state function of  an automaton. 

The Remarks 3 and 4 give some very interesting insights about such behavior. It seems 
that the automata behavior becomes more unlikely with the increase of the network size. 
As a result, "large" networks exhibit naturally very complex dynamics, and it could 
be very difficult to force them to behave as automata. For this reason, the R2BF1 
networks seem more adequate for learning automata since the RBF units have a lower 
fan-in. In Fig. 3b we can see that RBF units with more than two inputs turn out to 
be very saturated, thus compromising seriously the learning process. Although these 
conclusions strictly hold for R2BF networks, they are likely to apply to other recurrent 
networks as well. Based on experimental results obtained with second-order recurrent 
networks, Miller & Giles (1993) have recently observed that the drift from the automata 
behavior experimented for long sequences "seems strongly correlated with larger number 
of weights". For R2BF networks, the results of this section give similar intuitions a 
theoretical foundation. 
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5. Forcing Automata Behavior into R~BF 

The difficulties of learning automata exactly have already been shown experimentally by 
numerous researchers. For most experiments of inductive inference of regular grammars 
(see the next section), the main problem is not that of learning the examples, but that 
of generalizing the automata behavior to other sequences of the grammar, particularly if 
they are very long. On the other hand, learning long sequences is very difficult because 
of the vanishing of the gradient during the Backpropagation through time (Bengio et al., 
1994; Gori et al., 1994). Kolen (1994) has recently observed that "... significant state 
information can be buried deep within the system's initial conditions." Basically, the 
apparent automata behavior arising from the learning of sequences of relatively small 
length, may change to more complex dynamics for longer sequences. 

To some extent, the techniques for extracting automata after learning (Cleeremans 
et al., 1989; Servan-Schreiber et al., 1991; Giles et al., 1992b; Watrous and Kuhn, 1992) 
are interesting attempts to overcome this problem. For example, Giles et al. (1992b) 
report explicitly that the extracted automaton can exhibit better performance than the 
recurrent network from which it has been extracted. However, an implicit assumption 
for a successful extraction of automata with clustering techniques is that the network state 
space is fairly well-separated in clusters. Unfortunately the network dynamics deriving 
from learning by example can be very complex and hardly approximable with automata. 

Zeng et al. (1993) have recently overcome the problem pointed out by Kolen using 
a heuristic technique for learning in second-order recurrent networks with hard-limiting 
threshold activation functions. In so doing, there is no need to use clustering algorithms 
for extracting automata subsequently. However, as the authors point out, there is an 
increased computational burden associated with the proposed heuristic algorithm. Das & 
Mozer (1994) propose to include a clustering algorithm directly in the learning procedure 
and make it possible to put constraints on the number of state clusters developed by the 
network. 

In this paper, we propose a very effective technique for approximating automata be- 
havior that is based on forcing the network state space to be fairly well-separated in 
clusters. In addition to the hint associated with the automata minterms that lead to fix 
up the centers of the radial basis function, we suggest using a constraint that forces the 
outputs of the state neurons to be "high" and "low" (e.g.: 1,0). 
In order to force these outputs during the input processing, we introduce the following 
penalty function to be added to the cost function (2) 

Q T(q) n(2) 

q=l t=l i(2)=1 
max{O,(z{(2)(t,q) - p-) .  (p+ -zi(2)(t ,q))} (16) 

Basically, this function is null when the outputs of the network state neurons fall outside 
the interval [p-, p+], during the input processing. This is a sort of teacher forcing 7 of 
the state neurons and leads to develop state representations clustered on the vertices of 
the hypercube. 
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The learning process can be carried out by optimizing E + ),vP, where Ap may af- 
fect significantly the rate of the learning process. We found remarkable advantages in 
optimizing the following index 

P(H,  c)  
v(A/,/2) = E(N', 12) + Ap I + exp(- (Eo - E)/KT) 07) 

The aim of the learning is to find weights for which both the error E and the penalty 
function P become null. Using the index (17) with proper values for the constants E0, 
K, and T, at the beginning the learning process decreases mainly the error E until it 
becomes very small. As long as the error decreases, the penalty function becomes more 
and more significant in the optimization. At the end, the learning is in fact focused on 
forcing the penalty to zero, thus favoring automata representations. 

In order to understand the effect of optimizing the function (17), let us assume that 
V = 0 holds at the end of the learning process; consequently also the penalty function 
gets null (P  = 0). From equation (16) we obtain z~(2)(t,q) <_ p-  or z~(~)(t,q) >_ p+, 
V /(2) = 1 , . . . , n ( 2 ) , V  t = l , . . . , T ( q ) , V q =  1 , . . . , O ,  that is Xz(t)  ET?. Notice 
that, unlike Theorem 3, the condition V = 0 does not imply automata behavior V t = 
1 , . . . ,  oo, but only for t < Tree z. However, the optimization of equation (17) is a very 
straightforward method for forcing automata behavior. 

6. R2BF Networks for Inductive Inference of Regular Grammars 

In this section, we report the experimental results obtained using R2BF1 networks for in- 
ductive inference of regular grammars. The term "inductive inference" (Angluin & Smith 
1983) denotes the process of hypothesizing a general rule from examples and seems to 
be a fundamental component of intelligent behavior. Many researchers have recently 
experimented the use of connectionist models for approaching simple problems of in- 
ductive inference (Cleeremans et al., 1989; Pollack, 1991; Giles et al., 1992a; Omlin & 
Giles, 1992; Watrous & Kuhn, 1992; Zeng et al., 1993). Following these researchers, 
we have tested extensively the R2BF1 architecture on several tasks and in particular on 
all Tomita languages (Tomita, 1982) (see Table 1). These languages are based on the 
input symbols {0,1} that were coded as the real values 0.0 and 1.0. 

6.1. Experimental set up 

For each language we trained four RZBFI networks with an increasing number of state 
neurons (5,6,7,8) using Tomita's training set (Tomita, 1982). The R2BF1 networks with 
n state neurons (rt(2) = n) had 2n radial basis function units (r~(1) = 2n), and one first 
order sigmoidal output neuron (r~(3) = 1). The use of R2BF1 networks has already been 
motivated in section 4.2. Architecture with full feedback from the state layer to the radial 
basis functions layer were also experimented. According to the theoretical expectations, 
we found their training more expensive and, therefore, we focused our attention on the 
RZBF1 architecture only. 
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Table 1. Tomita grammars. The "Examples" column reports 
the number of examples contained in the original learning set 
(positive and negative strings, respectively). 

Grammar Rule States Examples 

G1 1" 2 8-8 
G2 (10)* 3 5-10 
G3 no odd substring of 0s 

after odd substrings of ls 5 12-12 
G4 no 000s 4 10-9 
G5 #01+#10 = 0 rood 2 4 9-11 
G6 abs(#l-#0) = 0 mod 3 3 9-12 
G7 0'1'0"1" 5 12-8 

As described in section 4.1, the centers were set up in such a way that the locally-tuned 
processing units extracted minterms. As a consequence, these units were partitioned in 
two sets of  n units with centers fixed in [0.0, 0.9] and [1.0, 0.9], respectively. Each unit 
in a set received the feedback connection from a different state neuron. The widths of 
the radial basis functions were initialized to 0.3 (~ri(t) = 0.3) by considerations based on 
Fig. 4. Both the centers and the width of these units were kept fixed during training. The 
state layer and the radial basis function layer were fully-connected. These connections 
were trainable and randomly initialized in [0.0, 1.01. Each sigmoidal unit had also a 
trainable bias initialized in [ -1 .0 ,  0.0]. 
All the state units were connected to the output neuron with trainable weights randomly 
initialized in [0.0, 1.0]. The bias of this unit was initialized in I -  1.0, 0.0]. 
Before feeding the network with a sequence, all the state neurons were initialized to 0.0, 
apart from neuron 0 that was set up to 1.0. 

Each network was trained by forcing automata representations as shown in section 
5. The gradient of  the error E(N' , /2)  was computed by using the BPTT algorithm 
(Williams & Peng, 1990). The target values were 0.9 for grammatical and 0.1 for un- 
grammatical strings. A LMS-threshold function was used for the error computation 
(Sontag & Sussman, 1989). 

The penalty function P(.M,/2) was chosen as shown in section 5 in order to penalize 
output values in [0.1,0.9]. These constraints were managed as additional supervisions 
on the state neurons and, therefore, the gradient of P was still computed by BPTI'. in all 
the experiments we found no problems in reaching E(A/',/2) _~ 0, whereas sometimes 
it was hard to satisfy all the constraints. In these cases, after a fixed maximum number 
of epochs, the training was stopped without reaching the optimal solution also for the 
constraints. 

6.2. Automata extraction 

In the previous section we have seen that if we find a global minimum of the function 
(17) then the network state trajectory associated with the training set is constrained in D. 
Said another way, the outputs of  the network state layer can be quantized so that they can 
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Table 2. Automata Extraction Algorithm. 

1. Compute all the state vectors for each sequence of the learning set. 

2. K ~ - 2  

3. Use the k-mean algorithm for partitioning the set of state vectors into K subsets; 

4. If the distance of two centers is less than d~ then K ~- K - 1 else K ~-- K + 1 and go to 
step 3; 

5. Compute the transition table: 

(A) Since each cluster corresponds with a state of the automaton, for each cluster use its 
center as network state at t (or as initial condition), and from this state feed the network 
with one symbol. 

(B) Get the resulting state vector and find the cluster which contains this vector. 

(C) Repeat these two steps for all symbols and states. 

6. Compute the initial state by finding the cluster containing the initial state of the network. 

7. Compute the accepting states: 

(A) Initialize the state neurons with each cluster center (i.e. state of the automaton) and get 
the value of the output neuron. 

(B) If it is greater than 0.5 then the current cluster corresponds with an accepting state. 8 

be associated with the states of  a finite state automaton. The extraction of the automaton 
becomes more difficult when the learning algorithm gets stuck in a local minimum of the 

function V. In these cases the points of the state trajectory are not necessarily clustered 
round the hypercube vertices, and consequently, the automata extraction is more involved. 

Following other researchers (Cleeremans et al., 1989; Servan-Schreiber et al., 1991; 
Giles et a l ,  1992b; Watrous & Kuhn, 1992), an automaton was extracted from each 
trained network using the clustering algorithm based on k-mean reported in Table 2. 

The parameter de represents the minimum tolerated distance between two cluster cen- 

ters. For all the experiments on Tomita's languages dc was set up to 0.6. As already 
pointed out in section 5, if the learning process ends with V = 0, then the points of 

the state trajectory are clusters round the hypercube vertices. Hence, the clustering by 

k-mean (step 3) is not strictly required. When ending the learning with sub-optimal solu- 
tions in function V, typical case is that in which E = 0 but some constraints are violated 

(i.e. the networks develops a non boolean state coding). In that case, it is possible to 
extract an automaton using a trial and error application of the previous algorithm. We 

can reduce the cluster distance d~ until we obtain an automaton that makes no errors on 
the learning set. 

A state reduction algorithm can then be applied to the extracted automaton to get an 
equivalent machine with the minimum number of states. 
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Table 3. Training R2BF1 networks on Tomita languages using Tomita training data. The results refer to the 
extracted automata. All the languages were learned exactly (Accuracy of 100% on Tomita's training set). The 
results of the table refer to all strings with length up to 12. The numbers marked with "*" indicate that the 
correspondent FSA was extracted from networks that did not reach the perfect constraint satisfaction (P ~ 0). 

Language State neurons FSA size Accuracy 

Tomita 1 5 3 100.0 
6 3 100.0 
7 3 100.0 
8 3 100.0 

Tomita 2 5 4 79.8 
6 3 83.4 
7 4 79.8 
8 4 99.6 

Tomita 3 5 11" 88.9 
6 9* 93.3 
7 9 85.1 
8 8* 79.3 

Tomita 4 5 5 100.0 
6 5 96.0 
7 8 57.6 
8 6 58.5 

Tomita 5 5 10" 78.1 
6 9 46.9 
7 8 58.6 
8 9 47,0 

Tomita 6 5 5 70.1 
6 12" 47.2 
7 11" 46.4 
8 10 46.4 

Tomita 7 5 5 77.2 
6 10 44.4 
7 8 75.4 
8 7 76.6 

6.3. Experimental results 

The exper imental  results obtained on all Tomi ta ' s  languages are reported in Table 3. The  

second column specifies the size of  the ne twork  (i.e. the number  of  state neurons).  The  

third one reports the number  of  states of  the extracted and min imized  automaton (the 

networks for which the constraints  were  not satisfied are marked with "*") .  The  fourth 

co lumn summarizes  the pe r fo rmance  of  the extracted automaton (recognit ion rate) on a 

test set containing all the strings wi th  length up to 12 (8190 strings). The  extracted au- 

tomaton always performs perfect ly  on the learning set. In the cases where the constraints  



REPRESENTATION OF FINITE AUTOMATA IN R2BF NETWORKS 25 

) 
)02__. 0 0 

1 

0,1 
State Code Standard dev. 

0 00000 0.068 
1 11111 0.067 
2 11100 0.077 
3 01011 0.009 
4 tO000 0 

(a) (b) 

Figure 5. Learning Tomita 4 language with a R2BFI network of size 5. Perfect generalization was attained 
using Tomita's training set. (a) Extracted automaton. (b) State coding with the corresponding standard deviation 
of the output distribution of the state layer neurons. 

were not satisfied (P  > 0), the learning process was clearly trapped in a local minimum, 
but the extraction of the FSA was still possible. 

The experimental results show that the task of learning these grammars from the small 
learning sets proposed by Tomita is quite hard. Perfect generalization was obtained for 
Tomita 1 and 4 languages. For the other languages, all strings of the learning set were 
correctly recognized but no perfect generalization was obtained. For a comparison with 
second-order networks see (Watrous & Kuhn, 1992). 

Fig. 5a shows the automaton extracted from the network of size 5 that recognized suc- 
cessfully Tomita 4 language. Fig. 5b reports the state coding of the extracted automaton 
and the standard deviation of the associated clusters. The extracted automaton is minimal 
apart from state 4, that acts as the initial state and can easily be removed. 

For Tomita 2 and Tomita 7 languages we extracted two automata that had the same 
dimension as the minimal machines which recognize the languages (see Fig. 6). These 
automata succeeded in classifying the learning set but did not reach perfect generaliza- 
tion. As pointed out in (Angluin & Smith, 1983), this is quite common in problems of 
inductive inference. 

6.4. Clustering in the state space of R2BF 

Some more experiments were performed on Tomita 4 language in order to investigate 
in more detail the capabilities of R2BF networks and the associated learning technique. 
We were interested in comparing R2BF and second-order recurrent networks in terms of 
the developed state space representations. For this reason, we also trained second-order 
recurrent networks with the architecture described in (Pollack, 1991; Giles et al., 1992b; 
Watrous & Kuhn, 1992), on Tomita 4 language. The state space trajectory obtained 
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Figure 6. Examples of minimal extracted machines from Tomita's training set which do not attain perfect 
generalization: (a) Tomita 2 language, automaton extracted from size 6 R2BFI network. (b) Tomita 7 language, 
automaton extracted from size 5 R2BF1 network. 

while feeding this network with the input sequences is reported in Fig. 7. The network 
dynamics is quite complex with respect to the simple automaton associated with Tomita 
4 grammar. We extracted an automaton from this network using our automata extraction 
technique. We obtained an automaton having 12 states, using a cluster distance threshold 
dc equal to 0.2. The neural network had a slightly worse performance (57.1%) than the 
extracted automaton (58.3%). 

Fig. 8a shows the state space trajectories for a R2BFI network of  size 2 trained without 
constraints on Tomita 4 language. The diagram reveals the presence of six quite large 

clusters. 
The diagram of Fig. 8b shows the effect of the constraints on the previous network. 
Only 4 small clusters appear which correspond with the 4 states of the automaton ex- 
tracted using our automata extraction technique. The performance of the constrained 
network was better than that of the unconstrained one (100% v.s. 96.0%), while the 
accuracy we found with a second-order network in the same conditions was significantly 
lower (57.1%). However, we believe that automata extraction techniques on second- 
order networks, like that reported in (Giles et al., 1992b), may improve the performance 
significantly, while the extraction of automata from our networks can only change the 
performance slightly. This is due to a more accurate approximation of  automata behavior 
of  the R2BF networks that is clearly shown in Fig. 8. 
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Figure 7. Space state trajectory for a second-order network trained on Tomita 4 language. 
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Figure 8. State space trajectories for a R2BF1 network of size 2 trained on Tomita 4 language. (a)  Un- 

constrained network. (b) Constrained network. In this experiment, although the automata constraints on the 
training set were no[ satisfied completely (see the "spurious" cluster with coordinates (0~64,0.90)), forcing 
automata with the penalty function had the remarkable effect of reducing significantly the variance of the 
distribution. 
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Figure 9. Distribution of the outputs of the state neurons for a R2BFI network of size 3 trained on Tomita 4 
language. (a) Unconstrained network. (b) Constrained network. In this case, forcing automata behavior has 
not only the effect of reducing the variance of the distribution, but also that of clustering all the outputs on the 
vertices of the hypercube (global optimization was performed on V). 

Another example of well separated regions created using R2BF networks for learning 
Tomita 4 language is given in Fig. 9. It reports the distribution of  the outputs of the state 
neurons for a network with n(1) = 3. According to the theoretical expectations, in the 
first case (unconstrained network) the distribution spans the whole interval, whereas in 
the second one (constrained network) no value falls into the "forbidden" area ([p- ,  p+]). 
This is because with this network the learning ended with V = 0. 

6.5. Experiments with a larger learning set 

All the experiments reported so far refer to learning with Tomita's training set. The 
evaluation of techniques for inductive inference however, must be very careful. Even 
human beings might be very annoyed to find that their supposed rule, working perfectly 
on the examples, was not the one the test maker had intended. As pointed out in (Gold, 
1967; Angluin & Smith, 1983), the basis of  this annoyance is that there are infinitely 
many more or less plausible rules for generating different sequences, and without more 
constraints it is impossible to establish whether or not the rule found on the learning set 
is the one the test maker had intended. For this reason, we trained R2BF1 networks with 
5 state neurons using an extended learning set for all the languages for which we did not 
obtain a perfect generalization. Tomita's training sets were incremented with the 5% of 
all the strings with lengths from 1 up to 10. These strings were randomly chosen. We 
adopted an incremental learning strategy, so that new strings were added to the learning 
set only when the previous ones had been exactly learned. 
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Using these learning sets we were able to learn exactly all the languages and to attain 
perfect generalization on all Tomita's languages. 

7. Conclusions 

In this paper, we have proposed some techniques for forcing automata behavior into 
recurrent radial basis function networks. This research is strictly related to our previous 
work on injecting prior knowledge into recurrent networks for automatic speech recog- 
nition (Frasconi et al., 1991, 1995; Gori & Soda, 1993). The paper has proposed some 
novel results that can be summarized as follows. 

First, we have shown that the R2BF networks are very well-suited for dealing with 
automata and we have given a very useful hint on the location of the radial basis function 
centers. The centers are in fact related to the minterms of the canonical form of the 
next-state function. This initialization of the centers is somewhat related to the hybrid 
learning scheme suggested by Moody & Darken (1989) for static radial basis functions. 
Interestingly, we have also shown that the R2BF are closely related to high-order recurrent 
networks. 

Second, in addition to the hint on the center location, we have proven that, under proper 
linear weight constraints, the R2BF's dynamics can be described in terms of automata 
by associating symbolic states to clusters in the network state space. An implication of 
this theoretical analysis is that the admissible weight space becomes increasingly "small" 
with the size of the network, thus making the learning process very difficult for "large" 
networks. This conclusion, derived for R2BF networks, is likely to hold also for other 
recurrent networks, and suggests that "large" networks have complex dynamics that may 
be difficult to approximate with automata. This also motivates the choice of R2BFI 
networks for the experimental application to inductive inference, since these networks 
are based on RBF units with two inputs only. 

Third, we have given an approximate technique for forcing automata behavior into 
R2BF networks, that is based on imposing that the outputs of the state neurons are 
"close" to boolean values. This constraint can be implemented by a proper penalty 
function that has the effect of changing the error function to optimize. In so doing, the 
network acts exactly as an automaton, at least on the training set. 

Finally, we have experimented the effectiveness of the proposed theory for problems 
of inductive inference of regular grammars. There were two main reasons for choosing 
similar problems. First, they allow us to asses the capability of learning any finite state 
automaton, that was the main limitation of our previous approach (Frasconi et al., 1995, 
Frasconi et al., 1991). Second, many researchers have recently faced this problem using 
connectionist models (Cleeremans et al., 1989; Elman, 1991; Pollack, 1991; Servan- 
Schreiber et al., 1991; Giles et al., 1992b; Omlin & Giles, 1994; Watrous & Kuhn, 
1992). In our experiments, the training set of Tomita's languages (Tomita, 1982) was 
always learned exactly and the results on a test composed of strings with length up 
to 12 (using Tomita's training set for learning) were very promising. For Tomita 1 
and Tomita 4 languages we obtained a perfect generalization using the small Tomita sets 
only. When slightly incrementing these training sets, the trained networks attained perfect 



30 P. FRASCONI, M. GORI, M. MAGGINI, AND G. SODA 

generalization for all Tomita's languages. The basic feature of the proposed network and 
learning scheme, that is the development of state representations distributed in "small" 
clusters, seems to be the main reason of these successful results. 
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Notes 

1. The radial basis functions considered in this paper are based on Gaussian functions as proposed in 
(Moody & Darken, 1989). 

2. The approximation arises from the truncation of the true gradient to the previous time step, This may 
prevent the learning process from finding long-term dependencies. 

3. We deal with automata acting as recognizers and, therefore, their complete specification can be given by 
the next-state function and the set of accepting states. 

4. This minterm produces a high value only when its inputs match the codes of Sj  and Ik, i.e. it decodes the 
particular binary configuration produced by the concatenation of the codes of S'j and Ik (Mano, 1988). 

5. The order refers to product terms of outputs and inputs at the same time (geometrical concept). 

6. We will keep this assumption also in the remainder of the paper. 

7. Notice that in literature, the term "teacher forcing" has been used to refer to a different technique 
(Williams & Zipser, 1989). 

8. This step must be modified if the output neuron receives connections from the network inputs. This happens 
with the second-order architectures proposed in (Pollack, 1991; Giles et al., 1992b; Watrous & Kuhn, 1992). 
In this case the output neuron must be considered as an additional component ef the state vector and the 
accepting states are characterized by the fact that this component is greater than 0.5. 
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