
ORIGIN AND EARLY EVOLUTION OF 

THE PLANETARY SYSTEM 

D. MiiHLMANN 

Institut fiir Kosmosforschung der Ad W, Berlin, D.D. R. 

(Received 19 April, 1984; revised 2 October, 1984) 

Abstract. It is shown by linear stability analysis that a preplanetary (presatellite) disk of dust and gas 
with Keplerian velocity field can become unstable due to the collective self-gravity of the disk. The 
radial distribution of rings, which may result from this instability, is derived. These rings later on can 
be the formation sites for planets around the Sun and for satellites around the planets. The derived 
orbits are shown to be in good agreement with that of the planets and the satellites (of Jupiter, Saturn, 
and Uranus). Predictions and conclusions seem to be possible for the existence of three yet unknown 
Uranian satellites, the origin of the early Moon and the possible radial extension of the planetary 
system. 

1. Introduction 

The great majority of very different and numerous planetogonic models for origin and 
early evolution of the planetary system and the (‘evolved’) satellite systems of Jupiter, 
Saturn, and Uranus increasingly shows a consensus in assuming a thin ‘preplanetary disk’ 
as a predecessor of these systems (Stiller et al., 1980). This seems to be based mainly on 
the evidence that, with few exceptions only, orbital inclinations of planets and satellites 
are small. 

The differences in planetogonic models result therefore from the differing assumptions 
about origin and further evolution (structurization) of preplanetary disks. 

This paper will start with the existence of a non-structurated disk of dust and gas, 
which was focussed to a plane due to the action of gravitational centrifugal and 
frictional forces (Cameron and Pine, 1973; Cameron, 1978; Safronov, 1969) and by 
magnetic fields (Alfvt5n and Arrhenius 1976; MGhlmann, 1984). Furthermore, only 
those disks around a central mass M, shall be discussed, which are stable against a direct 
gravitational collapse of local regions, producing there giant protoplanets. This evolution- 
ary way seems to be possible for massive disks with mdi&>Mc only. (Cassen and 
Moosmann, 198 1; Weidenschilling, 1983) Consequently, preplanetary disks with 
mdia <M, shall be discussed in this paper. 

It will be shown by stability analysis within the frame of linear perturbation theory, 
that for a sufficient low thermal pressure and due to collective self-gravity the disk 
becomes unstable with a quasiperiodic radial distribution of the density disturbance. 
It is assumed then, that in the nonlinear regime rings are formed due to the collective 
self-gravitation at the maxima of the linear disturbances in the density. With further 
decreasing pressure (caused by cooling and condensation) these rings, may become 
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unstable too by an ‘azimuthal instability’ (Mohlmann, 1984a; Boss, 1982). Consequently, 
planetary bodies may form from the rings approximately at their orbital radii. The result- 
ing radial structure of the rings and derived planets fits quite well the observations in the 
planetary system and the satellite systems of Jupiter, Saturn, and Uranus (see Fig. 2). 

2. Basic Equations 

A hydrodynamic description of a preplanetary disk has to start from Navier-Stokes 
equations 

$V + (V grad@ = -grad(V+ 4) --l-gradp + UAV, (1) 
P 

where V = - yMJr is the gravitational potential of the central mass MC and @ represents 
the gravitational potential of the disk of density p, connected with 4 by Poisson’s 
equation 

A@ = 47ryp. (2) 

As equation of state p = pc2 shall be used in this context with the approximation 
c2 = const. 

An estimation of the relative importance of thermal pressure can be found by compar- 
ing the gravitational force of the central body and the radial pressure gradient over 
planetary scales, giving 

YM c2<> 
r 

as a condition for the existence of a disk, dominated by the gravitation of the central 
body. Using c2 = kT/m, with Boltzmann’s constant k = 1.38 x 1O-23 Ws/grd and m = mP 
as the proton mass for hydrogen gas, we find (with T< lo3 K) that c < 3 x lo3 ms-r. 
This restricts the radial scales of the preplanetary disk to r < 10r3m, while the corre- 
sponding scales for the presatellite disks of Jupiter, Saturn, and Uranus are rj < 10” m, 
r, < lO”m, and ru < 1Oro m respectively. It shall be noted here, that the above-given 
estimation cannot be applied to azimuthal scales, which are not influenced directly by 
the gravitation of MC and which are expected to be axisymmetric as long as pressure 
is effective. 

The relative importance of thermal pressure and collective self-gravitation of the disk 
can be found by comparison of grad 4 and p-l grad p = c’p-’ grad p = c2(4nyp)-’ 
grad A@. Consequently, pressure is important for 

c2 > wZL2 c (4) 

where o$ = 4nyp and A - Le2 as an order of magnitude estimation. With p > lo-‘kg mw3, 
what is implied by the actual planetary masses, and with the above-given numericalvalues, 
it follows that (4) was satisfied in early preplanetary phases, indicating the essential 
action of pressure, counteracting any early structurization in the density-distribution. 
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Structuring processes can become effective if the above-described situation reverses, 
and collective self-gravitation overcomes the disintegrating action of pressure. This can 
have been realized, if most of the gas has been condensed out to small particles and 
droplets. To investigate the characteristics of these later structuring processes, and if 
pressure is not mentioned explicitly, it shall be assumed throughout this paper, that the 
preplanetary (presatellite) disk consists mainly of condensed particles and grains, inter- 
acting gravitationally. 

If we neglect kinematic viscosity, which might have been essential in earlier phases, 
Equation (1) reduces to 

$V + (vgrad)v = -grad(V+ @)>, (5) 

which together with (2) and the equation of continuity 

completes a complete set of the equations. 
To investigate the stability of a special ‘ground-state’ with vo, pe, $0 of a preplanetary 

disk under the influence of the central body and its own gravitation a linearization 
according to v = v. + u, p = p. + 6p, @ = Go + * with lul < Iv01 and 6p < p. gives 

$v + (v. grad)u + (u grad)vo = -grad ?Tr. (7) 

If we assume now a static and axisymmetric ‘ground state’ which shall be described in 
cylindrical coordinates by v. = e,vo(r), it follows from (5) 

vo(r) = [ + ++Po)Ln. (8) 

As can be shown simply by expansion with Legendre polynomials, the gravitational 
potential of a disk with radius ‘a’ and constant mass-density u. for r <a in spherical 
coordinates is given by 

(9) 

With a surface density u. of the order of (lOI-104) kg m-’ (see Figure 1) of the preplanet- 
ary disk, there follows with MC = 1.99 x 103’kg that yM,/r $ r(a/&)@o. Therefore, the 
axisymmetric disk potential is not important under these circumstances for the descrip- 
tion of the undesturbed ‘ground state’ and the approximation 
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Fig. 1. Preplanetary disk surface densities. 
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(10) 

can be used, defining with v. = &I the Keplerian angular velocity S’& = (yMc/r3)1’2. 
With (lo), Equation (7) can be reduced to 

(114 

(1 lb) 

The linearized equation of continuity is given with (lo), 60 = Jdz 6p and the model- 
assumption u, = 0 and co = coy-” by 

Using 6p = &S(z), we find that the potential equation for \k can be integrated, giving 

&I! - 
3Z 

= 2ny &a. 
z++o 

(12) 

(13) 

Away from the disk plane we have 

A’P = 0. (14) 

Consequently, the z-dependence of the potential can be described by exp [- k,(z)], with 
k, > 0, giving for (13) 

-k,Q(r,p,z = 0) = 2ny60, (15) 

if we neglect the contribution of horizontal forces - which corresponds to the restriction 
that * may become essential only at those sites, where 6a # 0, indicating that this 
approximation is equivalent to the assumption that the ‘Hill-sphere’ of a disturbance 
does not exceed essentially the region of the disturbance. This seems to be an acceptable 
first approach. 

In (15) k, > 0 is determined via Equation (14) with boundary conditions at z = 0 by 
the horizontal scales of \k(r, cp, z = 0). Equations (1 I), (12), and (15) will be used for 
the further discussion of the properties of a preplanetary thin disk of particles influenced 
by the collective action of their gravitation. 

3. Radial Structures 

The stability of a thin disk around a massive central body has been discussed by Hunter 
(1965) and Toomre (1964). Hunter made use of spheroidal coordinates and Legendre 
functions, and obtained the frequencies of free oscillations as eigenvalues of an 
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infinite matrix; while Toomre applied Fourier-Bessel analysis to obtain equilibrium 
figures for galactic disks, replacing the galaxies by a finite number of concentric rings 
for a radially local stability analysis valid for single rings. 

In what follows it will be shown that a more realistic radial stability analysis for disks 
with differential rotation can be carried out by use of Bessel functions. With (11) (12), 
and (15) with alat = w, a/+ = - kp and f = w - t&k, we obtain the velocities 

(164 

Wb) 

whereD=f2+ !&. 
An appropriate potential equation follows by introducing (16) in (12) and taking 

into account (1.5); which leads to the equation 

with 

~rII+A~;*+B~~+c* = 0 ar2 
A = (4-n)LI&+(l-n)f2-3f&kq 

f2fi-& 

(17) 

(184 

B = k$(7& +f2)f+ C&k,(2n - 3) +f*&k,+(3 + 2n) 

fV” + w 
> (18b) 

C=k f2fG -. 
z 2lryoo a 

where ue, & (and f) are functions of r. Consequently, the radial structure of \k depends 
on the radial dependence of the surface density and via Qrr on the differential rotation. 
For axisymmetrical (klp = 0) and stationary (w Q !&) cases follow A = 4 - ~1, B = 0 and 
C = k,(MC/2nco)rn-3. The general solution of (17) is given then by a superposition of 
Bessel functions 

with 
\k = G1 r-&J, (d) + G2 Jep (d) 

a = (3 -n)/2, P = (n - 1)/2, 

3-n 
P=Ei. 

Thus any realistic solution depends directly on the radial behaviour of the surface 
density uo. 

Models for surface densities of the preplanetary disk have been discussed intensively 
by Weidenschilling (1977). 

He proposes a r -3’2 dependence giving n = 3/2. But, as can be seen from Figure 1, 
there is a very great uncertainty e;en in the orders of magnitude for realistic surface 
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densities. In Figure 1 the crosses indicate values from Weidenschilling (1977), resulting 
from assumed initial solar-composition masses of the terrestrial (proto-) planets, com- 
puted from their iron content, and from different models for the outer planets as indi- 
cated by the vertical bars. The dots in Figure 1 represent values, as they have been com- 
puted simply by distributing the actual planetary masses over the ecliptic plane with the 
surface density uort due to the nth planet (of mass m, and orbital radius r3 uan = m,/ 
7r(r,’ - rf), with r, = (r,,, + r,)/2 and Yi = (m + rrr-r)/2. These values can be regarded 
as minimal. Having in mind that the used above mathematical formalism can be 
applied to non-pressure-dominated disks of gravitationally interacting condensed particles 
only, the ‘equivalent solar-composition’ assumption of Weidenschilling (1977), which 
could be used for an even earlier gas phase, should give to great values. Therefore, as a 
model-type an ‘intermediate model’, as indicated in Figure 1 shall be used in this paper. 

Realistic solutions for q would involve, of course, a superposition of more than two 
Bessel functions, as in (19). But to get a first quantitative impression of the gros- 
characteristics of solutions of (19) the two representative solutions, based on the 
‘intermediate model’ for o. shall be used. Here it should be mentioned too, that the 
general structure of the solutions of (19) does not depend very sensitively on small 
variations of n. Therefore, a possible reality of some properties of solutions of (19) can 
not be used to determine n with great accuracy. 

3 .l. SPECIAL~~LUTI~N~ 

Solution I describes for the quasi-stationary ‘long-time’ regime c3 < ax the axisymmetric 
radial structure of an originally homogeneous disk with cro = const., or y1 = 0, what can 
be applied to the inner parts (see Figure 1) of the system, Solution II refers to the long 
time regime of an axisymmetric disk with radially decreasing density u. - r-3 or II = 3, 
being representative for the outer parts of the system. 

Solution I: The above given conditions for this model lead to A = 4, B = 0, and 
C = M,kz/2ncor3. The corresponding solutions is with v. =(~M,/r)l’~ 

(20) 

where J3 is a Bessel function of first kind and of 3-rd order, while N3 is a Neumann 
function (or Bessel function of second kind) of 3rd order. The characteristic length-scale 
for the quasiperiodic structures, as described by J3 and N3, is given by L1 = M,k,/2wo. 
For I + 00 follows v. + 0 and therefore N3(r + 00) + - TV. This shall be excluded for 
planetogonic models. Therefore, the further discussion shall be based on C2 = 0. 

The radial dependence of the density-disturbance aor, determined with A\kr = 4n$ur, 
is given by 
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60, = g&x-4{J*(2x-‘/2) + x-“2J,(2x-“2)}, (21) 

where x is a dimensionless radial variable, defined by 

x = Y - 2nq,/Mk, = r/L1 = @2ny(ro/k,. 

With the asymptotic representations for 2x -1’2 > 3 (order of the Bessel functions) it 
follows that 

J2(2x -9 - 7r-1’2 x 1’4 cos (2x-‘/2 - &7), 

J&2x-1’2) Fz 77-1’2x”J co42p2-479; 

and as an approximative description for (21) 

(224 

(22b) 

6OI = ,$ni::r ((1 + x-1/2> cos 2~~~‘~ + (1 -x-~‘~) sin x-1’2}. (23) 

The extrema at x = x, of this radial density disturbance can be found from 

(1 - ~x,)J~(~x,"~) = SX,~‘~J~(~X,“~), 

or, in the asymptotic approximation, by 

(24) 

tan 2~;~‘~ = 
6x1/2+3x -1 
6xji2 - 3x1 + 1 . (25) 

Solutions of (25) are given for the first zero-values in Table I. As can be seen even from 
Equation (20), there appear quasiperiodic structures, governed by nearly constant 
velocity-differences. It is interesting to note, that there exist ordering-schemes, describing 
the planetary distances with a constant velocity-difference as the structure parameter 
(Litzroth, 1980; Mbhlmann, 1981). 

Solution II: The coefficients for this case with n = 3 are A = 1, B = 0, and C = M, k,/2c0, 
giving the solution 

*I, = GJo(~~)+G&(@)> (26) 

where JO and N,, are zero-order Bessel functions. The characteristic length-scale for the 
quasi-periodic radial structures is LI1 = d2m,,/M,k,. The radial dependence of the con- 
nected density disturbance is given then by 

(27) 

Consequently, the extrema of 6arr can be found at 

Jl(r/LII) = - C5N1 W-h), (28) 
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where C’s = C,/Ca depends on the relative excitation of the modes Je and IV,,. With the 
asymptotic representations for r > LII it follows that cot (r/L, - $71) = - C5, or 

tan -I- = - 1+ c5 

LII l-cs 

for the quasiperiodic radii of the density extrema. For a sequence of rings at r = r, this 
reduces to 

r n+k = r,, + 2krrLI, 

as a law for periodic planetary distances, This seems to be of relevance for the outer 
planetary system (Litzroth, 1983). 

4. Comparison with Real Satellite Systems 

AS is well known, the four ‘developed’ systems of massive central body and connected 
satellite system in the solar system, namely the planetary system and the satellite systems 
of Jupiter, Saturn and Uranus, exhibit some common or comparable properties (Stiller 
et al, 1980, 1984). Such ‘reconstruction characteristics’ are, for every system: 

- coplanarity of the orbits, 
- circularity of the orbits, 
- anisotropy due to predominance of one angular-momenta-orientation, 
- quasiperiodicity of orbital radii. 
These ‘reconstruction characteristica’ can be understood as to be caused by a com- 

parable process-sequence of the early evolution of these systems, similar ‘to the “hetegony 
principle” of Alfven and Arrhenius (1976). The following conclusions about these early 
formation-processes shall be derived from the reconstruction-characteristica: 

- separation (origin) of the complete matter of every system from a greater structure, 
as it is implied by the predominance of one angular-momenta-orientation for each system, 

- evolution to an early presatellite thin disk, 
- comparable gross-structures of the four systems indicate that the process-sequence of 

their formation was independent of special initial conditions. Therefore, these processes 
should be describable in a “quasi-stationary” approximation, which does not depend on 
special initial conditions, which were different for the four systems. 

The above discussion encourages to apply the preceding analysis of the evolution of 
radial structures of thin disks on the description of the formation-processes of satellite 
systems. The following model of a pre-satellite disk shall be used for the further dis- 
cussion: 

- Keplerian velocity of the original ‘ground state’ of small particles (grains), as 
described by (lo), 

- use of a model-type as indicated by the ‘intermediate model’ for the undisturbed 
surface density (see Figure l), 

- restriction to ‘quasistationary states’, 0 & &, 



ORIGINANDEARLYEVOLUTIONOFTHEPLANETARYSYSTEM 211 

- restriction to a linear stability analysis, that may indicate those sites with exponen- 
tially increase in the density, where in the following non-linear regime ring-like matter 
accumulations may evolve, 

- as a first step, axially symmetric models shall be discussed as predecessors of possible 
later (non-axisymmetric) ‘azimuthal instabilities’ of the resulting axisymmetric rings 
(Mohlmann, 1984; Boss, 1982). 

5.1. INNER SYSTEMS 

Table I and Figure 2 give the relative radii x, of the first density extrema of 6u1, as they 
have been computed from (25), and their possible correlation with real orbital radii r, of 
the inner planets and the inner satellites of Jupiter, Saturn, and Uranus. 

Here it should be noted, that r, = x,LI follows from LI = Mck,/2mo = yMc/x,~i. 
The ve-values have been found by comparison with actual orbital velocities of appropriate 
planets and satellites which are mentioned in Table I. 

It is remarkable that with, L1 = 4.5 x 1013 m, k, =LT1 follows co =M,/~EL~ = 
1.6 x lo2 kg rnm2, this is in the range of the values according to Figure 1, but very near to 
the minimal values, limited by the present planetary masses. 

5.2. OUTERSYSTEMS 

A basic element of the above-discussed model is the assumption, that planetary (and 
statellite-) bodies may form at those sites where 60 has maxima. Then, in the outer 
systems, the radial distribution of the planets is given by the linear relation (30). The 
resulting scale length LII for the outer planetary system is given by LII = 2.405 1 x 1Or1 m, 
giving a radial structure of the outer planetary system, as described by Table II. 

TABLE11 

a,[lO”m] ~~[lO”rn] 

Saturn (14.33) 14.33 
Uranus 29.44 28.84 
Neptune 44.55 45.09 
Pluto 59.61 59.66 
? 74.78 ? 

? 120.00 ? 

It should be noted that the value in brackets has been used as a start value, and that 
LII has been determined by the average of the differences r, - r,-, = 15.11 x 1O’l m. 

It is interesting to note that, with LII = 2.4 x lO”m, k,=L-’ and co =McLII/2n 
we obtain surface densities (described in Figure 1 by open circles), which are greater by 
one order of magnitude than the maximum values of Weidenschilling (1977). 

This may indicate an original massive outer band and a separate inner disk of lower 
surface density. 
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As can be seen by comparison with Table I, there are no outer evolved satellite systems 
of the planets. Oberon could have been influenced by Titania and the Jovian satellites 
513, 56, JlO, and 57 (with an inclination of about 30”) and the group of retrograde 
orbiting satellites 58, J9, Jll, and J12, probably, have been captured. 

The disappearence of outer systems around the planets may be connected with their 
limited sphere of influence in the solar gravitational field. Consequently, hypothetical 
earlier outer rings or bands have been destroyed by solar tidal action. 

5. Conclusions 

The models discussed in the foregoing sections lead to the following planetogonic 
scheme : 

- existence of a preplanetary (pre-satellite) disk of gas, plasma and (condensed) 
particles with a disk-mass, small compared to that of the central body, 

- formation of a thin disk with height H much smaller than its radial extension R % H, 
caused by the action of early gravitational, centrifugal and frictional forces and due to 
large scale magnetic fields, 

- radial structurization of this axisymmetric thin disk into rings for sufficiently 
decreased gas-pressure (temperature), where rings form by nonlinear collective gravi- 
tational effects at the sites of the maxima of the (linear) disturbed density - as described 
mathematically in Section 3, 

- later azimuthal instability of these rings with further condensation-caused decrease 
of the action of pressure and due to collective self-gravitation of the disk and resulting 
fast growth of planetary bodies (‘collective accretion’) (Mohlmann, 1984a). 

It should be noted here, that this scheme can be applied to origin and early evolution 
of the planetary system and the satellite systems of Jupiter, Saturn and Uranus. 

The mathematical description of the essential physical processes of this scheme, 
based on a hydrodynamic formulation of the collective structuring effects of the self- 
gravitation of a particle disk around a massive central body, fits quite well observed 
radial structures in the orbits of planets and satellites in the solar system. Predictions 
seem to be possible as well for three yet unknown Uranian satellites, and a new approach 
to a possible lunar origin between Venus and Mercury or inside the Mercury orbit. It is 
interesting to note here that, on the basis of investigations of lunar material, Wood and 
Mitler (1974) concluded that the genesis of lunar matter occurred far inside the actual 
Earth orbit. Furthermore, the orbital radii derived from this planetogonic approach for 
possible transplutonian planets could coincide with cometary families. 
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