
Machine Learning, 5, 427-450 (1990)
© 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Empirical Learning Using Rule Threshold
Optimization for Detection of Events in
Synthetic Images

DAVID J. MONTANA (DMONTANA@BBN.COM)
Bolt, Beranek and Newman, Inc., 70 Fawcett Street, Cambridge, MA 02138

Abstract. We have developed an expert system for interpretation of passive sonar images. A key component of
the system is a group of event detection rules whose conditions consist of tests against thresholds. Due to the
complexity, variability and clumpiness (i.e., tendency towards highly nonuniform distribution) of the data, tuning
these thresholds for good performance under all conditions is a difficult task. We have implemented a procedure
for learning rule thresholds whereby the detection capability of each rule continually improves as more and more
data is played through the system. The learning procedure contains the following components: 1) a windowing
mechanism that adds exceptions (i.e., Paise alarms and missed detections) into a training database of positive
and negative examples and 2) a genetic algorithm to optimize the thresholds with respect to the training database.
The genetic training algorithm allows the developer to explicitly choose an operating point on the Receiver Operating
Characteristic (ROC) curve of a rule. Experiments have verified 1) the superiority of this automated approach
to selecting rule thresholds over manual techniques and 2) the improvement of rule performance with experience.

Keywords. Learning, image interpretation, detection, optimization, genetic algorithms, thresholded rules

1. Introduction

We start with a very br ie f overview of the full expert system and the task it performs. (For
a more detailed description of the passive sonar understanding problem and an expert system
architecture suited to this problem, see (Nii et a l . , 1982).) We then descr ibe the structure

of the event detect ion rules (the tuning of which wil l be the focus of the paper) . Finally,
we discuss the necessi ty of learning mechan i sms to allow the expert system to improve
with experience.

L L The exper t sys tem

Our expert system operates on processed passive sonar data which it receives f rom an in-
dependent s ignal-processing module . This modu le t ransforms the incoming raw data into
mul t ip le synthetic images. F igure 1 shows a s imulated sonar image. Sonar analysts read
these images to identify the signatures of nearby vessels. Certa in features of sonar images
are part icularly helpful in the deciphering process, and we call such features "events" Based
on interviews wi th experts, we have compi led a short list of different types of events that
they use when ana lyz ing sonar images and which our expert system must therefore be able
to detect.

428 D.J. MONTANA

' ' " i i

Time

Frequency

Figure 1. A simulated sonar image (with noise suppressed) reprinted from (Nii et al., 1982).

The expert system performs four basic subtasks, which in order of increasing abstrac-
tion are:

1. signal detection: determine which parts of the image correspond to emitted sound and
not just noise (known as figure-ground separation in general image analysis),

2. texture characterization: compute parameters which characterize the visual texture of
the detected signals,

3. event detection: determine the location of events, and
4. contact formation: group the signals which came from the same source into clusters

(known as contacts) and attempt to classify and geographically track the contacts.

These subtasks are distributed among two loosely coupled subsystems called the Low-Level
Processor (LLP) and High-Level Processor (HLP). The LLP performs signal detection
and texture characterization. Its primary inputs are processed data, and its primary outputs
are data structures which contain signal locations and computed texture parameters. The
HLP performs event detection and contact formation. It takes as inputs the LLP outputs
and creates a scene description of the vessels in the area. Hence, the LLP outputs serve
as an intermediate-level representation of the information in a sonar image from which
the HLP forms a high-level representation. (This intermediate-level representation for sonar
image understanding is analogous to the 2 1/2 D sketch for natural image understanding
(Marr, 1982).) This functionality is illustrated in Figure 2.

The HLP is similar in architecture and functionality to HASP/SlAP (Nii et al., 1982),
one of the early examples of a blackboard system. Architecturally, the HLP has three main
components: a global database for storing information received from the LLP plus its own
inferences, rules for forming new inferences based on the data in the database, and a con-
trol structure for invoking rules at the appropriate time. In the next section we discuss the
rules in detail.

RULE THRESHOLD OPTIMIZATION 429

sonar l L°w-LevellPr°cessor(LLP)
images ~ Texture

Character zat on

intermediate High-Level Processor (HLP) scene
representat ~ ! I description

I
Figure 2. The functionality of the expert system.

1.2. The structure o f rules

The rules in the HLP have a hierarchical structure. Individual rules are grouped together
into rule packets. The rules in a packet always have the same arguments. When a rule packet
is invoked, the rules in that packet are run in sequence until one fires or they all fail to
fire. Thus, when the consequents of the rules contained in a packet are the same (as they
are for event detection rules), the conditions of the rule packet implement a disjunction
of conjunctions, which is a popular structure for empirical learning (Michalski, Mozetic,
Hong & Lavrac, 1986). Related rule packets are grouped together into rule sets. Rule sets
can easily be turned on and off in order to change the functionality of the system. (One
use of this capability described in Section 5.2 is to adapt system performance to varying
conditions by having multiple event detection rule sets and using the one appropriate for
the present conditions.)

Some particularly important rules are those that detect events. Their function is to decide
whether or not a certain signal has a certain type of event at a certain time. They are thus
performing pattern recognition, distinguishing between positive and negative examples of
different types of events. Two examples of event detection rules are shown in the rule packet
of Figure 3. (For reasons explained in Section 4.2, the event detection rule packets in our
system usually differ from that in Figure 3 in that they only contain one rule.) Note that
the conditions of the rules consist of tests of real-valued functions of the database against
a real-valued threshold. These thresholds are parameters whose values can be varied to
optimize detection performance, and this paper focuses on an automated method for select-
ing these values.

EXAMPLE-RULE-PACKET (signal t ime)
"detects foos wi th confidence 0.5"

If: (< (average-kludginess signal) 20000)
(> (lossage-derivative signal t ime) O.O1)

Then: (declare-foo signal t ime 0.5)

If: (< (average-kludginess signal) 10000)
Then: (declare-foo signal t ime 0.5)

Figure 3. An example event detection rule packet.

4 3 0 D.J. MONTANA

The example packet in Figure 3 operates as follows. When invoked, it will first calculate
the average kludginess of the signal, where some lower-level routine(s) determines how
we measure this quantity. If the value is less than the threshold 20000, then the packet
continues with the next condition in this rule; otherwise, it moves on to the next rule. If
all the conditions of either rule are true, then the packet invokes the consequent, whose
effect is to modify the database to indicate that a foo has been detected on the specified
track at the specified time with confidence 0.5.

All packets which detect events of different types with the same confidence are grouped
together into a single rule set. (Figure 4 show the rule hierarchy for event detection rules.)
The reason for this grouping is primarily to support the adaptation mechanism described
in Section 5.2. (Adaptation requires turning on and off all event detection rule packets which
detect their different event types with the same confidence.)

1.3. The need for learning

Passive sonar data is very complex. Mathematical models generally do not capture all of
the characteristics of this data, and the ones that come close do not yield easily to mathe-
matical analysis. Therefore, when building a system for analyzing sonar data, there are
two distinct but interrelated tasks: building the system and tuning it. The tuning process
has received little attention in the past despite its importance to the success of the system.

Upon examining the tuning process, we have reached two basic conclusions. First, due
to the nature of the data, tuning must be an ongoing process. Because of the wide range
of conditions, signal types, and scenarios, any system tuned on a finite amount of data
will eventually encounter a new situation for which its performance is substandard. If the
system cannot improve based on this experience, then it will repeat the same mistakes in
the future. As an example, consider a system tuned under low-traffic conditions. When
it first encounters high traffic, it will inevitably fail. The system must subsequently learn
to handle high traffic or be considered inadequate. Figure 5 illustrates this approach to
system development and the similarities between this approach and the way that human
sonar analysts learn to perform the same task. This iterative approach to development as
applied to selection of event detection rule thresholds is embodied by the windowing pro-
cedure described in Sections 2.1 and 3.3.

I Rule Set I
Confidence C1

Rule Packet I Rule Packet I
Event Type ET1 Event Type ETn

Figure 4. The rule hierarchy for event detection.

Rule Set
Confidence Cm

O O 0

Rule Packet
Event Type ET I I Rule Packet

Event Type ETn

RULE THRESHOLD OPTIMIZATION 431

I Initial Sonar I _1 Analysis

Sch°el'nstr°c"°nl --I L.--l°f°ata Reviewbyl L.]I
 earning I - i eoiorPersoooell -

(a) Process of Professional Development for Human Analyst

tnital Designand I _1 Processing I
'mp'ementati°n I t -- I of Data I

Comparison I ° 1 - I w th''+r°th''
(b) Process of Expert System Development

Figure 5. A comparison of development paths of a human sonar analyst and our expert system.

The second conclusion is that there are two types of learning involved. The first is algorithmic
tuning (a rough equivalent of knowledge acquisition). Playing data through the system will
highlight shortcomings and conceptual bugs in the underlying algorithms which must be
fixed. At the present time, this type of learning is best done by the human developers with
the aid of tools on the machine. (In Section 5.3 we discuss one such tool.) The second
type of learning is parameter tuning (a rough equivalent of skill refinement). Our system
contains a large number of parameters whose settings greatly influence performance. Ex-
amples of such parameters are the thresholds in the event detection rules. The parameters
settings not only need to improve (i.e., learn) with experience but also need to change
(i.e., adapt) in response to changes in system specifications (see Section 2.2), underlying
algorithms, and surrounding conditions (see Section 5.2). Choosing the best values for these
parameters is generally a hard problem for a human for a number of reasons including
the interaction between parameters and the difficulty of objectively comparing different
sets of parameters (see Section 4.2). We have therefore been developing methods whereby
the machine can learn appropriate parameter settings. Some of our work on learning the
parameters of a neural network for texture characterization is described in (Montana &
Davis, 1989). Optimizing the parameters of a signal tracking algorithm is discussed in (Mon-
tana, in press). In this paper we focus on how the system learns the thresholds for event
detection rules.

2. Motivation for our approach

In this section, we motivate our approach to the problem of learning to detect events. We
start by describing two important requirements of any solution: 1) windowing and 2) the
ability to pick an arbitrary operating point on the receiver operating characteristic (ROC)
curve of the underlying classifier. We then discuss why other popular classification
algorithms are not appropriate for our problem. Finally, we examine why genetic algorithms
are well suited to our approach.

432 D.J. MONTANA

2.L The need for windowing

Windowing is a method for making nonincremental empirical learning more efficient on
a very large training set. (Windowing is generally unnecessary for incremental learning
algorithms such as the one described in (Schlimmer & Granger, 1986); its function is to
allow nonincremental techniques to work on problems which would otherwise only be com-
putationally feasible using incremental techniques.) It was introduced by Quinlan (1979)
for use with the ID3 algorithm, but it can be applied to any pattern classification algorithm.
It works according to the following steps:

1. Randomly select a small subset of the examples called the window (which we sometimes
refer to as the training database to avoid confusion with the user interface mechanism),

2. Train the learning algorithm on the window,
3. Search through the full training set for exceptions (i.e., incorrectly classified examples)

and add them to the window if they are not already there, and
4. If there were new examples added to the window, repeat from step (2).

This process is illustrated in Figure 6. (Note the similarity in form between the windowing
procedure shown in Figure 6 and the general system development process shown in Figure
5. Windowing is an example of this general approach.)

The idea is that training the algorithm multiple times on small training sets is computa-
tionally less expensive than training once on a very large training set. The success of win-
dowing depends on the ability to find a small number of representative examples which
when used as a training set yield the same results as using the full training set. This ability
in turn depends on the data; there are some large training sets which satisfy this property
and some which do not. Wirth and Catlett (1988) examine the costs and benefits of using
windowing with ID3 on a test suite of eight different classification tasks and conclude that
there are no real benefits to windowing. However, in our work on detecting sonar events,
we have found windowing to be essential. The reasons for this are not related to the par-
ticular learning algorithm employed but rather to properties of the data which we now
describe.

In i t ia l
Window of
Examples

Figure 6. The windowing procedure.

Classi f icat ion
• ~- of New

Examples

H Exceptions
Class i f ie r Added to
Retra ined Window

434 D.J. MONTANA

The ability to explicitly control the tradeoff between Pd and Pf for event detection rules
is key to the success of our system. The operating concept for the system defines the criterion
by which we evaluate the relative merits of different points in Pa-Pf space. (For example,
in the first version of the system, we were primarily interested in not looking foolish by
making too many obviously false calls. This translated into a much greater emphasis on
lowering Pf than on raising Pal. In the second release, the emphasis shifted much more
towards raising Pal.) For any reasonable evaluation criterion (i.e., one for which, all else
being equal, it is always better to increase P~ and decrease Pf), the operating point which
optmizes this criterion lies on the ROC curve. Hence, the ability to select a specific point
on the ROC curve allows for optimal detection performance.

Other benefits of the ability to explicitly trade off between Pd and Pf are the potential
for multiple confidences (see Section 5.1) and adaptation to changing conditions (see Sec-
tion 5.2).

2.3. Selecting an empirical learning technique

Most empirical learning algorithms have two basic components, a family of classifiers and
a training algorithm. The training algorithm searches through the space of members of
the family of classifiers for one which classifies well a set of training examples and which
is likely to correctly classify new examples. Different approaches to empirical learning
use different families of classifiers and different training algorithms.

One group of algorithms, the best known of which is AQ (Michalski et al., 1986), uses
what they call decision rules as their family of classifiers, where they define the left-hand
side of a decision rule as a disjunction of conjunctions. (Note the difference in terminology
here: we define the left-hand side of a rule as just a conjunction of conditions, which is
standard nomenclature for rule-based systems. Our rule packet (assuming that the contained
rules have the same consequents) is the equivalent of their decision rule.) The AQ training
algorithm uses heuristic search to find a logical expression which is as small as possible
which classifies all the training examples correctly.

A second group of algorithms, which includes ID3 (Quinlan, 1979) and CART (Breiman,
Friedman, Olshen & Stone, 1984), uses decision trees as their family of classifiers. The
basic ID3 training algorithm employs heuristic search to find a decision tree which is as
small as possible which classifies the training examples correctly. CART additionally uses
a method for pruning back these trees for better generalization based on a technique known
as cross-validation. Decision trees are equivalent to decision rules: every decision tree can
be written as a decision rule and vice versa (Quinlan, 1987). Hence, decision tree algorithms
and decision rule algorithms use the same family of classifiers; the difference is the induc-
tive biases of the training algorithms.

A third group of algorithms, which includes backpropagation (Rumelhart, Hinton &
Williams, 1986) and perceptrons (Rosenblatt 1959), uses feedforward neural networks of
a fixed topology (with variable weights and biases) as their family of classifiers. Their
training algorithms search through the space of weights and bias for those which minimize
an error criterion. This criterion measures the difference between the desired outputs of
the network on the training examples and the actual outputs. Backpropagation uses a gradient

RULE THRESHOLD OPTIMIZATION 433

For one, the full database of examples is not only extremely large but constantly increas-
ing. Our system keeps on encountering new data; we ignore it at the peril of continually
repeating the same mistakes since there are always signal types and listening conditions
not adequately represented in previous data. Hence, we must constantly retrain the system
to include the new data, and it is not computationally possible to be continually retraining
using all the data as a training set.

Secondly, examples which occur close in time are likely to be very similar. We refer
to this property as "clumpiness" Clumpiness of the data arises due to the slow rate at which
the scene changes. Hence, examples which occur close in time are likely to be from the
same source, located at approximately the same position, and viewed approximately under
the same conditions. Because of the similarity between so much of the data, there is generally
a relatively small subset of examples which is representative of the full set of examples,
which is the key condition for windowing to succeed.

2.2. Receiver operating characteristic (ROC) curves

For the detection problem, there are two basic types of errors. One is a missed detection
(classifying a positive example as a negative one), and the other is a false alarm (classify-
ing a negative example as a positive one). These two types of errors give rise to two differ-
ent and competing measures of detection performance: probability of detection (Pd), the
fraction of positive examples classified correctly, and probability of false alarm (Pf), the
fraction of negative examples classified incorrectly. Many detection algorithms have param-
eters which can be changed to yield different performance and thus a different pair of per-
formance measures (Pj, Pf). A realizable (Pal, Pf) is called Pareto optimal if there exists
no other realizable (Pal, Pfl) for which Pal > = Pd and Pfl < = Pf and at least one of
these inequalities is a strict inequality. The set of all Pareto optimal pairs (Pal, Pf) forms
a curve in Pd-Pfspace called a ROC curve. An example ofa ROC curve is shown in Figure 7.

I

Pd

Pf I

Figure 7. An example of a ROC curve.

RULE THRESHOLD OPTIMIZATION 435

search for multilayer networks. Perceptrons use heuristic search for a single layer network.
Another approach uses genetic search for multilayer networks (Montana and Davis, 1989).

Each of these approaches has its advantages and disadvantages. Which approach is the
best depends on the problem to be solved. In our approach, none of these seemed applicable
for the following reasons.

First, the problem requires that the classifier have a straightforward explanation facility
for telling a human the reason it made a particular classification decision. We need such
an explanation facility because the event detector is part of a larger, imperfect, and evolv-
ing system. Knowledge of why the event detector is failing or succeeding has been crucial
to the improvement of the overall system. For example, Section 5.3 describes a tool for
evaluating the importance of the classification features used by the event detection rules
which works because of the existence of a simple explanation facility. This tool has allowed
us to find better classification features, which in turn has improved the performance of
the event detection rules. Neural networks do not have any satisfactory explanation facility.

Second, as discussed in Section 2.2, our system requires the ability to choose an ar-
bitrary point on the ROC curve when training a detection algorithm. AQ, perceptrons, ID3,
and CART do not provide such a capability (although CART does provide some limited
ability to trade off between Pd and Pf in the pruning process).

As described in Section 1.2, the family of classifiers for our approach is all decision
rule packets (the equivalent of AQ's decision rules) of fixed form with variable thresholds.
This is a much more limited space than that of AQ, which can have decision rules of variable
form with variable thresholds. Fixing the rule packet form in our approach is analogous
to fixing the network topology in the neural net approach. The search space is R n, where
n is the number of free parameters (in our case rule thresholds). The training algorithm
is a genetic algorithm for reasons given in Section 2.4. It minimizes a user-defined error
criterion which specifies the tradeoff between Pd and Pf (see Sections 2.2 and 3.2). This
approach provides both a simple explanation facility and the ability to explicitly choose
an operating point on the ROC curve (see Section 3.2). It is thus the only approach of
those described which meets the requirements of the problem (see Figure 8).

ents

AQn (ru le induct ion)

ID3 (decision t rees)

Perceptron

Backpropagation

Rule Threshold Opt'n

explanation
fac i l i ty

/

a rb i t r a r y
point on
ROC curve

Figure & A matrix of algorithms versus problem requirements.

436 D.J. MONTANA

2.4. Genetic algorithms

Genetic algorithms are a family of algorithms for optimization and learning. We use a genetic
algorithm to optimize the rule thresholds of a rule packet (see Section 3.2), i.e., as the
training algorithm for our empirical learning procedure. The properties which make genetic
algorithms well suited for this task are the following. First, they generally find nearly global
optima in complex spaces. This is important because the search space for our problem
is highly multimodal, a property which leads hillclimbing algorithms to get stuck in local
optima. Secondly, they do not require any form of smoothness. This is important because
our search space is discontinuous, consisting of discrete steps between areas with a con-
stant value. Thirdly, considering their ability to find nearly global optima, genetic algorithms
are relatively fast, especially when tuned to the domain on which they are operating. This
is important to our problem because windowing requires us to continually reoptimize the
thresholds as the training database receives new data.

Their name alludes to the features they share with biological evolution. These include
i) a population of individuals, ii) reproduction as a means of creating new individuals, and
iii) survival of the fittest. We assume that the reader is familiar with how genetic algorithms
evolve a population of better and better individuals. If not, a good introduction is (Goldberg,
1988). We do mention here that there are five variable components to a genetic algorithm
which are used to adapt the general format to a particular domain. These are:

1. a way of encoding solutions to the problem on chromosomes
2. an evaluation function that returns a rating for each chromosome given to it
3. a way of initializing the population of chromosomes
4. operators (e.g., mutation and crossover) that may be applied to parents when they

reproduce to alter their genetic composition
5. parameter settings for the algorithm, the operators, etc.

In Section 3.2, we describe how these components are defined for our threshold optimiza-
tion genetic algorithm.

3. The learning system

In this section, we describe various aspects of the piece of our system devoted to learning
of rule thresholds. First, we examine a user interface for windowing which allows a sonar
analyst to easily add exceptions into the training database. We then detail the genetic
algorithm used for threshold optimization. Finally, we describe the iterative procedure by
which the rule thresholds continually improve.

3.L Windowing user interface

A good user interface is a key component of any computer system which interacts with
people, especially those people not familiar with computers. As an example consider the

RULE THRESHOLD OPTIMIZATION 437

importance of rule editors to the development of expert systems. They make it easier to
enter knowledge into the system and thus aid in the more efficient development of more
effective systems. The windowing user interface plays the role of the rule editor in our
learning system: it provides the mechanism by which a domain expert can impart his
knowledge to the system. Making this process easy is crucial to the collection of a training
database of sufficient quantity and variety.

An important feature of our windowing interface is that it does not require the human
analyst to classify every example but rather to just point out the mistakes that the system
makes. Our sonar data consists of an endless stream. Classifying every example would
mean a workload that would remain constant over time. However, the job of pointing out
exceptions (i.e., misclassifications) has a workload that decreases with time as the system
improves.

We are not the first to use interactive windowing; one earlier version is a tool called
Interactive ID3 described in (Shapiro, 1987). Our user interface differs from others in how
it is tailored to our problem domain. There are two basic mechanisms by which the user
can add examples to the training database, one for examples which the rules call events
and one for examples which they do not call events. For the former, a scrollablepeek win-
dow contains a list of all called events along with identifying information such as event
type and position in the image (see Figure 9). The events in this peek window are mouse-
sensitive; hence the analyst can instruct the system to save any event into the training database
with a mouse click. The system asks the analyst whether this is a positive or negative ex-
ample before writing it out.

A different procedure is used for examples which the rules do not call events because
the number of such examples is generally far too numerous for display in a window and
because nonevents are not saved in the HLP global database. In this case, the analyst must
display the appropriate sonar image and click on the position in the image of the missed
event. The system prompts for information such as event type and whether the example
is positive or negative and then writes out the example.

. • EventType Image Freq Time Conf

FO0 1 1.0 00:01 0.5

BAR 2 2.0 00:02 1.0

BAZ 3 3.0 00:03 0.5

F00 4 4.0 00:04 1,0

BAR 5 5.0 00:05 0.5

BAZ 6 6.0 00:06 1.0

Image # 1

Figure 9. The windowing user interface.

438 D.J. MONTANA

3.2. Genetic optimization of rule thresholds

In this section we describe the various components of our genetic algorithm for rule threshold
optimization.

1. Encoding: We use a real-valued encoding scheme instead of the traditional binary one.
An individual consists of a list of the thresholds in the order in which they appear in the
rule. The possible values which a threshold may take are both range-limited and quantized.
As one of the functions of our rule editor, the developer specifies the maximum value,
minimum value, and step size for a particular threshold. The developer picks these
parameters based on knowledge of typical values of the corresponding statistic. This ap-
proach is necessary because the statistics used in the rules have such a wide range of typical
values. For instance, one statistic may generally have values between 5 and 15 while another
may typically have values between .001 and .004. Knowing this information makes the genetic
algorithm much more effective because it does not have to waste its time searching out
of a statistic's range or on a scale which is insignificant with respect to the statistic. It is
also aesthetically pleasing to have thresholds which are round numbers. (Note that using
a binary encoding would have forced the number of steps for each threshold to be a power
of two, and this would have yielded unappealing step sizes.)

2. Evaluation Function: An automatic scoring function loops through all examples in the
training database and counts the number of missed detections, M, and the number of false
alarms, F, for a given set of rule thresholds. Let Np be the total number of positive ex-
amples and Nn be the total number of negative examples. Then an estimate of Pd is 1 -
M/Np, and an estimate of Pf is F/Nn. Note that the training database is stacked with par-
ticularly difficult cases due to the windowing procedure (see Section 2.1); hence, the
calculated Pd and Pf are not good absolute estimates of general rule performance. In par-
ticular, the calculated Pf is generally orders of magnitude greater than the actual Pf of the
rules. However, these scores do provide a good way to compare relative performance of
rules, and they can be computed fairly quickly and effortlessly.

The evaluation function is defined as M + RF,, where R is a parameter whose value is
selected by the developer. The choice of R specifies the operating point on the ROC curve
(assuming that the genetic algorithm does indeed find global optima). Figure 10 shows
how two different choices of R lead to two different points on the ROC curve. Allowing
the developer to choose the value of R provides him with the capability of choosing an
arbitrary operating point on the ROC curve; as discussed in Section 2.2, this capability
is crucial to the success of the system.

Note that there are many other possible optimization criterion besides a linear combina-
tion of M and E One such criterion is f(M, F), where f = ~ when F > Fo and f = M
when f <_ Fo and where Fo is some constant threshold. This optimization criterion leads
to a set of thresholds which maximize I'd subject to the constraint of Pf being below some
fixed value. Interchanging the role of M and F in the previous optimization criterion yields
a set of thresholds which minimize Pf subject to Pd being above some fixed value. In fact,
any real-valued functionf(M, F) can serve as an optimization criterion although the choice
of f(M, F) can significantly effect the speed of convergence of the genetic

RULE THRESHOLD OPTIMIZATION 439

Pd

I

M+RF = m i n i i

Pd

M+RF =tmin

Pf Pf

Figure 10. Two different values of R yielding two different optimal points along the ROC curve.

algorithm. (For example, for constrained optimization problems such as the ones just de-
scribed, experimental evidence indicates that well-chosen, graded penalty functions will
outperform the hard-limiting penalty functions given above (Richardson, Palmer, Liepins
& Hilliard, 1989).)

3. Initialization: The threshold settings for each individual in the initial population are ran-
domly selected from the admissible set.

4. Operators: We use the two basic genetic operators, crossover and mutation, suitably
modified for the particular representation scheme. Our mutation operator creates a child
that is the same as the parent in all locations except a randomly selected one. The threshold
value of the child in this location is chosen randomly from its allowable set (see Figure
11). We have chosen our mutation to change exactly one value each time because the rules
generally have had no more than a dozen thresholds and sometimes as few as three or four
(and we usually have only one rule in an event detection rule packet for reasons described
in Section 4.3). Hence, this mutation operator can create sufficient diversity while ensur-
ing that a child is never the same as its parent (this latter property is what (Davis, 1989)
calls guaranteed).

Our crossover operator takes two parents and creates a single child. It selects each
threshold value of the child by randomly choosing one of the two parents and using the
corresponding threshold value in that parent (see Figure 11). This is an example of uniform
crossover; we have chosen to use this type of crossover based on results reported in
(Syswerda, 1989).

(0.0015, -7.2, 130, 0.025, 5.0)

mutat ion

(0.0015, -7.2, 50, 0.025, 5.0)

Figure 11. The genetic operators mutation and crossover.

(0.0015, -7.2, 130, 0.025, 5.0)

(0.002, -3.7, 110, 0.5, 4.0)

crossover

(0.002, -7.2, 110, 0.5, 5.0)

440 D.J. MONTANA

5. Parameters: There are a number of parameters whose values can greatly influence the
performance of the algorithm. We now discuss some of the important parameters individually.

PARENT-SCALAR: This parameter determines with what probability each individual is
chosen as a parent. The second-best individual is PARENT-SCALAR times as likely as
the best to be chosen, the third-best is PARENT-SCALAR times as likely as the second-
best, etc. The value was linearly interpolated between 0.92 and 0.89 over the course of a run.

OPERATOR-PROBABILITIES: This list of parameters determines with what probability
each operator in the operator pool is selected. These values were initialized so that muta-
tion and crossover had equal probabilities of selection. An adaptation mechanism changes
these probabilities over the course of a run to reflect the performance of the operators in
a manner described in (Davis, 1989).

POPULATION-SIZE: This self-explanatory parameter was set to 50.

GENERATION-SIZE: This parameter tells how many children to generate for each itera-
tion (and how many current population members to delete). It was set to one. (We choose
to always delete the worst member of the poptdation.) In the terminology of Syswerda (1989),
this makes our genetic algorithm a steady-state genetic algorithm rather than a generational
replacement algorithm. Syswerda (1989) explains the advantages of a SSGA.

3.3. The learning process

The learning process occurs as follows. We initialize the training database by turning off
the rules, playing data through the system, and collecting a relatively large number of positive
examples. We start with only positive examples because they are so much less common
than negative examples that we need to initially stack the training database with them to
ensure statistical significance. We then execute the windowing loop described in Section
2.1. Training the system consists of running the genetic optimization algorithm once for
each type of event. We choose the tradeoff constant R in the optimization criterion to give
appropriate detection performance, where the developer is the subjective judge of ap-
propriateness. Sometimes the developer must make multiple runs for one event type to
find a value of R which produces acceptable performance. The retained system is then run
on some data, and the exceptions (i.e., false alarms and missed detections) are added into
the training database using the interfaces described in Section 3.1.

At times we add the following twist to the windowing loop to increase the efficiency
with which we extend the training database. Our run-time system allows rules which detect
the same type of event with different confidences (see Section 5.1). So, when we retrain
the system, we create two rule sets, one which detects events with high confidence (i.e.,
low Pf) and one which detects events with low confidence (i.e., high Pd). When running
the data through the system, we add to the training database all negative examples called
events with any confidence and all positive examples which either are not called events
or are called with low confidence. Note that there is an overlapping region where both

RULE THRESHOLD OPTIMIZATION 441

positive and negative examples are saved. This helps greatly to increase the rate at which
we collect examples for the training database and eliminates the dilemma between tighten-
ing the thresholds to catch more missed detections and loosening the thresholds to catch
more false alarms.

4. The results

In this section, we present four different types of results concerning the performance of
our learning system. The first set of results details the properties of our genetic training
algorithm. The second set of results investigates the dependence of detection performance
on the number of rules in a detection rule packet. The third set of results describes how
the detection performance of the rules improves with time. The fourth set of results com-
pares the performance of our machine learning procedure for setting rule thresholds with
the performance of humans setting the thresholds by hand.

4.L Training algorithm properties

There are two properties of our genetic training algorithm which are of particular interest:
i) its time of convergence as a function of problem complexity, and ii) its ability to find
global optima. Two factors influencing problem complexity are the number of thresholds
(one measure of the dimensionality of the search space) and the number of examples. We
have performed experiments to attempt to quantify these properties. (Note that in all of
these experiments we keep the value of R = 0.7 constant. Recall from Section 3.2 that
R is the weighting of false alarms relative to missed detections.)

The first set of experiments examines the relationship between time of convergence and
number of thresholds. Each of these experiments consists of performing the following pro-
cedure for a particular event type. First, run the threshold optimization algorithm ten times
on the corresponding detection rule recording the best current value as a function of the
number of individuals evaluated. Average the values of these ten runs together to get an
average best value as a function of the number of evaluations. Say that the number of evalua-
tions required for convergence is that point at which the value of the average run was first
within e of the final value of that run. (Note that c is held constant for all experiments.)
This is an estimate of time of convergence of the training algorithm. Now, repeat this pro-
cedure with the following difference: for each run, take out of the rule one condition (and
thus one threshold) selected randomly. The number of evaluations required for convergence
for this average run is an estimate of time of convergence with one less threshold than
in the original rule. Continue in this manner taking out two thresholds, three thresholds,
and so on until the last average run is working with only two thresholds. This provides
an estimate of time of convergence as a function of the number of thresholds.

We have performed this experiment four times for four different event types giving the
results pictured in Figure 12. There are a few conclusions we can draw from these results.
First, averaging over ten runs did not sufficiently eliminate noise. Functions that should
have been monotonically increasing were clearly not due to the noise. Second and more

442 D.J. MONTANA

N u m b e r o f

E v a l u a t i o n s

I 0 0 0 - -

8 0 0 - -

6 0 0 -

4 0 0 -

2 0 0 -

X

X

X

X

X X

I I I I
2 4 6 B

Number of Thresholds

N u m b e r o f
Eva lua t i ons

1 2 0 0 1 i

1 0 0 0 - -

8 0 0 - -

6 0 0 - -

4 0 0 - -

200 --

Number o f

Eva lua t i ons

1 0 0 0 -

8 0 0 -

6 0 0 - -

4 0 0 - -

2 0 0 - -

x
x

X

X

X
x

I I I I
2 4 6 8

Number o f T h r e s h o l d s

N u m b e r o f

Eva lua t i ons
X

1 2 0 0 --
X

1 0 0 0 -

800 -

X 600 -

X

4 0 0 -
X

X ×
2 0 0 -

X ×

1 I I I I I I
2 4 6 2 4 6 8

N u m b e r o f T h r e s h o l d s Number o f T h r e s h o l d s

x X
× ×

×

10

Figure 12. Plots of number of evaluations before convergence versus dimension of search space for four different

event types.

important, the dependence of time of convergence on dimension of the search space is
close to linear at least for the range of dimensions in the experiment. We should note that
the binary dimension of the search space is on the average about five times the number
of thresholds, so that from a binary point of view these search spaces are reasonably large.

The second set of experiments examines the relationship between time of convergence
and number of examples in the training database. These experiments use the same
methodology as the first set of experiments except that they vary the number of examples
instead of the number of thresholds. The results are shown in Figure 13. Notice that the
time of convergence tends to increase linearly with the number of examples until a certain

RULE T H R E S H O L D OPTIMIZATION 443

Number of
Evaluations

1200 I _

I 0 0 0 --

800 - -

600 - -

400 -

X
200 --

×

×

X

X
I I I I

0.25 0.5 0.75 1.0
Fraction of Training Database

Numbero f
Evaluations

1200 -

1 0 0 0 -

800 -

600 --

4OO

200

i

X

D
×

×

I I I I
0.25 0.5 0.75 1.0

Fraction of Training Database

Figure 13. Plots of number of evaluations before convergence versus training set size for two different event types.

point where it reaches a plateau. A possible explanation for this is that adding more exam-
pies increases the complexity of the search space; however, in a manner intuitively similar
to the Sampling Theorem, a discrete space has a maximum complexity. Note also that the
amount of compute time required for an evaluation is approximately proportional to the
number of examples. Hence, the time required to run the training algorithm is propor-
tional to the number of evaluations times the number of examples.

The third set of experiments examines the ability of the training algorithm to find nearly
global optima. These experiments consisted of performing ten runs of the training algorithm
on the same data and recording the evaluation of the best individual from each run. The
results are shown in Figure 14. Note that they are almost all different values, which clearly
indicates that this genetic algorithm does not generally converge on the absolute global
optimum if the search space is sufficiently complex. However, observe that the seven best
values are all within a range of each other which is equal to the penalty for one false alarm,
0.7, and less than the penalty for one missed detection, 1.0. Since there are hundreds of
examples, this is an insignificant difference. The other three values differ from the best
value by small but significant amounts. Upon examining the individuals associated with
these values, we found them to be in a completely different part of the search space from
the other seven. The main conclusion from these results is that to obtain a final set of
thresholds for use in the field it is best to run the training algorithm a few times to make
sure the optimum is nearly global; however, for the windowing process one run of the training
algorithm is usually sufficient.

[Note that from this point on the results are all qualitative rather than quantitative due
mainly to the sensitive nature of the data.]

444 D.J. MONTANA

Run Number 1 2 3 4 5 6 7 8 9 10

Best Value 56.1 57.6 56.3 56,7 56.0 56.3 56.2 57.3 56.2 57,9

Figure 14. The best values from ten different runs on the same data with R = 0.7.

4.2. One rule versus multiple rules

Recall from Section 1.2 that a rule packet can have more than one rule in it. These rules
are combined disjunctively, thus making the rule packet a disjunction of conjunctions of
conditions. The developer has the choice of how many rules to include. We have performed
some experiments to determine the optimal number of rules. These experiments are
analogous to those described in (Gorman & Sejnowski, 1988) for determining an optimal
number of hidden units of a neural network. The procedure is as follows. Hold aside a
fraction of the training database for a test set. Train rule packets with different numbers
of rules on the training set. Then test their generalization on the test set. We have run this
experiment for two different event types. Qualitative results from one of the experiments
are shown in Figure 15. Observe that, as expected, adding more rules improves perfor-
mance on the training set. However, there is no significant performance difference on the
test set. According to these experiments, for our data using one rule per packet offers the
advantages of maximum simplicity and predictabil i ty of generalization without any disad-
vantages. This is why we generally use only one rule in event detection rule packets.

For these experiments as well as those described in the next two sections, we measure
performance as follows: compute M + R F (see Section 3.2 for the meaning of these terms)
on the indicated set of data and normalize it by Np + RNn, where Np is the number of
positive examples in the data and Nn is the number of negative examples.

I x - S im i l a r l y D is t r ibu ted Test Set [
o - Tra in ing Set

Performance X X

0
0

i I I
1 2 3
Number of ru les

Figure 15. Plot of performance (M + RF) versus the number of rules.

RULE THRESHOLD OPTIMIZATION 445

4.3. Detection performance as a function of time

There are three different kinds of data on which to evaluate detection performance: i) training
data, ii) test data chosen from the same distribution as the training data, which we call
similarly distributed test data, and iii) test data which has the same distribution as the data
which the system encounters over a long period of operation, which we call perfectly
distributed test data. Similarly distributed test data is easy to obtain by randomly dividing
available data into a training set and a test set. Using similarly distributed test data is a
good way to test the generalization of a trained classifier. The problem is that the training
data is not distributed in the same way as the data the system encounters over a long period
in the field. The fielded system sees a vast variety of different signals and conditions while
the training data tends to focus on a subset of these. Hence, performance on similarly
distributed test data is generally not a good indicator of performance over a long period
in the field. However, performance on perfectly distributed test data is a good indicator
of performance in the field. The problem with perfectly distributed data is that it is very
difficult to create such a set of data, especially one which is of sufficiently small size that
we can train a detection algorithm on it.

Windowing can be viewed as the process of making the training database more and more
like a filtered version of perfectly distributed data, where by filtered we mean that those
examples which are redundant in terms of training a classifier (which constitute the vast
majority) are omitted. Learning occurs as the training database gets closer and closer to
this ideal and thus the trained classifier can handle correctly a larger range of signals and
conditions. Figure 16 shows a qualitative graph of performance versus time for these three
different kinds of data on which to measure performance. Of course, we do not have a
true set of perfectly distributed test data; what we do instead is use all the data available
to us (a relatively large amount) as a substitute. Notice the following about the graphs.
First, the performance on the training set is for the most part monotonically decreasing.
As the training set grows larger in both number of examples and variety of examples, the
training problem becomes increasingly harder. Second, the performance on the similarly
distributed test set becomes ever closer to the performance on the training set. This is because
our training algorithm works with a fixed number of free parameters which are determined
with ever greater statistical significance as the amount of training data grows larger. Third,
the performance on the perfectly distributed test data consistently increases with time as
the training data becomes more representative of perfectly distributed data. It is in this
sense that our system is learning.

4.4. Threshold optimization: manual versus automated

There are two kinds of comparisons we can make between our machine learning system
and humans. The first is a comparison between the detection performance of the automated
system and that of a human analyst. In some sense this is the bottom line. The problem
is that, as described in Section 1.2, the event detection rules which the learning system
works on are a relatively small part of the full automated system. The event detection rules
depend fully on the Low-Level Processor (LLP) to detect and characterize the narrowband

446 D.J. MONTANA

Per fo rmance ~
m l ~ f ~ w m n B

.. ~ Tra in ing Set

............... • S im i l a r l y D is t r ibuted Test Set

f Per fec t l y Dis t r ibuted Test Set

Time

Figure 16. The evolution of performance with time.

signals. Not surprisingly, the LLP is a poor substitue for the human low-level visual system,
generally producing a degraded version of the information present in the sonar image
(although we are working on applying technology similar to that described here to improve
the LLP (Montana & Davis, 1989; Montana, in press)). Comparisons between human and
machine detection performance serve primarily to highlight the disparity between the LLP
and human vision.

The second type of comparison is between machine learning of detection rules and manual
tuning of these rules by human developers. The first release of our system contains rules
which were tuned manually while the next release has rules generated by the learning system.
The LLP remained functionally the same between releases. Hence, differences in the detec-
tion performance of these two releases indicate the improvements to our system of using
machine learning rather than manual tuning.

When initially evaluating the benefits of the machine learning approach, we performed
the following experiment. Take the data on which the rules from the first release were tuned.
Continually perform the windowing procedure for a single event type on this data until
no more examples are being added to the training database. Optimize the rule for detecting
this event type multiple times using different values of R, the tradeoff between Pa and Pf.
Evaluate the detection performance of this rule on the full set of data. The results are shown
in Figure 17.

These results indicate first of all that the machine learning approach generated rules with
better performance. By adjusting R appropriately, this approach could find an operating
point which has both higher Pd and lower Pf than the hand-tuned rules. The second ad-
vantage of the machine learning approach is its ability to easily change its operating point
along the ROC curve. As stated in Section 2.2, a goal for the second release was to raise
the rules' Pd possibly at the expense of raising Pf. With the hand-tuning approach, this
would have meant starting from scratch and reperforming a very labor-intensive task. In
fact, it would have been harder the second time because higher Pa and higher Pf require
the mental juggling of more examples. A third advantage of the machine learning approach
not shown in the graph is that the rule packet was much smaller and thus generalized better

RULE THRESHOLD OPTIMIZATION 447

P d X
X

x - L e a r n i n g S y s t e m

o - Manua l T u n i n g

Pf

Figure 17. A comparison of the learning system with manual tuning.

to new data. Human developers tended to add new conditions and rules into the packet
to handle individual examples, and as this practice continued the rule packet became large.
A fourth big advantage of the machine learning approach is its ability to keep improving
with experience. Human developers could only mentally juggle a relatively small amount
of data before they became overloaded and hence could not continue to improve the rules
(in the sense of performance on a perfectly distributed test set) after a certain point. This
contrasts with the continual improvements generated by the learning system described in
Section 4.3.

5. Additional benefits

Using the approach to learning described above, the system is able to successfully detect
sonar events, improve its performance with experience, and trade off between high Pa and
low Pf in a way consistent with system specifications. We now describe some additional
benefits of our approach: multiple confidences, adaptable detection performance, and a
tool for understanding the importance of each classification feature.

5.1. Multiple confidences

By altering the tradeoff between high Pa and low Pf, we can create rules which detect
events with different levels of confidence. A rule whose thresholds optimize an error criterion
with Pf weighted heavily compared to 1 - Pa (i.e., where the tradeoff constant R is large)
will be relatively unlikely to call false alarms. Hence, any events detected by such a rule
are true events with a high confidence. Alternatively, events detected by a rule with R small
are true events" with a lower confidence. In our run-time system, we include rules which
look for the same types of events with different confidences. The confidence of a particular
event is the highest confidence associated with a rule which detected it. We have already

448 D.J. MONTANA

discussed how this helps for data collection. More importantly, having a confidence
associated with each detected event allows the higher-level rules a lot more flexibility in
using these events to make other inferences.

5.2. Adaptation to varying conditions

Different environmental conditions dictate detection performance for the rules. As an ex-
ample, consider the difference between high-traffic and low-traffic conditions. The former
requires a much lower Pf to satisfy system performance requiring false alarm rates to be
below a threshold. Another example is the effect of outside sources of information. Such
outside information can cause us to expect to see events on certain sonar images; for these
images, we can raise the I'd without losing confidence in our detections. These different
requirements translate into different values for the rule thresholds. Using our optimization
routine, we can create sets of threshold settings appropriate for each of these situations.
As described in Section 1.2, all the rule packets appropriate for a part icular situation are
grouped into a rule set. These rule sets are disabled when the corresponding situation is
not in effect and are enabled when the situation is in effect.

5.3. Classification features evaluation

As mentioned in Section 1.3, the system tuning process includes improvement of the statistics
functions used to define classification features as well as the learning of the rule thresholds.
The general form of rules makes it easy to determine the effects of each feature on the
performance of a rule. When a rule does not fire, the features responsible for this are all
those that are not within their corresponding thresholds. We have created a tool for evaluating
the marginal contribution of a feature to a rule which works as follows: i) find all examples
in the training database for which the rule fails to fire solely because of the feature (i.e.,
all examples which would be called events if the feature were ignored), ii) let N, the negative
score, be the number of positive examples in this set, iii) let P, the positive score, be the
number of negative examples in this set, iv) the net contribution of the feature is RP-N,
where we recall that R is the tradeoff constant in the optimization function.

We interpret the results of this tool as follows. If the net contribution of a feature is negative,
then the optimization has failed because it should have been able to set the thresholds in
such a way as to effectively ignore the feature (i.e., N = P = 0) and thus do better. In
the rare situations when this occurs, it is often the case that the developer has overly con-
strained the values for the corresponding threshold through his choice of range and step
size. However, it also can be that the genetic algori thm has failed to find the global op-
t imum and should be run again. I f the net contribution of a feature for many runs over
different training databases is always zero, then this is a worthless feature and should not
be used in the rule. Note that because of the mult imodal nature of the search space and
the everchanging training database, the fact that a feature has zero contribution on one
particular run does not meri t discarding it.

RULE THRESHOLD OPTIMIZATION 449

6. Conclusion

Detection of events in sonar data is difficult due to the complexity, variabili ty and clumpi-
ness of the data. We have successfully employed a new type of empirical learning for detecting
such events. It uses thresholded rules grouped into rule packets as its underlying decision
structure. A genetic training algorithm optimizes the thresholds of these rules for perform-
ance on a training database of examples. Since genetic algorithms can be used to optimize
with respect to arbitrary error criteria, we have the ability to explicit ly dictate system per-
formance specifications to the training algorithm. We have chosen to use an error criterion
which is a l inear combination of 1 - Pd and P f with the relative weighting of these two
terms used to specify the desired operating point along the ROC curve of the rule. We
can use this capabili ty to create mult iple rule sets which detect events with different con-
fidences or which are tuned for different conditions.

The learning process we have used employs windowing as a method for getting a handle
on the huge and ever increasing amount of data passing through our system. Iterating through
the windowing loop (of (i) gathering more examples for the training database and (ii) retrain-
ing) allows the rules to improve with experience.

Acknowledgments

Thanks are due to the following people: Dave Davis, for his tutelage in the field of genetic
algorithms and the use of his genetic algorithm software; Steve Mill igan, for suggesting
the idea of rule threshold optimization and allowing me to work on it; Fred White, for
writing code to support the optimization process; and Ken De Jong, for his comments,
which have helped to greatly improve the paper.

References

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Monterey, CA:
Wadsworth.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms. Proceedings of the Third International
Conference on Genetic Algorithms (pp. 61-69). San Mateo, CA: Morgan Kanfmann.

Goldberg, D. (1988). Genetic algorithms in search, optimization, and machine learning. Reading, MA:
Addison-Wesley.

Gorman, R. & Sejnowski, T. (1988). Analysis of hidden units in a neural network trained to classify sonar targets.
Neural Networks, Vol. 1, 75-89.

Marr, D. (1982). Vision. New York: W.H. Freeman and Company.
Michalski, R., Mozetic, I., Hong, J., & Lavrac, N. (1986). The multi-purpose incremental learning system AQ15

and its testing application to three medical domains. Proceedings of the Fifth National Conference on Artificial
Intelligence (pp. 1041-1045).

Montana, D. & Davis, L. (1989). Training feedforward neural networks using genetic algorithms. Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence (pp. 762-767). San Mateo, CA: Morgan
Kaufmann.

Montana, D. (in press). Automated parameter tuning for synthetic image interpretation. In L. Davis (Ed.), The
genetic algorithms handbook.

Nii, H.P., et al. (1982). Signal-to-symbol-transformation: HASP/SIAP case study. A! Magazine, 3, 23-35.

450 D.J. MONTANA

Quinlan, J.R. (1979). Discovering rules by induction from large numbers of examples: a case study. In D. Mitchie
(Ed.), Expert systems in the micro-electronic age. Edinburgh University Press.

Quinlan, J.R. (1987). Generating production rules from decision trees. Proceedings of the Tenth International
Conference on Artificial Intelligence (pp. 304-307).

Richardson, J., Palmer, M., Liepins, G., & Hilliard, M. (1989). Some guidelines for genetic algorithms with
penalty functions. Proceedings of the Third International Conference on Genetic Algorithms (pp. 191-197). San
Mateo, CA: Morgan Kaufmann.

Rosenblatt, R. (1959). Principles ofneurodynamics. New York: Spartan Books.
Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by backpropagating errors. Nature,

323, 533-536.
Schlimmer, J., & Granger, R. (1986). A case study of incremental concept induction. Proceedings of the Fifth

National Conference on Artificial Intelligence (pp. 502-507).
Shapiro, A. 0987). Structured induction in expert systems. Maidenhead, U.K.: Addison-Wesley.
Syswerda, G. (1989). Uniform crossover in genetic algorithms. Proceedings of the Third International Conference

on Genetic Algorithms (pp. 2-9). San Mateo, CA: Morgan Kaufmann.
Wirth, J. & Catlett, J. (1988). Experiments on the costs and benefits of windowing in ID3. Proceedings of the

Fifth International Conference on Machine Learning (pp. 87-99). San Mateo, CA: Morgan Kaufmann.

