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Abstract. In this paper we studied the influence of the initial stress on the propagation of Rayleigh waves 
in a homogeneous-isotropic, generalized thermo-elastic body, subject to the boundary conditions that the 
outer surface is traction free. In addition it is subject to linear radiations, adiabatic isothermal transfer 
conditions. We found that the frequency equation of Rayleigh waves contains a term involving the initial 
stress and, therefore, the phase velocity of Rayleigh waves changes with respect of this initial stress, when 
the initial stress, vanishes, the derived frequency equation reduces to that one obtained in classical 
generalized thermo-elastic case which includes the relaxation time of heat conduction. 

1. Introduction 

The dynamical problem of a generalized thermo-elastic waves has been discussed by 
Norwood and Warren (1969), Chattapadhy and Kar (1981), Sukhendu and Addy 
(1979), and Tomiat and Shindo (1979); Elnagar and Abd-Allah (1985) investigated 
the dynamical problem of therm0 elastic solid. But they all considered initially stress- 
free media. Besides the Earth, many structural bodies are found to be initially 
stressed. It is of practical importance to study the effect of the initial stresses on the 
waves propagated in these bodies. Using the generalized theory of thermo-elasticity 
proposed by Green and Lindsay (1972), we studied the influence of the initial stress 
on the propagation of Rayleigh waves, in an infinite cylinder under incremental 
thermal stress. We found that the frequency equation of Rayleigh waves contains the 
term involving the initial stress and so the phase velocity of Rayleigh waves changes 
with respect to this initial stress. When the initial stress vanishes, the derived 
frequency equation reduces to the one that obtained in classical generalized thermo- 
elastic case which includes the relaxation time of heat conduction. 

2. Formulation of the Problem 

Consider a homogeneous and isotropic in a generalized thermo-elastic solid taking 
in account the time needed for acceleration of the heat flow (infinite circular cylinder 
of radius R). The axis may be taken along the z-axis, subject to the boundary 
conditions traction free at r = R. Let us suppose that an infinite cylinder under initial 
stress P and initial temperature To. When the temperature of the infinite cylinder is 
changed incremental thermal stresses 7ij together with incremental strain eti are 
produced. Referring the medium to cylindrical polar coordinates (r, 8, z), z being the 
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axis of the cylinder and assume Ue, U,, T are functions of r, z, and t only. The 
dynamic equation of motion in the absence of body forces under initial compression 
P are given (cf. Bolt, 1965) by 

as,, as,, aW 
7 + - + f srz + f -$(ruJ = p 3 

a2 at2 * 

The generalized equation of heat conduction is of the form 

Uv2 = pC,(i’+ 7?+) + 0: (3X + 2/4Tov. (ti + &), (2) 

where 7 represents the time lag needed to establish steady state heat conduction in 
an element of volume when a temperature gradient is suddenly imposed on that 
element. It is called the relaxation time. Also U = (Up 0, UJ is the displacement 
vector, T is the temperature change about the equilibrium temperature To, p is the 
density of the medium, X and p are LamC’s constant and a is the coefficient of 
volume expansion. 

The stress-strain relations with incremental isotropy under initial stress are given 

S 

au, ur 
S&J = (6 + p + P) 7 + (6-/.l+P) z + (6-p+P) z - 

(6-/L++) x 

- $(T+ri), 

(3) 

where 6 =A + p, xs is the isothermal compressibility and the incremental strain 
components and the rotation are given by 



ON A GENERALIZED THERMO-ELASTIC PROBLEM IN AN INFINlTE CYLINDER 215 

au, au, e - au, 
rr dr ’ 

__ e =- eee = ar J zz az ) 

and 

Equation (1) with the help of Equations (3) and (4) may be written as: 

a%, 
=P at2 ’ 

where au, u, au, 
*=ar+-+az r 

(4) 

a2u 
$ $T+7T) = p+, (5) 

e 

(6) 

By Helmholtz’s theorem (cf. Morse and Feshbach, 1953) the displacement U, and 
U, can be written in the form 

uJ!J!-~ 
r Jr a.$ 

u=CQtt r a2 ar’ (7) 

where the two functions 4 and 1c/ are known in the theory of elasticity, by Lame’s 
potential representing irrotational and rotational parts of the displacement vector 
U,respectively. 

Using the Equations (7), the Equations (5) and (6) reduce to 

VQ = 
P 8% 

(G+p+P) at2 + 
Y 

x&G+cC+P) 
U-+7% (8) 

(9) 
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r&= p azll, 
p - (p/2) a9 

(10) 

(11) 

respectively. Similar results were obtained by Dey and Addy (1984) and Dey and 
Chakroborty (1984), while the second reference deriving the constitutive equation for 
Rayleigh waves in elastic medium under initial stress. Since the initial stress has been 
taken in the direction of r only, the velocity of by waves will be different in r and 
z directions. In the absence of P the Equations (g), (9), (lo), and (11) reduce to two 
equations only. Now Equations (8) and (9) represents the compressive wave along the 
P and z directions, respectively, and Equations (10) and (11) represents the shear wave 
along those directions, respectively. 

Equation (8) represents the longitudinal wave in the direction of r with velocity 
Cl = K6 + cc + WPI ‘I2 and Equation (11) represents the velocity of the shear wave 
in the direction of r with velocity c2 = [(p - P/2)/p] ‘12. Equation (9) represents the 
longitudinal wave in the direction of z with velocity ci = [(6 + p) /P]“~ and Equation 
(10) represents the shear wave in the direction of z with velocity 
c2 = [(p + P/2)/p]“2. 

Since we are considering the propagation of Rayleigh waves in direction of r only, 
we shall consider the Equations (8) and (11) only for our discussion. Assuming a 
simple harmonic time-dependent factor exp(iot) of all the quantities and omitting the 
factor exp(iot) throughout we find that Equations (2), (8), and (11) yield a set of 
differential equations for $, rl/, T, of the form 

v2T = 
pc,iw 
- T(l +iwr) + y(3)rK+2’) To V2 4 X iw (1 +iw?-), 

K 
(12) 

v2+ = 
- pw2 

4+ 
yT(1 + iw7) 

6+/.L+P xe@+/A+P)’ 

v211, = z@ *, 
/.&P/2 

we can eliminate T or 4 between (12) and (13) by cross-differentiation to obtain. 

02 pc,iwr ’ 
--~ 

CT 
(1-U’) 

K 1 v2q5 - 
iw3pce7’ 
___ = 0, 

Kc: 

(13) 

(14) 

(15) 

T2TJ 
E= 

P2&& ’ 
y = a(3y+ 2j~), 7’ = 1 + iwr. 
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3. Solution of the Equations 

General solution of (1.5) and (14) are given as in Harinath (1977), then if we introduce 
the inversion of the Fourier transform, which is defined by 

$+-, z, w) = Jrn &I, 29 ~1 Jo (~3 7 drl. (16) 
0 

Substituting (16) into (15) we obtain 

The indicial equation governing (17) is 

f4- “-y 

[ 

. I 

4 
(l+er’) 

1 
f2 + s = 0. 

1 

(17) 

(18) 

Putting .$T = q2 - fj’, R,( tj) I 0, j = I, 2. 
As noted already, the factor exp(iwt) has been omitted in the expression for 4, $, 

T. Moreover, fr, fi are the roots of the Equation (18) given by 

f$f', = ii 2 - 1 F(l+e7) f. [ $ pc&r’ - 1 7 (1 +e7’) 1 2- 

- (1+cTl)]2 - iJ$+]“J. 
Then the solution of (17) is: 

3 (q, Z, W) = A(v) ectlz + B(q) e-t2z 

which leads to: 

$(r, z, t) = $m[A(~)e-~iziiwf +. B(q)e-Ezi+““] Jo (yr) 77 dq. (19) 
0 

Similarly we can obtain the solution for Equation (14) which leads to: 

(20) 
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where 

Also to obtain the temperature deviation T we substitute from (19) into (13) we get 

P$ O" 
T=---- 

s 77' 0 
[A(q) (u2-c: t;T)e-EIZ+iWf + 

+ B (11) (w2-CT C;$)R-Q+~‘T Jo (qr) 11 drl. (21) 

In terms of the potentials 4, II/ the stress components s,.~ and s,.~ are given by: 

S rr = (A+P) v*4 + 2p$ - 2p$ - (A++ g - +(T + @), 
0 

(22) 

S 
a24 a% = 

rt 277---- - +$3 
ad.2 ’ a.$ ar2 * 

Substituting (19), (20), (21) into (22) we get 

s,-LW [ [ 44 (h+P) do W (tf - v2) + T Jl(v) - 

+-I= i [ 
WI) (x+0 rlJo(v) (4: - r2) + : Jl(vl 1 - 

2P12 - 2~71~ Jo(v) + 7 J, (qr) - p(02 - 4 4;) Jo(vr)q e- 52Z+iot dq - 

2~ Ez v* Jl(v) (A+ P) L t3Jo (qr) FJ e-hZ+iwt dq, 
r 1 

s 00 
S rz = 2P [A(q) .$, e-Elz+iwr 

0 

+ B (7) l2 e-hz+iwf Iv2 J,(qr) dq - p 

+ 7j2 Jo(7y) - 12 J (qr)e-E3z+iwf 
r ’ 1 

7 4 (23) 
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4. Frequency Equation 

In this section we obtained the frequencies equations for the boundary conditions 
which specify that the outer surface of the cylinder be trraction free, i.e. 

s, = 0 at r=R (24) 

and subject to either linear radiation adiabatic isothermal heat transfer conditions: 

(25) 

where R is the radius of the cylinder and h is a non-negative constant. In the analysis 
the follows, frequency equations are derived for the linear radiation surface 
condition and the frequency equations corresponding adiabatic and isothermal 
surface conditions deduced as limiting cases. The three boundary conditions given 
by (24) and (25) now suffice to determine the arbitrary functions A(q), B(q), and 
C(q). Using these conditions leads to the following form: 

A (4 qJo ($9 <ET - v2) + ; J1 (rlR) 
I 

- 2~171~ Jo ($9 + 

+ 2P12 -J, ($0 - ,4w2--T t$ Jo(nR)njep~lz + B(r) i(“+pl x 
R 

x 
[ 

G-J, W) <tf - r2) + $ J, ($9 1 - 2~71~ Jo hR) + 

+ ,%I2 7 J, (qR) x p(w2- d: .$f) Jo($?)q 
1 

e-[zz - 

- C(v) (2~ t&2 J1 (qR) - (A+P) $ 3J, (qR)q 
I 

e-@ = 0, 

41) VP t1 dIZ v2 J1 hR)l d 1’ + B 617) PP t2 v2 J1 W)l edEzz - 

- C (q) pi 
[ 

t$ J&R) + v2 Jo (TR) - $ J1 ($0 
1 

e-53z = 0, 

4s) Cm2 - cf @I M Jo ($9 - vJ1 ($91 e- hz + NJ) x 

x (co2 - cf .$$)r] [hJo(qR) -qJ1 (vR)]e-‘zz = 0. (26) 
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In order to obtain non-trival solution the following relation, which is another than 
the frequency equation must be satisfied. 

x (X+P) 

x b/R) - P(w~- c: .$;I J&R) rl 

x <t;: - v2) + $ J; (vR) 1 - 2~71~ J&JR) + 2P12 ~ J,(yR) - p(02 - cf <f x 
R 

x Jo (vR) rl 
1 

(w2 - c: t;> - 
1 

2~ t: r2 J, ($9 - (A + PI F E3 J,Wh 1 7 

vW,,(vR) - rJ1 ($91 2~71~ J, ($9 [4,(w2 - c; t;> - t2 (a2 -c: E$l = 0. 
(27) 

It is extremely difficult to obtain roots of this transcendental equation. However, if 
the radius of the cylinder is assumed to be small that TJR is small compared with one 
(i.e.) the wavelength is large. in comparison with radius of the cylinder. Then 
J,(TJR) I 1, J, (yR) 2: vR/2 substituting these approximations values into the 
frequency equation (27) we find 

x (w2-cf Ef)j /-q4R lpq3 R E$ + @+P) $ - x 

x h - $ [&2-c: 4;) - t2 x (w2 - CT Q) = 0. [ 1 (28) 

This is the frequency equation of a generalized thermo-elastic Rayleigh waves which 
has not yet been studied. It is clear from this frequency equation that the phase 
velocity of Rayleigh wave depends on initial stresses P present in the medium. 

The frequency equation (28) contain the initial stresses, when P = 0, that is when 
there is no initial stresses, we get expressions for the frequency equation which is 
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agree with the result by Nayfeh and Nemat-Nasser (1972), the Equation (28) is 

x 141 (w2-cf 4;) - [2(w2-cf ‘$1 = 0. 
(29) 

This is also the same frequency equation of Rayleigh waves in a generalized thermo- 
elastic in an infinite cylinder as obtained by Locket (1958) or Day and Addy (1979). 
In deducing we assumed a convection condition for the temperature on the boundary 
for thermal insolation h = 0 and Equation (28) reduces to 

- P(W2 - c: 4+l I ( J-c: t:> + l(h+P) ls(E;-112/2)1 - PT3 - 

-p(w2-c;@q] (w’-cf@ + &o~R - (X+p)%F34 
[ 1 

,y x 

x I(, (02 - Cf [;) - t2(w2 - Cf #] = 0. (30) 

If the temperature vanish on the boundary, h - 00 and Equation (28) reduces to 

- t* (w2- c; $31 = 0. (31) 

If we put initial stress P = 0 and h, E vanish (i.e.) when there is no coupling between 
the temperature and the strain fields and we have the frequency equation of (28) 
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which takes the form 

- PV2 K’f + ?&2] $ 
[ 

(X [?j(4”;-?72/2)1 - /q3 - 

x [t;; (cd2-cf E’$) - &2-c; t;‘f>l = 0. (32) 

where 

iw pc,r’ 112 
-~ 

11 Kcf . 

It is clear that Equation (32) is the familiar frequency equation of Rayleigh wave in 
a generalized thermo-elastic in an infinite cylinder in classical case as obtained by Dey 
and Addy (1979) but in half-space and Tomita and Shindo (1979) but in the magento- 
thermo-elastic solids, we can say that by using the generalized theory of thermo- 
elasticity which takes into account the time needed for acceleration of the heat flow. 
By introducing the relaxation time in the heat conduction equation, the attenuation 
constant for a simple harmonic wave in an infinite elastic cylinder alter by very small 
coupled theory of thermo-elasticity. 

5. Conclusions 

The general form of the wave motion for a generalized thermo-elastic solid under 
initial stress can be separated into four equations by using Lame potential (7); 
considering Equations (8) and (1 1), we have seen that they have the basic solutions 
to the generalized thermo-elastic equation of motion for an infinite cylinder. As a 
results of our discussion to the frequency equation (which contain initial stress), we 
noticed that when the initial stress vanish it is the same frequency equation of 
Rayleigh waves in a generalized thermo-elastic medium. Also with h = 0, P = 0, and 
E = 0 we obtain the familiar frequency equation of Rayleigh waves in a generalized 
thermo-elastic in classical case. 
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