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Abstract. We have developed an expert system for interpretation of passive sonar images. A key component of 
the system is a group of event detection rules whose conditions consist of tests against thresholds. Due to the 
complexity, variability and clumpiness (i.e., tendency towards highly nonuniform distribution) of the data, tuning 
these thresholds for good performance under all conditions is a difficult task. We have implemented a procedure 
for learning rule thresholds whereby the detection capability of each rule continually improves as more and more 
data is played through the system. The learning procedure contains the following components: 1) a windowing 
mechanism that adds exceptions (i.e., Paise alarms and missed detections) into a training database of positive 
and negative examples and 2) a genetic algorithm to optimize the thresholds with respect to the training database. 
The genetic training algorithm allows the developer to explicitly choose an operating point on the Receiver Operating 
Characteristic (ROC) curve of a rule. Experiments have verified 1) the superiority of this automated approach 
to selecting rule thresholds over manual techniques and 2) the improvement of rule performance with experience. 
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1. Introduction 

We start with a very br ie f  overview of  the full expert  system and the task it performs.  (For 
a more  detailed description of the passive sonar understanding problem and an expert system 
architecture suited to this problem,  see (Nii et a l . ,  1982).) We then descr ibe the structure 

of  the event detect ion rules (the tuning  of  which  wil l  be  the focus of  the paper) .  Finally,  
we discuss the necessi ty of learning mechan i sms  to allow the expert  system to improve 
with experience.  

L L  The  exper t  sys tem 

Our  expert system operates on  processed passive sonar  data which  it receives f rom an in- 
dependent  s ignal-processing module .  This modu le  t ransforms the incoming  raw data into 
mul t ip le  synthetic images. F igure  1 shows a s imulated sonar  image. Sonar  analysts read 
these images to identify the signatures of nearby vessels. Certa in  features of sonar  images 
are part icularly helpful in the deciphering process, and we call such features "events"  Based 
on  interviews wi th  experts, we have compi led  a short list of  different types of  events that 
they use  when  ana lyz ing  sonar  images and which our  expert system must  therefore be able 
to detect. 
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Figure 1. A simulated sonar image (with noise suppressed) reprinted from (Nii et al., 1982). 

The expert system performs four basic subtasks, which in order of increasing abstrac- 
tion are: 

1. signal detection: determine which parts of the image correspond to emitted sound and 
not just noise (known as figure-ground separation in general image analysis), 

2. texture characterization: compute parameters which characterize the visual texture of 
the detected signals, 

3. event detection: determine the location of events, and 
4. contact formation: group the signals which came from the same source into clusters 

(known as contacts) and attempt to classify and geographically track the contacts. 

These subtasks are distributed among two loosely coupled subsystems called the Low-Level 
Processor (LLP) and High-Level Processor (HLP). The LLP performs signal detection 
and texture characterization. Its primary inputs are processed data, and its primary outputs 
are data structures which contain signal locations and computed texture parameters. The 
HLP performs event detection and contact formation. It takes as inputs the LLP outputs 
and creates a scene description of the vessels in the area. Hence, the LLP outputs serve 
as an intermediate-level representation of the information in a sonar image from which 
the HLP forms a high-level representation. (This intermediate-level representation for sonar 
image understanding is analogous to the 2 1/2 D sketch for natural image understanding 
(Marr, 1982).) This functionality is illustrated in Figure 2. 

The HLP is similar in architecture and functionality to HASP/SlAP (Nii et al., 1982), 
one of the early examples of a blackboard system. Architecturally, the HLP has three main 
components: a global database for storing information received from the LLP plus its own 
inferences, rules for forming new inferences based on the data in the database, and a con- 
trol structure for invoking rules at the appropriate time. In the next section we discuss the 
rules in detail. 
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Figure 2. The functionality of the expert system. 

1.2. The structure o f  rules 

The rules in the HLP have a hierarchical structure. Individual rules are grouped together 
into rule packets. The rules in a packet always have the same arguments. When a rule packet 
is invoked, the rules in that packet are run in sequence until one fires or they all fail to 
fire. Thus, when the consequents of the rules contained in a packet are the same (as they 
are for event detection rules), the conditions of the rule packet implement a disjunction 
of conjunctions, which is a popular structure for empirical learning (Michalski, Mozetic, 
Hong & Lavrac, 1986). Related rule packets are grouped together into rule sets. Rule sets 
can easily be turned on and off in order to change the functionality of the system. (One 
use of this capability described in Section 5.2 is to adapt system performance to varying 
conditions by having multiple event detection rule sets and using the one appropriate for 
the present conditions.) 

Some particularly important rules are those that detect events. Their function is to decide 
whether or not a certain signal has a certain type of event at a certain time. They are thus 
performing pattern recognition, distinguishing between positive and negative examples of 
different types of events. Two examples of event detection rules are shown in the rule packet 
of Figure 3. (For reasons explained in Section 4.2, the event detection rule packets in our 
system usually differ from that in Figure 3 in that they only contain one rule.) Note that 
the conditions of the rules consist of tests of real-valued functions of the database against 
a real-valued threshold. These thresholds are parameters whose values can be varied to 
optimize detection performance, and this paper focuses on an automated method for select- 
ing these values. 

EXAMPLE-RULE-PACKET (signal t ime) 
"detects foos wi th  confidence 0.5" 

If: (< (average-kludginess signal) 20000) 
(> (lossage-derivative signal t ime) O.O1 ) 

Then: (declare-foo signal t ime 0.5) 

If: (< (average-kludginess signal) 10000) 
Then: (declare-foo signal t ime 0.5) 

Figure 3. An example event detection rule packet. 
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The example packet in Figure 3 operates as follows. When invoked, it will first calculate 
the average kludginess of the signal, where some lower-level routine(s) determines how 
we measure this quantity. If  the value is less than the threshold 20000, then the packet 
continues with the next condition in this rule; otherwise, it moves on to the next rule. If 
all the conditions of either rule are true, then the packet invokes the consequent, whose 
effect is to modify the database to indicate that a foo has been detected on the specified 
track at the specified time with confidence 0.5. 

All packets which detect events of different types with the same confidence are grouped 
together into a single rule set. (Figure 4 show the rule hierarchy for event detection rules.) 
The reason for this grouping is primarily to support the adaptation mechanism described 
in Section 5.2. (Adaptation requires turning on and off all event detection rule packets which 
detect their different event types with the same confidence.) 

1.3. The need for learning 

Passive sonar data is very complex. Mathematical models generally do not capture all of 
the characteristics of this data, and the ones that come close do not yield easily to mathe- 
matical analysis. Therefore, when building a system for analyzing sonar data, there are 
two distinct but interrelated tasks: building the system and tuning it. The tuning process 
has received little attention in the past despite its importance to the success of the system. 

Upon examining the tuning process, we have reached two basic conclusions. First, due 
to the nature of the data, tuning must be an ongoing process. Because of the wide range 
of conditions, signal types, and scenarios, any system tuned on a finite amount of data 
will eventually encounter a new situation for which its performance is substandard. If the 
system cannot improve based on this experience, then it will repeat the same mistakes in 
the future. As an example, consider a system tuned under low-traffic conditions. When 
it first encounters high traffic, it will inevitably fail. The system must subsequently learn 
to handle high traffic or be considered inadequate. Figure 5 illustrates this approach to 
system development and the similarities between this approach and the way that human 
sonar analysts learn to perform the same task. This iterative approach to development as 
applied to selection of event detection rule thresholds is embodied by the windowing pro- 
cedure described in Sections 2.1 and 3.3. 

I Rule Set I 
Confidence C1 

Rule Packet I Rule Packet I 
Event Type ET1 Event Type ETn 

Figure 4. The rule hierarchy for event detection. 
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Figure 5. A comparison of development paths of a human sonar analyst and our expert system. 

The second conclusion is that there are two types of learning involved. The first is algorithmic 
tuning (a rough equivalent of knowledge acquisition). Playing data through the system will 
highlight shortcomings and conceptual bugs in the underlying algorithms which must be 
fixed. At the present time, this type of learning is best done by the human developers with 
the aid of tools on the machine. (In Section 5.3 we discuss one such tool.) The second 
type of learning is parameter tuning (a rough equivalent of skill refinement). Our system 
contains a large number of parameters whose settings greatly influence performance. Ex- 
amples of such parameters are the thresholds in the event detection rules. The parameters 
settings not only need to improve (i.e., learn) with experience but also need to change 
(i.e., adapt) in response to changes in system specifications (see Section 2.2), underlying 
algorithms, and surrounding conditions (see Section 5.2). Choosing the best values for these 
parameters is generally a hard problem for a human for a number of reasons including 
the interaction between parameters and the difficulty of objectively comparing different 
sets of parameters (see Section 4.2). We have therefore been developing methods whereby 
the machine can learn appropriate parameter settings. Some of our work on learning the 
parameters of a neural network for texture characterization is described in (Montana & 
Davis, 1989). Optimizing the parameters of a signal tracking algorithm is discussed in (Mon- 
tana, in press). In this paper we focus on how the system learns the thresholds for event 
detection rules. 

2. Motivation for our approach 

In this section, we motivate our approach to the problem of learning to detect events. We 
start by describing two important requirements of any solution: 1) windowing and 2) the 
ability to pick an arbitrary operating point on the receiver operating characteristic (ROC) 
curve of the underlying classifier. We then discuss why other popular classification 
algorithms are not appropriate for our problem. Finally, we examine why genetic algorithms 
are well suited to our approach. 
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2.L The need for  windowing 

Windowing is a method for making nonincremental empirical learning more efficient on 
a very large training set. (Windowing is generally unnecessary for incremental learning 
algorithms such as the one described in (Schlimmer & Granger, 1986); its function is to 
allow nonincremental techniques to work on problems which would otherwise only be com- 
putationally feasible using incremental techniques.) It was introduced by Quinlan (1979) 
for use with the ID3 algorithm, but it can be applied to any pattern classification algorithm. 
It works according to the following steps: 

1. Randomly select a small subset of the examples called the window (which we sometimes 
refer to as the training database to avoid confusion with the user interface mechanism), 

2. Train the learning algorithm on the window, 
3. Search through the full training set for exceptions (i.e., incorrectly classified examples) 

and add them to the window if they are not already there, and 
4. If  there were new examples added to the window, repeat from step (2). 

This process is illustrated in Figure 6. (Note the similarity in form between the windowing 
procedure shown in Figure 6 and the general system development process shown in Figure 
5. Windowing is an example of this general approach.) 

The idea is that training the algorithm multiple times on small training sets is computa- 
tionally less expensive than training once on a very large training set. The success of win- 
dowing depends on the ability to find a small number of representative examples which 
when used as a training set yield the same results as using the full training set. This ability 
in turn depends on the data; there are some large training sets which satisfy this property 
and some which do not. Wirth and Catlett (1988) examine the costs and benefits of using 
windowing with ID3 on a test suite of eight different classification tasks and conclude that 
there are no real benefits to windowing. However, in our work on detecting sonar events, 
we have found windowing to be essential. The reasons for this are not related to the par- 
ticular learning algorithm employed but rather to properties of the data which we now 
describe. 

In i t ia l  
Window of 
Examples 

Figure 6. The windowing procedure. 

Classi f icat ion 
• ~-  of New 

Examples 

H Exceptions 
Class i f ie r  Added to 
Retra ined Window 



434 D.J. MONTANA 

The ability to explicitly control the tradeoff between Pd and Pf for event detection rules 
is key to the success of our system. The operating concept for the system defines the criterion 
by which we evaluate the relative merits of different points in Pa-Pf space. (For example, 
in the first version of the system, we were primarily interested in not looking foolish by 
making too many obviously false calls. This translated into a much greater emphasis on 
lowering Pf than on raising Pal. In the second release, the emphasis shifted much more 
towards raising Pal.) For any reasonable evaluation criterion (i.e., one for which, all else 
being equal, it is always better to increase P~ and decrease Pf), the operating point which 
optmizes this criterion lies on the ROC curve. Hence, the ability to select a specific point 
on the ROC curve allows for optimal detection performance. 

Other benefits of the ability to explicitly trade off between Pd and Pf are the potential 
for multiple confidences (see Section 5.1) and adaptation to changing conditions (see Sec- 
tion 5.2). 

2.3. Selecting an empirical learning technique 

Most empirical learning algorithms have two basic components, a family of classifiers and 
a training algorithm. The training algorithm searches through the space of members of 
the family of classifiers for one which classifies well a set of training examples and which 
is likely to correctly classify new examples. Different approaches to empirical learning 
use different families of classifiers and different training algorithms. 

One group of algorithms, the best known of which is AQ (Michalski et al., 1986), uses 
what they call decision rules as their family of classifiers, where they define the left-hand 
side of a decision rule as a disjunction of conjunctions. (Note the difference in terminology 
here: we define the left-hand side of a rule as just a conjunction of conditions, which is 
standard nomenclature for rule-based systems. Our rule packet (assuming that the contained 
rules have the same consequents) is the equivalent of their decision rule.) The AQ training 
algorithm uses heuristic search to find a logical expression which is as small as possible 
which classifies all the training examples correctly. 

A second group of algorithms, which includes ID3 (Quinlan, 1979) and CART (Breiman, 
Friedman, Olshen & Stone, 1984), uses decision trees as their family of classifiers. The 
basic ID3 training algorithm employs heuristic search to find a decision tree which is as 
small as possible which classifies the training examples correctly. CART additionally uses 
a method for pruning back these trees for better generalization based on a technique known 
as cross-validation. Decision trees are equivalent to decision rules: every decision tree can 
be written as a decision rule and vice versa (Quinlan, 1987). Hence, decision tree algorithms 
and decision rule algorithms use the same family of classifiers; the difference is the induc- 
tive biases of the training algorithms. 

A third group of algorithms, which includes backpropagation (Rumelhart, Hinton & 
Williams, 1986) and perceptrons (Rosenblatt 1959), uses feedforward neural networks of 
a fixed topology (with variable weights and biases) as their family of classifiers. Their 
training algorithms search through the space of weights and bias for those which minimize 
an error criterion. This criterion measures the difference between the desired outputs of 
the network on the training examples and the actual outputs. Backpropagation uses a gradient 
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For one, the full database of examples is not only extremely large but constantly increas- 
ing. Our system keeps on encountering new data; we ignore it at the peril of continually 
repeating the same mistakes since there are always signal types and listening conditions 
not adequately represented in previous data. Hence, we must constantly retrain the system 
to include the new data, and it is not computationally possible to be continually retraining 
using all the data as a training set. 

Secondly, examples which occur close in time are likely to be very similar. We refer 
to this property as "clumpiness" Clumpiness of the data arises due to the slow rate at which 
the scene changes. Hence, examples which occur close in time are likely to be from the 
same source, located at approximately the same position, and viewed approximately under 
the same conditions. Because of the similarity between so much of the data, there is generally 
a relatively small subset of examples which is representative of the full set of examples, 
which is the key condition for windowing to succeed. 

2.2. Receiver operating characteristic (ROC) curves 

For the detection problem, there are two basic types of errors. One is a missed detection 
(classifying a positive example as a negative one), and the other is a false alarm (classify- 
ing a negative example as a positive one). These two types of errors give rise to two differ- 
ent and competing measures of detection performance: probability of detection (Pd), the 
fraction of positive examples classified correctly, and probability of false alarm (Pf), the 
fraction of negative examples classified incorrectly. Many detection algorithms have param- 
eters which can be changed to yield different performance and thus a different pair of per- 
formance measures (Pj, Pf). A realizable (Pal, Pf) is called Pareto optimal if there exists 
no other realizable (Pal, Pfl) for which Pal > = Pd and Pfl < = Pf and at least one of 
these inequalities is a strict inequality. The set of all Pareto optimal pairs (Pal, Pf) forms 
a curve in Pd-Pfspace called a ROC curve. An example ofa  ROC curve is shown in Figure 7. 

I 

Pd 

Pf I 

Figure 7. An example of a ROC curve. 
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search for multilayer networks. Perceptrons use heuristic search for a single layer network. 
Another approach uses genetic search for multilayer networks (Montana and Davis, 1989). 

Each of these approaches has its advantages and disadvantages. Which approach is the 
best depends on the problem to be solved. In our approach, none of these seemed applicable 
for the following reasons. 

First, the problem requires that the classifier have a straightforward explanation facility 
for telling a human the reason it made a particular classification decision. We need such 
an explanation facility because the event detector is part of a larger, imperfect, and evolv- 
ing system. Knowledge of why the event detector is failing or succeeding has been crucial 
to the improvement of the overall system. For example, Section 5.3 describes a tool for 
evaluating the importance of the classification features used by the event detection rules 
which works because of the existence of a simple explanation facility. This tool has allowed 
us to find better classification features, which in turn has improved the performance of 
the event detection rules. Neural networks do not have any satisfactory explanation facility. 

Second, as discussed in Section 2.2, our system requires the ability to choose an ar- 
bitrary point on the ROC curve when training a detection algorithm. AQ, perceptrons, ID3, 
and CART do not provide such a capability (although CART does provide some limited 
ability to trade off between Pd and Pf in the pruning process). 

As described in Section 1.2, the family of classifiers for our approach is all decision 
rule packets (the equivalent of AQ's decision rules) of fixed form with variable thresholds. 
This is a much more limited space than that of AQ, which can have decision rules of variable 
form with variable thresholds. Fixing the rule packet form in our approach is analogous 
to fixing the network topology in the neural net approach. The search space is R n, where 
n is the number of free parameters (in our case rule thresholds). The training algorithm 
is a genetic algorithm for reasons given in Section 2.4. It minimizes a user-defined error 
criterion which specifies the tradeoff between Pd and Pf (see Sections 2.2 and 3.2). This 
approach provides both a simple explanation facility and the ability to explicitly choose 
an operating point on the ROC curve (see Section 3.2). It is thus the only approach of 
those described which meets the requirements of the problem (see Figure 8). 

ents 
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Figure & A matrix of algorithms versus problem requirements. 
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2.4. Genetic algorithms 

Genetic algorithms are a family of algorithms for optimization and learning. We use a genetic 
algorithm to optimize the rule thresholds of a rule packet (see Section 3.2), i.e., as the 
training algorithm for our empirical learning procedure. The properties which make genetic 
algorithms well suited for this task are the following. First, they generally find nearly global 
optima in complex spaces. This is important because the search space for our problem 
is highly multimodal, a property which leads hillclimbing algorithms to get stuck in local 
optima. Secondly, they do not require any form of smoothness. This is important because 
our search space is discontinuous, consisting of discrete steps between areas with a con- 
stant value. Thirdly, considering their ability to find nearly global optima, genetic algorithms 
are relatively fast, especially when tuned to the domain on which they are operating. This 
is important to our problem because windowing requires us to continually reoptimize the 
thresholds as the training database receives new data. 

Their name alludes to the features they share with biological evolution. These include 
i) a population of individuals, ii) reproduction as a means of creating new individuals, and 
iii) survival of the fittest. We assume that the reader is familiar with how genetic algorithms 
evolve a population of better and better individuals. If  not, a good introduction is (Goldberg, 
1988). We do mention here that there are five variable components to a genetic algorithm 
which are used to adapt the general format to a particular domain. These are: 

1. a way of encoding solutions to the problem on chromosomes 
2. an evaluation function that returns a rating for each chromosome given to it 
3. a way of initializing the population of chromosomes 
4. operators (e.g., mutation and crossover) that may be applied to parents when they 

reproduce to alter their genetic composition 
5. parameter settings for the algorithm, the operators, etc. 

In Section 3.2, we describe how these components are defined for our threshold optimiza- 
tion genetic algorithm. 

3. The learning system 

In this section, we describe various aspects of the piece of our system devoted to learning 
of rule thresholds. First, we examine a user interface for windowing which allows a sonar 
analyst to easily add exceptions into the training database. We then detail the genetic 
algorithm used for threshold optimization. Finally, we describe the iterative procedure by 
which the rule thresholds continually improve. 

3.L Windowing user interface 

A good user interface is a key component of any computer system which interacts with 
people, especially those people not familiar with computers. As an example consider the 
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importance of rule editors to the development of expert systems. They make it easier to 
enter knowledge into the system and thus aid in the more efficient development of more 
effective systems. The windowing user interface plays the role of the rule editor in our 
learning system: it provides the mechanism by which a domain expert can impart his 
knowledge to the system. Making this process easy is crucial to the collection of a training 
database of sufficient quantity and variety. 

An important feature of our windowing interface is that it does not require the human 
analyst to classify every example but rather to just point out the mistakes that the system 
makes. Our sonar data consists of an endless stream. Classifying every example would 
mean a workload that would remain constant over time. However, the job of pointing out 
exceptions (i.e., misclassifications) has a workload that decreases with time as the system 
improves. 

We are not the first to use interactive windowing; one earlier version is a tool called 
Interactive ID3 described in (Shapiro, 1987). Our user interface differs from others in how 
it is tailored to our problem domain. There are two basic mechanisms by which the user 
can add examples to the training database, one for examples which the rules call events 
and one for examples which they do not call events. For the former, a scrollablepeek win- 
dow contains a list of all called events along with identifying information such as event 
type and position in the image (see Figure 9). The events in this peek window are mouse- 
sensitive; hence the analyst can instruct the system to save any event into the training database 
with a mouse click. The system asks the analyst whether this is a positive or negative ex- 
ample before writing it out. 

A different procedure is used for examples which the rules do not call events because 
the number of such examples is generally far too numerous for display in a window and 
because nonevents are not saved in the HLP global database. In this case, the analyst must 
display the appropriate sonar image and click on the position in the image of the missed 
event. The system prompts for information such as event type and whether the example 
is positive or negative and then writes out the example. 

. •  EventType Image Freq Time Conf 

FO0 1 1.0 00:01 0.5 

BAR 2 2.0 00:02 1.0 

BAZ 3 3.0 00:03 0.5 

F00 4 4.0 00:04 1,0 

BAR 5 5.0 00:05 0.5 

BAZ 6 6.0 00:06 1.0 

Image # 1 

Figure 9. The windowing user interface. 
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3.2. Genetic optimization of rule thresholds 

In this section we describe the various components of our genetic algorithm for rule threshold 
optimization. 

1. Encoding: We use a real-valued encoding scheme instead of the traditional binary one. 
An individual consists of a list of the thresholds in the order in which they appear in the 
rule. The possible values which a threshold may take are both range-limited and quantized. 
As one of the functions of our rule editor, the developer specifies the maximum value, 
minimum value, and step size for a particular threshold. The developer picks these 
parameters based on knowledge of typical values of the corresponding statistic. This ap- 
proach is necessary because the statistics used in the rules have such a wide range of typical 
values. For instance, one statistic may generally have values between 5 and 15 while another 
may typically have values between .001 and .004. Knowing this information makes the genetic 
algorithm much more effective because it does not have to waste its time searching out 
of a statistic's range or on a scale which is insignificant with respect to the statistic. It is 
also aesthetically pleasing to have thresholds which are round numbers. (Note that using 
a binary encoding would have forced the number of steps for each threshold to be a power 
of two, and this would have yielded unappealing step sizes.) 

2. Evaluation Function: An automatic scoring function loops through all examples in the 
training database and counts the number of missed detections, M, and the number of false 
alarms, F, for a given set of rule thresholds. Let Np be the total number of positive ex- 
amples and Nn be the total number of negative examples. Then an estimate of Pd is 1 - 
M/Np, and an estimate of Pf is F/Nn. Note that the training database is stacked with par- 
ticularly difficult cases due to the windowing procedure (see Section 2.1); hence, the 
calculated Pd and Pf are not good absolute estimates of general rule performance. In par- 
ticular, the calculated Pf is generally orders of magnitude greater than the actual Pf of the 
rules. However, these scores do provide a good way to compare relative performance of 
rules, and they can be computed fairly quickly and effortlessly. 

The evaluation function is defined as M + RF,, where R is a parameter whose value is 
selected by the developer. The choice of R specifies the operating point on the ROC curve 
(assuming that the genetic algorithm does indeed find global optima). Figure 10 shows 
how two different choices of R lead to two different points on the ROC curve. Allowing 
the developer to choose the value of R provides him with the capability of choosing an 
arbitrary operating point on the ROC curve; as discussed in Section 2.2, this capability 
is crucial to the success of the system. 

Note that there are many other possible optimization criterion besides a linear combina- 
tion of M and E One such criterion is f(M, F), where f = ~ when F > Fo and f = M 
when f <_ Fo and where Fo is some constant threshold. This optimization criterion leads 
to a set of thresholds which maximize I'd subject to the constraint of Pf being below some 
fixed value. Interchanging the role of M and F in the previous optimization criterion yields 
a set of thresholds which minimize Pf subject to Pd being above some fixed value. In fact, 
any real-valued functionf(M, F) can serve as an optimization criterion although the choice 
of f(M, F) can significantly effect the speed of convergence of the genetic 
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Pd 
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M+RF = m i n  i i 

Pd 

M+RF =tmin 

Pf Pf 

Figure 10. Two different values of R yielding two different optimal points along the ROC curve. 

algorithm. (For example, for constrained optimization problems such as the ones just de- 
scribed, experimental evidence indicates that well-chosen, graded penalty functions will 
outperform the hard-limiting penalty functions given above (Richardson, Palmer, Liepins 
& Hilliard, 1989).) 

3. Initialization: The threshold settings for each individual in the initial population are ran- 
domly selected from the admissible set. 

4. Operators: We use the two basic genetic operators, crossover and mutation, suitably 
modified for the particular representation scheme. Our mutation operator creates a child 
that is the same as the parent in all locations except a randomly selected one. The threshold 
value of  the child in this location is chosen randomly from its allowable set (see Figure 
11). We have chosen our mutation to change exactly one value each time because the rules 
generally have had no more than a dozen thresholds and sometimes as few as three or four 
(and we usually have only one rule in an event detection rule packet for reasons described 
in Section 4.3). Hence, this mutation operator can create sufficient diversity while ensur- 
ing that a child is never the same as its parent (this latter property is what (Davis, 1989) 
calls guaranteed). 

Our crossover operator takes two parents and creates a single child. It selects each 
threshold value of  the child by randomly choosing one of  the two parents and using the 
corresponding threshold value in that parent (see Figure 11). This is an example of uniform 
crossover; we have chosen to use this type of crossover based on results reported in 
(Syswerda, 1989). 

(0.0015, -7.2, 130, 0.025, 5.0) 

mutat ion 

(0.0015, -7.2, 50, 0.025, 5.0) 

Figure 11. The genetic operators mutation and crossover. 

(0.0015, -7.2, 130, 0.025, 5.0) 

(0.002, -3.7, 110, 0.5, 4.0) 

crossover 

(0.002, -7.2, 110, 0.5, 5.0) 
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5. Parameters: There are a number of parameters whose values can greatly influence the 
performance of the algorithm. We now discuss some of the important parameters individually. 

PARENT-SCALAR: This parameter determines with what probability each individual is 
chosen as a parent. The second-best individual is PARENT-SCALAR times as likely as 
the best to be chosen, the third-best is PARENT-SCALAR times as likely as the second- 
best, etc. The value was linearly interpolated between 0.92 and 0.89 over the course of a run. 

OPERATOR-PROBABILITIES: This list of parameters determines with what probability 
each operator in the operator pool is selected. These values were initialized so that muta- 
tion and crossover had equal probabilities of selection. An adaptation mechanism changes 
these probabilities over the course of a run to reflect the performance of the operators in 
a manner described in (Davis, 1989). 

POPULATION-SIZE: This self-explanatory parameter was set to 50. 

GENERATION-SIZE: This parameter tells how many children to generate for each itera- 
tion (and how many current population members to delete). It was set to one. (We choose 
to always delete the worst member of the poptdation.) In the terminology of Syswerda (1989), 
this makes our genetic algorithm a steady-state genetic algorithm rather than a generational 
replacement algorithm. Syswerda (1989) explains the advantages of a SSGA. 

3.3. The learning process 

The learning process occurs as follows. We initialize the training database by turning off 
the rules, playing data through the system, and collecting a relatively large number of positive 
examples. We start with only positive examples because they are so much less common 
than negative examples that we need to initially stack the training database with them to 
ensure statistical significance. We then execute the windowing loop described in Section 
2.1. Training the system consists of running the genetic optimization algorithm once for 
each type of event. We choose the tradeoff constant R in the optimization criterion to give 
appropriate detection performance, where the developer is the subjective judge of ap- 
propriateness. Sometimes the developer must make multiple runs for one event type to 
find a value of R which produces acceptable performance. The retained system is then run 
on some data, and the exceptions (i.e., false alarms and missed detections) are added into 
the training database using the interfaces described in Section 3.1. 

At times we add the following twist to the windowing loop to increase the efficiency 
with which we extend the training database. Our run-time system allows rules which detect 
the same type of event with different confidences (see Section 5.1). So, when we retrain 
the system, we create two rule sets, one which detects events with high confidence (i.e., 
low Pf) and one which detects events with low confidence (i.e., high Pd). When running 
the data through the system, we add to the training database all negative examples called 
events with any confidence and all positive examples which either are not called events 
or are called with low confidence. Note that there is an overlapping region where both 
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positive and negative examples are saved. This helps greatly to increase the rate at which 
we collect examples for the training database and eliminates the dilemma between tighten- 
ing the thresholds to catch more missed detections and loosening the thresholds to catch 
more false alarms. 

4. The results 

In this section, we present four different types of results concerning the performance of 
our learning system. The first set of results details the properties of our genetic training 
algorithm. The second set of results investigates the dependence of detection performance 
on the number of rules in a detection rule packet. The third set of results describes how 
the detection performance of the rules improves with time. The fourth set of results com- 
pares the performance of our machine learning procedure for setting rule thresholds with 
the performance of humans setting the thresholds by hand. 

4.L Training algorithm properties 

There are two properties of our genetic training algorithm which are of particular interest: 
i) its time of convergence as a function of problem complexity, and ii) its ability to find 
global optima. Two factors influencing problem complexity are the number of thresholds 
(one measure of the dimensionality of the search space) and the number of examples. We 
have performed experiments to attempt to quantify these properties. (Note that in all of 
these experiments we keep the value of R = 0.7 constant. Recall from Section 3.2 that 
R is the weighting of false alarms relative to missed detections.) 

The first set of experiments examines the relationship between time of convergence and 
number of thresholds. Each of these experiments consists of performing the following pro- 
cedure for a particular event type. First, run the threshold optimization algorithm ten times 
on the corresponding detection rule recording the best current value as a function of the 
number of individuals evaluated. Average the values of these ten runs together to get an 
average best value as a function of the number of evaluations. Say that the number of evalua- 
tions required for convergence is that point at which the value of the average run was first 
within e of the final value of that run. (Note that c is held constant for all experiments.) 
This is an estimate of time of convergence of the training algorithm. Now, repeat this pro- 
cedure with the following difference: for each run, take out of the rule one condition (and 
thus one threshold) selected randomly. The number of evaluations required for convergence 
for this average run is an estimate of time of convergence with one less threshold than 
in the original rule. Continue in this manner taking out two thresholds, three thresholds, 
and so on until the last average run is working with only two thresholds. This provides 
an estimate of time of convergence as a function of the number of thresholds. 

We have performed this experiment four times for four different event types giving the 
results pictured in Figure 12. There are a few conclusions we can draw from these results. 
First, averaging over ten runs did not sufficiently eliminate noise. Functions that should 
have been monotonically increasing were clearly not due to the noise. Second and more 
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Figure 12. Plots of number of evaluations before convergence versus dimension of search space for four different 

event types. 

important, the dependence of time of convergence on dimension of the search space is 
close to linear at least for the range of dimensions in the experiment. We should note that 
the binary dimension of the search space is on the average about five times the number 
of thresholds, so that from a binary point of view these search spaces are reasonably large. 

The second set of experiments examines the relationship between time of convergence 
and number of examples in the training database. These experiments use the same 
methodology as the first set of experiments except that they vary the number of examples 
instead of the number of thresholds. The results are shown in Figure 13. Notice that the 
time of convergence tends to increase linearly with the number of examples until a certain 
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Figure 13. Plots of number of evaluations before convergence versus training set size for two different event types. 

point where it reaches a plateau. A possible explanation for this is that adding more exam- 
pies increases the complexity of the search space; however, in a manner intuitively similar 
to the Sampling Theorem, a discrete space has a maximum complexity. Note also that the 
amount of compute time required for an evaluation is approximately proportional to the 
number of examples. Hence, the time required to run the training algorithm is propor- 
tional to the number of evaluations times the number of examples. 

The third set of experiments examines the ability of the training algorithm to find nearly 
global optima. These experiments consisted of performing ten runs of the training algorithm 
on the same data and recording the evaluation of the best individual from each run. The 
results are shown in Figure 14. Note that they are almost all different values, which clearly 
indicates that this genetic algorithm does not generally converge on the absolute global 
optimum if the search space is sufficiently complex. However, observe that the seven best 
values are all within a range of each other which is equal to the penalty for one false alarm, 
0.7, and less than the penalty for one missed detection, 1.0. Since there are hundreds of 
examples, this is an insignificant difference. The other three values differ from the best 
value by small but significant amounts. Upon examining the individuals associated with 
these values, we found them to be in a completely different part of the search space from 
the other seven. The main conclusion from these results is that to obtain a final set of 
thresholds for use in the field it is best to run the training algorithm a few times to make 
sure the optimum is nearly global; however, for the windowing process one run of the training 
algorithm is usually sufficient. 

[Note that from this point on the results are all qualitative rather than quantitative due 
mainly to the sensitive nature of the data.] 
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Run Number 1 2 3 4 5 6 7 8 9 10 

Best Value 56.1 57.6 56.3 56,7 56.0 56.3 56.2 57.3 56.2 57,9 

Figure 14. The best values from ten different runs on the same data with R = 0.7. 

4.2. One rule versus multiple rules 

Recall from Section 1.2 that a rule packet can have more than one rule in it. These rules 
are combined disjunctively, thus making the rule packet a disjunction of  conjunctions of 
conditions. The developer has the choice of how many rules to include. We have performed 
some experiments to determine the optimal number of  rules. These experiments are 
analogous to those described in (Gorman & Sejnowski, 1988) for determining an optimal 
number of hidden units of  a neural network. The procedure is as follows. Hold aside a 
fraction of  the training database for a test set. Train rule packets with different numbers 
of  rules on the training set. Then test their generalization on the test set. We have run this 
experiment for two different event types. Qualitative results from one of the experiments 
are shown in Figure 15. Observe that, as expected, adding more rules improves perfor- 
mance on the training set. However, there is no significant performance difference on the 
test set. According to these experiments,  for our data using one rule per  packet offers the 
advantages of  maximum simplicity and predictabil i ty of  generalization without any disad- 
vantages. This is why we generally use only one rule in event detection rule packets. 

For these experiments as well as those described in the next two sections, we measure 
performance as follows: compute M + R F  (see Section 3.2 for the meaning of  these terms) 
on the indicated set of data and normalize it by Np + RNn, where Np is the number of 
positive examples in the data and Nn is the number  of  negative examples. 

I x - S im i l a r l y  D is t r ibu ted Test  Set [ 
o - Tra in ing Set 

Performance X X 

0 
0 

i I I 
1 2 3 
Number of ru les 

Figure 15. Plot of performance (M + RF) versus the number of rules. 
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4.3. Detection performance as a function of time 

There are three different kinds of data on which to evaluate detection performance: i) training 
data, ii) test data chosen from the same distribution as the training data, which we call 
similarly distributed test data, and iii) test data which has the same distribution as the data 
which the system encounters over a long period of operation, which we call perfectly 
distributed test data. Similarly distributed test data is easy to obtain by randomly dividing 
available data into a training set and a test set. Using similarly distributed test data is a 
good way to test the generalization of  a trained classifier. The problem is that the training 
data is not distributed in the same way as the data the system encounters over a long period 
in the field. The fielded system sees a vast variety of  different signals and conditions while 
the training data tends to focus on a subset of these. Hence, performance on similarly 
distributed test data is generally not a good indicator of  performance over a long period 
in the field. However, performance on perfectly distributed test data is a good indicator 
of  performance in the field. The problem with perfectly distributed data is that it is very 
difficult to create such a set of data, especially one which is of  sufficiently small size that 
we can train a detection algorithm on it. 

Windowing can be viewed as the process of  making the training database more and more 
like a filtered version of  perfectly distributed data, where by filtered we mean that those 
examples which are redundant in terms of training a classifier (which constitute the vast 
majority) are omitted. Learning occurs as the training database gets closer and closer to 
this ideal and thus the trained classifier can handle correctly a larger range of signals and 
conditions. Figure 16 shows a qualitative graph of  performance versus time for these three 
different kinds of  data on which to measure performance. Of  course, we do not have a 
true set of  perfectly distributed test data; what we do instead is use all the data available 
to us (a relatively large amount) as a substitute. Notice the following about the graphs. 
First, the performance on the training set is for the most part monotonically decreasing. 
As the training set grows larger in both number of  examples and variety of  examples, the 
training problem becomes increasingly harder. Second, the performance on the similarly 
distributed test set becomes ever closer to the performance on the training set. This is because 
our training algorithm works with a fixed number of free parameters which are determined 
with ever greater statistical significance as the amount of training data grows larger. Third, 
the performance on the perfectly distributed test data consistently increases with time as 
the training data becomes more representative of  perfectly distributed data. It is in this 
sense that our system is learning. 

4.4. Threshold optimization: manual versus automated 

There are two kinds of  comparisons we can make between our machine learning system 
and humans. The first is a comparison between the detection performance of  the automated 
system and that of  a human analyst. In some sense this is the bottom line. The problem 
is that, as described in Section 1.2, the event detection rules which the learning system 
works on are a relatively small part of  the full automated system. The event detection rules 
depend fully on the Low-Level Processor (LLP) to detect and characterize the narrowband 
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Figure 16. The evolution of performance with time. 

signals. Not surprisingly, the LLP is a poor substitue for the human low-level visual system, 
generally producing a degraded version of the information present in the sonar image 
(although we are working on applying technology similar to that described here to improve 
the LLP (Montana & Davis, 1989; Montana, in press)). Comparisons between human and 
machine detection performance serve primarily to highlight the disparity between the LLP 
and human vision. 

The second type of comparison is between machine learning of detection rules and manual 
tuning of these rules by human developers. The first release of our system contains rules 
which were tuned manually while the next release has rules generated by the learning system. 
The LLP remained functionally the same between releases. Hence, differences in the detec- 
tion performance of these two releases indicate the improvements to our system of using 
machine learning rather than manual tuning. 

When initially evaluating the benefits of the machine learning approach, we performed 
the following experiment. Take the data on which the rules from the first release were tuned. 
Continually perform the windowing procedure for a single event type on this data until 
no more examples are being added to the training database. Optimize the rule for detecting 
this event type multiple times using different values of R, the tradeoff between Pa and Pf. 
Evaluate the detection performance of this rule on the full set of data. The results are shown 
in Figure 17. 

These results indicate first of all that the machine learning approach generated rules with 
better performance. By adjusting R appropriately, this approach could find an operating 
point which has both higher Pd and lower Pf than the hand-tuned rules. The second ad- 
vantage of the machine learning approach is its ability to easily change its operating point 
along the ROC curve. As stated in Section 2.2, a goal for the second release was to raise 
the rules' Pd possibly at the expense of raising Pf. With the hand-tuning approach, this 
would have meant starting from scratch and reperforming a very labor-intensive task. In 
fact, it would have been harder the second time because higher Pa and higher Pf require 
the mental juggling of more examples. A third advantage of the machine learning approach 
not shown in the graph is that the rule packet was much smaller and thus generalized better 
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Figure 17. A comparison of the learning system with manual tuning. 

to new data. Human developers tended to add new conditions and rules into the packet 
to handle individual examples, and as this practice continued the rule packet became large. 
A fourth big advantage of the machine learning approach is its ability to keep improving 
with experience. Human developers could only mentally juggle a relatively small amount 
of data before they became overloaded and hence could not continue to improve the rules 
(in the sense of performance on a perfectly distributed test set) after a certain point. This 
contrasts with the continual improvements generated by the learning system described in 
Section 4.3. 

5. Additional benefits 

Using the approach to learning described above, the system is able to successfully detect 
sonar events, improve its performance with experience, and trade off between high Pa and 
low Pf in a way consistent with system specifications. We now describe some additional 
benefits of our approach: multiple confidences, adaptable detection performance, and a 
tool for understanding the importance of each classification feature. 

5.1. Multiple confidences 

By altering the tradeoff between high Pa and low Pf, we can create rules which detect 
events with different levels of confidence. A rule whose thresholds optimize an error criterion 
with Pf weighted heavily compared to 1 - Pa (i.e., where the tradeoff constant R is large) 
will be relatively unlikely to call false alarms. Hence, any events detected by such a rule 
are true events with a high confidence. Alternatively, events detected by a rule with R small 
are true events" with a lower confidence. In our run-time system, we include rules which 
look for the same types of events with different confidences. The confidence of a particular 
event is the highest confidence associated with a rule which detected it. We have already 
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discussed how this helps for data collection. More importantly, having a confidence 
associated with each detected event allows the higher-level rules a lot more flexibility in 
using these events to make other inferences. 

5.2. Adaptation to varying conditions 

Different environmental conditions dictate detection performance for the rules. As an ex- 
ample, consider the difference between high-traffic and low-traffic conditions. The former 
requires a much lower Pf to satisfy system performance requiring false alarm rates to be 
below a threshold. Another  example is the effect of outside sources of information. Such 
outside information can cause us to expect to see events on certain sonar images; for these 
images, we can raise the I'd without losing confidence in our detections. These different 
requirements translate into different values for the rule thresholds. Using our optimization 
routine, we can create sets of  threshold settings appropriate for each of these situations. 
As described in Section 1.2, all the rule packets appropriate for a part icular  situation are 
grouped into a rule set. These rule sets are disabled when the corresponding situation is 
not in effect and are enabled when the situation is in effect. 

5.3. Classification features evaluation 

As mentioned in Section 1.3, the system tuning process includes improvement of the statistics 
functions used to define classification features as well as the learning of the rule thresholds. 
The general form of rules makes it easy to determine the effects of each feature on the 
performance of a rule. When  a rule does not fire, the features responsible for this are all 
those that are not within their corresponding thresholds. We have created a tool for evaluating 
the marginal contribution of a feature to a rule which works as follows: i) find all examples 
in the training database for which the rule fails to fire solely because of the feature (i.e., 
all examples which would be called events if  the feature were ignored), ii) let N, the negative 
score, be the number of  positive examples in this set, iii) let P, the positive score, be the 
number of negative examples in this set, iv) the net contribution of the feature is RP-N, 
where we recall that R is the tradeoff constant in the optimization function. 

We interpret the results of this tool as follows. If  the net contribution of a feature is negative, 
then the optimization has failed because it should have been able to set the thresholds in 
such a way as to effectively ignore the feature (i.e.,  N = P = 0) and thus do better. In 
the rare situations when this occurs, it is often the case that the developer has overly con- 
strained the values for the corresponding threshold through his choice of  range and step 
size. However, it also can be that the genetic algori thm has failed to find the global op- 
t imum and should be run again. I f  the net contribution of a feature for many runs over 
different training databases is always zero, then this is a worthless feature and should not 
be used in the rule. Note that because of the mult imodal  nature of the search space and 
the everchanging training database, the fact that a feature has zero contribution on one 
particular run does not meri t  discarding it. 
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6. Conclusion 

Detection of events in sonar data is difficult due to the complexity, variabili ty and clumpi- 
ness of the data. We have successfully employed a new type of empirical learning for detecting 
such events. It uses thresholded rules grouped into rule packets as its underlying decision 
structure. A genetic training algorithm optimizes the thresholds of  these rules for perform- 
ance on a training database of  examples. Since genetic algorithms can be used to optimize 
with respect to arbitrary error  criteria,  we have the ability to explicit ly dictate system per- 
formance specifications to the training algorithm. We have chosen to use an error  criterion 
which is a l inear combination of 1 - Pd and P f  with the relative weighting of  these two 
terms used to specify the desired operating point  along the ROC curve of the rule. We 
can use this capabili ty to create mult iple rule sets which detect events with different con- 
fidences or which are tuned for different conditions. 

The learning process we have used employs windowing as a method for getting a handle 
on the huge and ever increasing amount of data passing through our system. Iterating through 
the windowing loop (of (i) gathering more examples for the training database and (ii) retrain- 
ing) allows the rules to improve with experience. 
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