
Machine Learning, 5, 165-196 (1990)
© 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Nested Differences of Intersection-Closed
Concept Classes

DAVID HELMBOLD (DPH@SATURN.UCSC.EDU)
Board of Studies in Computer and Information Sciences, University of California at Santa Cruz,
Santa Cruz, CA 95064

ROBERT SLOAN (RSLOA N@ENDOR. HARVARD. EDU)
Aiken Computation Lab., Harvard University, Cambridge, MA 02138

MANFRED K. WARMUTH (MANFRED@SATURN.UCSC.EDU)
Board of Studies in Computer and Information Sciences, University of California at Santa Cruz,
Santa Cruz, CA 95064

Abstract. This paper introduces a new framework for constructing learning algorithms. Our methods involve
master algorithms which use learning algorithms for intersection-closed concept classes as subroutines. For ex-
ample, we give a master algorithm capable of learning any concept class whose members can be expressed as
nested differences (for example, Cl - (c2 - (c3 - (Ca - c5)))) of concepts from an intersection-closed class.
We show that our algorithms are optimal or nearly optimal with respect to several different criteria. These criteria
include: the number of examples needed to produce a good hypothesis with high confidence, the worst case total
number of mistakes made, and the expected number of mistakes made in the first t trials.

Keywords. concept learning, mistake bounds, exception handling, pac learning, nested difference, intersection-
closed.

1. Introduction

We are interested in efficient algorithms for learning concepts from examples. Formally,
concepts are subsets of some instance domain X from which instances are drawn and a
concept class is a subset of 2 x, the power set of X. The instances are labeled consistently
with a fixed target concept t which is in the concept class C to be learned; that is, an in-
stance is labeled " + " if it lies in the target concept and " - " otherwise. Labeled instances
are called examples.

There has been a surge of interest in learning from examples sparked by the introduction
of a model of learning by Valiant (1984). This model accounts for both the performance
of the learning algorithm as well as the computational resources and the number of exam-
pies used. Even though some practical learning algorithms have been found (Valiant, 1984;
Rivest, 1987; Shvaytser, 1988; Littlestone, 1988; Blumer, Ehrenfeucht, Haussler & Warmuth,
1989; Haussler, 1989), and learnability of concept classes has been characterized (Blumer
et al., 1989) using the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis,
1971), no practical algorithms have been found for many natural classes, such as DNFs,
DFAs, and general decision trees. Recently strong evidence has been found that classes
such as boolean formulae and DFAs are actually not efficiently learnable (Pitt and Warmuth,
1990b; Kearns and Valiant, 1989; Pitt and Warmuth, 1990a).

166 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

In this paper we give various schemes for composing known efficient learning algorithms
to create provably efficient learning algorithms for more complicated problems. Thus we
give c o n s t r u c t i v e results for learning new classes of concepts for which efficient learning
algorithms were not previously known. The composition technique consists of new master
algorithms that use the algorithms for the "simpler" classes as subroutines. The master
algorithms learn nontrivially more complicated classes which can be defined in terms of
the simpler classes. The master algorithms do not need to know the specific simpler classes,
since they only pass information among the various algorithms for the simpler classes.

The simple classes considered here are usually intersection-closed concept classes and
the master algorithms learn various compositions of intersection-closed concept classes.
(A concept class is i n t e r s e c t i o n - c l o s e d if for any finite set contained in some concept the
intersection of all concepts containing the finite set is also a concept in the class.) There
is a canonical algorithm for learning intersection-closed classes which we call here the
C l o s u r e algorithm: The hypothesis of this algorithm is always the smallest concept con-
taining all of the positive examples (POS) seen so far (Natarajan, 1987). We denote this
concept as CLOS(POS). This paper presents new algorithms, which use the Closure
algorithm as a subroutine, for learning compositions of intersection-closed concept classes.

The simplest composition scheme we consider learns the concept class DIFF(C), which
consists of all concepts of the form cx - (c 2 - (c 3 (Cp_ 1 -- Cp) "'")), where all
ci are in C, and p is a positive integer called the d e p t h of the concept. It is easy to see
that an instance x is in the concept Ca - (c2 - (c3 (Cp-1 - Cp) "'")) if and only
if the lowest indexed ci that does not contain x has an even index (assume for convenience
that Cp+l = 0).

A more involved scheme efficiently learns the class DIFF(C1 13 C2 U "" 13 Cs); that
is, each ci may be in any Cj, for 1 < j < s. This scheme assumes that each class Cj is
interesection-closed and that their Closure algorithms can be implemented efficiently.

Examples of intersection-closed classes with efficient Closure algorithms include or-
thogonal rectangles in R ~, monomials (i.e., orthogonal sub-rectangles of the boolean hyper-
cube), vector sub-spaces of R ~ (Shvaytser, 1988), and so forth. In Figures 1 and 2 we give
examples of DIFF(C), when C is the class of orthogonal rectangles in R 2. In this case
DIFF(C) contains staircase type objects and some restricted unions of orthogonal rectangles.
I f C is the class of initial segments on the real line (orthogonal rectangles in dimension
one with the same left endpoint), then DIFF(C) is the class of unions of intervals. For
finite domains, it has been shown (Natarajan, 1987) that a concept class is learnable with
one-sided error (i.e., the error with respect to the negative distribution is zero) 1 if and
only if it is intersection closed and the VC dimension of the class grows polynomially in
the relevant parameters.

If a concept class B is not intersection closed one can always embed it into a larger class
C that is. However, the VC dimension of C may be much larger than the VC dimension
of the original class B. The Closure algorithm learns an intersection-closed class C from
positive examples only. Note that DIFF(C) is not necessarily intersection-closed, and our
master algorithms for learning DIFF(C) will use both positive and negative examples.

One can generalize the composition scheme for DIFF(C) by allowing the innermost con-
cept, Cp, to be in an a r b i t r a r y polynomially learnable class B (the learning algorithm for
B may use both positive and negative examples). Let DIFF(C, B) be all concepts of the

LEARNING NESTED DIFFERENCES 167

c l - c2

Figure 1. Two concepts in DIFF(Orthogonal Rectangles).

cI - (c2 - c3)

Figure 2. Another two concepts in DIFF(Orthogonal Rectangles).

form Cl - (c2 - (c3 (c p _ 1 - b) "-.)) where the c j are in the intersection-closed
class C and b is in B. T h e c j a r e in some sense a filter formed with special concepts, while
b is allowed to be more general.

Concepts in DIFF(C) and DIFF(C, B) of depth two were previously shown to be learn-
able in (Kearns, Li, Pitt and Valiant, 1987). In this paper, we consider the case of arbitrary
depth. Observe the following closure properties: for two intersection-closed classes C1 and
C2, the class C1 A C2 = {c~ t3 c2 : c~ ~ C~ and c2 ~ C2} is intersection closed as well;
the same holds for the class C1 f) C2 = {c : c fi Cl and c E C2}, and dual results hold
if intersection is replaced by union. Note also that C is intersection closed if and only if
C, which consists of the complements of the concepts of C, is "union closed."

In (Rivest, 1987) an algorithm is given for learning decision lists, which include nested
differences of constant size monomials. In this paper we learn nested differences of
intersection-closed classes by exploiting the combinatorial properties of intersection

168 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

closedness. Since the class of monomials (of arbitrary size) is intersection closed, this leads
to a learning algorithm for the nested differences of monomials. Constant size monomials
are not intersection closed; however, this class of monomials is "simple" in the sense that
it contains few concepts. The decision list algorithm performs an exhaustive search, thus
relying on the smallness of its simple class.

We have developed two types of master algorithms, one that remembers all examples
seen (the Total Recall algorithm), and one that remembers a number of examples bounded
by the VC dimension (the Space Efficient algorithm).

We recently discovered that Steven Salzberg (1988) has independently developed a space
efficient algorithm similar to ours for DIFF(C) (where C consists of orthogonal rectangles
in R n) as a subroutine in his algorithm for predicting, among other things, breast cancer
data. In some cases, his algorithms outperform the best previously known prediction
algorithms. However, those results are only empirical. The crux of the type of research
presented here is that using the methodology of computational learning theory (Valiant,
1984; Haussler, Littlestone & Warmuth, 1988) (which is rooted in the earlier works of
Vapnik and others in the area of pattern recognition (Vapnik and Chervonenkis, 1971; Vapnik,
1982)), we can give efficient algorithms and prove their optimality.

In a companion paper (Helmbold, Sloan & Warmuth, 1989a) we present an interesting
application of our methods. We give a time and space efficient implementation of the Closure
algorithm for a nontrivial intersection-closed class: the class C of subsets of Z k that are
closed under addition and subtraction. In algebraic terms C consists of all submodules 2
of the free Z-module of rank k. The space efficient Closure algorithm for submodules can
be used as a subroutine in the space efficient master algorithm, leading to learning algorithms
for nested differences of submodules.

2. The inclusion-exclusion algorithms

In this section we present the Total Recall and Space Efficient algorithms for learning
DIFF(C), nested differences of an intersection-closed class C. The first algorithm assumes
total recall; that is, sufficient space is available to store all of the examples. Then we show
how the algorithm can be modified for space efficiency (so that only a few examples are
memorized).

A batch learning algorithm takes as input a set of labeled training examples and pro-
duces, as output, a hypothesis. The examples are labeled according to some unknown target
concept from the concept class to be learned. Intuitively, the hypothesis is supposed to
approximate the hidden target concept. (Note that the hypothesis is not required to be in
the concept class to be learned.) An on-line learning algorithm interactively participates
in a series of trials. On each trial, the algorithm gets an unlabeled instance and predicts
what its label is. After predicting, the on-line algorithm is informed of the instance's true
label. A mistake is a trial where the on-line algorithm makes an incorrect prediction. The
distinction between batch and on-line algorithms is blurred by the fact that a batch algorithm
can be used in an on-line setting and vice versa. To use a batch algorithm in an on-line
setting, give it all the examples previously seen and predict with the resulting hypothesis
on the next trial. An on-line algorithm can be run in batch mode by feeding it all of the

LEARNING NESTED DIFFERENCES 169

training examples (ignoring its predictions) and using as its hypothesis the set of instances
where, if seen on the next trial, the algorithm would predict "+".

We present the Total Recall algorithm as a batch algorithm and the Space Efficient
algorithm as an on-line algorithm. From the above discussion it is easy to convert either
algorithm to the other setting.

Before describing our two basic algorithms we give formal definitions of closure and
intersection closed.

DEFINITION. For any concept class C and any subset S of the domain the closure o f S with
respect to C, denoted by CLOS(S), is the set f3 {c : c fi C and S ~_ c}. A concept class
C is intersection closed 3 if C contains at least two concepts and whenever S is a finite subset
of some concept in C then CLOS(S) is a concept of C.

Note that if C is intersection closed, then CLOS(0) (i.e., the intersection of all concepts
in C) is a member of C.

Description o f the Total Recall algorithm: The algorithm first computes the closure of
the positive examples. In general, this closure may contain some negative examples. These
exceptions must be subtracted out of the hypothesis. The algorithm now focuses on those
examples contained in the closure. By flipping their labels and computing the closure of
the resulting positive examples (which were the original exceptions), the algorithm finds
a suitable concept to subtract off. This concept may contain further exceptions--examples
that were originally positive. However, by iterating this procedure, the Total Recall algorithm
creates a nested difference consistent with the examples.

A detailed description of the Total Recall algorithm is given in Figure 3. For any
intersection-closed class C it learns DIFF(C) assuming an efficient implementation of the
Closure algorithm. The function POS takes a set of examples and returns those which are
labeled positive. The function FLIP takes a set of examples and returns a new set of ex-
amples containing the same instances but with the labels flipped (i.e., "+" examples become
" - " examples and vice versa).

The concept h = h~ - (hE (hp-1 - hp) "') is the hypothesis of the algorithm.
If C contains the empty concept, then one possible hypothesis of depth one is h = hi =
0. For syntactic purposes, we set hp+ 1 to 0 (even if C does not contain the empty con-
cept), ensuring that for any instance there is always s o m e h i which does not contain the
instance.

When given a new instance x, the algorithm predicts its label according to h as follows
(see Figure 4). Let l be the least index such that ht does not contain x. If l is even then
h(x) = +, and if I is odd then h(x) = - . In the on-line setting, the example is added
to E X 1 e v e n if the prediction was correct, and the Total Recall algorithm is executed to
generate a new hypothesis 4 This ensures that hypotheses produced by the Total Recall
algorithm are consistent with all the examples that have been seen.

The Space Efficient algorithm differs from the Total Recall algorithm in that it keeps
only a minimal number of instances for each h i.

170 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

Algor i thm Total Recall
Inputs: Examples of the target concept.
/* Computes hypothesis h and depth p. * /
EXx := all examples; i := 0;
repeat

increment i;
hi := CLOS(POS(EX~));
EX/+ 1 : = F L I P (h i N EX~);
/* "FLIP" flips the labels of the examples */

unti l POS(EX/+I) = 0;
p := i; hp+l := O;
h : = - (h , (h p _ l -

Figure 3. Total Recall algorithm.

Algor i thm Predict
Inputs: Hypothesis h and instance z.
/* Computes whether z is in set represented by h. * /
I := 0;
repea t l := l + 1 until x ~ h~;
If I is even then ou tpu t +;

else output - ;

Figure 4. Prediction algorithm.

DEHNITION. Let S be a set of instances contained in some concept of C. A spanning set
of S (with respect to some intersection-closed concept class C) is any S' c_ S for which
CLOS(S ~) = CLOS(S).

Description o f the Space Eff icient algorithm: This algorithm (for a detailed description
see Figure 5) represents each h i by a minimal spanning set, Si, and the hypothesis
h = hi - (h2 - (hp_l hp)) by a sequence of minimal spanning sets, Sl Sp.
Predicting is done as in the Total Recall algorithm. However, if there was a mistake made
on an instance x and l is the least index such that x ~ h/, then St is updated to a minimal
spanning set of St O {x} and thus h is modified by changing hi to CLOS(S1 13 {x}). An
illustration of the Space Efficient algorithm with domain R2 and concept class DIFF(orthog-
onal rectangles) is given in Figures 6 and 7.

One would expect the Total Recall algorithm to perform well, since it produces a hypothesis
in DIFF(C) of minimal depth that is consistent with the training examples. Because the

LEARNING NESTED DIFFERENCES 171

A l g o r i t h m Space Efficient
I n p u t s : C u r r e n t h y p o t h e s i s h, c u r r e n t d e p t h p, a n d i n s t a n c e x.
/* On- l ine a l g o r i t h m * /
I f f i rs t ca l l t h e n

in i t i a l i ze p : = 1; 81 : = ¢; h i : = CLOS(O); h2 : = 0;
Ca l l P r e d i c t (h , x);
If m i s t a k e m a d e t h e n

l : = O;
r e p e a t 1 : = l + 1 un t i l x ¢ h~;

St : = m i n i m a l s p a n n i n g set(S~ U {x});
h, := CLOS(S,);
if I > p then p := l; h~+1 := 0;

Figure 5. Space Efficient algorithm.

Figure 6 The minimal spanning sets stored by the Space Efficient algorithm and the corresponding hypothesis.
The prediction for instance X is positive.

Figure 7. If a mistake was made on instance X, then the Space Efficient algorithm's new hypothesis is shown
above. Note that the algorithm may have previously seen "+" points in region A. If it sees one of these points
again, it will predict incorrectly.

172 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

hypothesis of the Space Efficient algorithm may not be consistent with the training ex-
amples (see Figures 6 and 7), the goodness of its performance is less clear. The remainder
of the paper is devoted to proving performance bounds for these and related algorithms.

3. Performance criteria

We begin by enumerating several criteria by which we can judge how well a learning
algorithm performs. In this enumeration each criteria is described informally. The defini-
tions of the criteria are then formalized in the following subsections.

1. Bounds on the total number of mistakes made in any sequence of t trials, where an adver-
sary chooses the examples and their order (Litflestone, 1988).

2. Bounds on the probability of making a mistake at trial t in a sequence of t trials, where
the t instances are chosen by an adversary, but their order is picked at random from
among the t! possible permutations (Haussler et al. 1988).

3. Bounds on the probability of making a mistake at trial t in a sequence of t trials, where
an adversary chooses a probability distribution over the instance domain, and the t in-
stances are randomly drawn according to that distribution (Haussler et al. 1988).

4. Bounds on the expected total number of mistakes made in any sequence of t trials, where
the examples are chosen by an adversary, but their order is picked at random from among
the t! possible permutations.

5. Bounds on the expected total number of mistakes made in a sequence of t trials where
an adversary chooses a probability distribution over the instance domain, and the t in-
stances are randomly drawn according to that distribution.

6. Bounds on the number of randomly drawn examples required for a batch algorithm to
almost certainly produce a good hypothesis (Valiant, 1984).

The first five criteria, and indeed all mistake-based criteria, only make sense for on-line
learning algorithms, while the last criteria is applicable only to batch algorithms.

We show in the next section that the Total Recall algorithm is optimal for criteria 2 through
6. Furthermore, if the Closure algorithm is optimal, then both the Total Recall and the
Space Efficient algorithms are optimal under the first criteria. All of this paper's results
are summarized in the conclusions.

3.L Worst case mistake bounds

Our first performance criterion deals with the maximum number of mistakes made by the
learning algorithm on any sequence of trials and was introduced by Littlestone (Littlestone,
1988).

For algorithm ~ and target concept c, define Me(c) to be the maximum number of
mistakes made by algorithm 6g on any possible sequence of trials where the instances are
labeled according to c. For any concept class C, define the worst case mistake bound of
6t, Me(C) = SUpc~cMe(c). If the context makes it clear which algorithm's performance
is being bounded, a "." may be substituted for the subscript "t~".

LEARNING NESTED DIFFERENCES 173

3.2. Instantaneous mistake bounds

The following two instantaneous mistake bound measures were introduced by Haussler,
Littlestone, and Warmuth (1988). Here they are called "instantaneous" because they bound
the probability of a mistake on single trials.

The instantaneous permutation mistake bound for algorithm (~ and concept c is written
l~Ie(c)(t). It is the supremum, over all multi-sets containing t labeled examples of con-
cept c, of the probability that 6t makes a mistake on trial t where each of the t! different
orders in which the instances could be presented to 6~ is equally likely.

The instantaneous sample mistake bound for algorithm (~ on concept c, written
MIa(c)(t), is the supremum over all probability distributions P on the domain of the prob-
ability that algorithm (~ makes a mistake at trial t, when given t labeled examples of c
which are generated by drawing independently at random from the instance domain accord-
ing to P.

We generalize f ~ m concepts to concept classes in the same way as for worst case mistake
bounds, so that MIt~(C)(t) = SUpc~cMI(~(c)(t), etc.

3.3. Expected cumulative mistake bounds

A simple variation of the instantaneous mistake bounds in (Haussler et al. 1988) is bound-
ing the expected total number of mistakes made on a sequence of t trials rather than simply
the probability of a mistake on the last trial.

We define the cumulative permutation mistake bound for algorithm ~ and concept c,
written MTe(c)(t), as the supremum over all multi-sets of t examples labeled consistently
with concept c of the expected total number of mistakes made by algorithm ~, where each
of the t! different orders in which the examples could be presented to 6g is equally likely.

The cumulative sample mistake bound for algorithm 6t and concept c, written MTe(c)(t),
is the supremum, over all probability distributions P on the domain, of the expected total
number of mistakes made by algorithm ~ over t trials generated by drawing independently
at random (with respect to P) examples of c from the instance domain.

Again, we generalize from concepts to concept classes in the same way as for worst case
mistake bounds. Although we are mainly interested in instantaneous and cumulative sample
mistake bounds, the corresponding permutation mistake bounds are frequently easier to
estimate. By the following lemma of (Haussler et al. 1988), the permutation mistake bounds
are an upper limit on the sample mistake bounds.

LEMMA 1. For any on-line learning algorithm (~:

M~Ia(C)(t) _ I~I~(C)(t);

M~T~(C)(t) _> 1VIT~(C)(t).

It is not hard to see that several other relationships between the mistake bounds also hold,
including:

174 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

Ma(C) > MTa(C)(0,

l<_i<_t

Z
l ~ i ~ t

I~I~(C)(i) _> M--~Ta(C)(t), and

I~/llt~(C)(i) >_ I~tTa(C)(t).

3.4. PAC style bounds

The final criteria we consider is appropriate for batch learning algorithms and is due to
Valiant (Valiant, 1984). This criteria deals with the minimum number of random examples
needed by the learning algorithm in order to "almost always" produce a hypothesis "very
close" to the target concept.

Let P be a probability distribution over the instance domain. The error of a hypothesis
is the probability (with respect to P) of all instances in the symmetric difference between
the hypothesis and the target concept. Given a batch learning algorithm ~ and probability
distribution P, we define the function ta(c, e, 6, P) as the smallest number such that after
seeing te(c, ~, 6, P) examples drawn independently at random and labeled according to
c, 6t outputs, with probability at least 1 - 6, a hypothesis whose error (with respect to
P) is at most e. The function te(C, e, 6) is the supremum over all c E C and all probability
distributions P of ta(c, e, 6, P).

Note that the above definitions do not require that the hypotheses of algorithm 6t are
members of the class being learned. However, the hypotheses of most of our algorithms
are, in fact, members of C. We explicitly point out those algorithms using hypotheses
which are not members of the concept class.

4. The performance of the Total Recall and the Space Efficient algorithms

The goal of this section is to evaluate both algorithms with the performance criteria intro-
duced in the previous section. A very important combinatorial parameter used to estimate
the complexity of learning a concept class is its Vapnik-Chervonenkis dimension (see
(Vapnik and Chervonenkis, 1971; Haussler and Welzl, 1987; Pearl, 1978; Blumer et al.
1989)). For example, here it will help us bound the number of instances stored by the
Space Efficient algorithm.

DEFINITION. A set of instances, S, is shattered (by the concept class C) if for each subset
S' _ S, there is a concept c E C which contains all of S' , but none of the instances in
S - S'. The Vapnik-Chervonenkis dimension of a concept class, denoted by VCdim(C),
is the highest cardinality such that there exists a set of that cardinality shattered by the
concept class.

LEARNING NESTED DIFFERENCES 175

THEOREM 1. Given an intersection-closed concept class C and subset S of the domain, every
minimal spanning set of S is shattered by C.

P r o o f Let S ' be a minimal spanning set of S. Since C is intersection closed, it suffices
to show that some concept contains all of S', and for each x E S', some concept of C con-
tains S ' - {x} but not x. The closure of S ' is a concept in C containing S'. Since S ' is
minimal, i fx E S ' then CLOS(S ~) ~ CLOS(S ' - {x}). Therefore, the closure o f S ' - {x}
contains S ' - {x} but not x. []

COROLLARY 1. All minimal spanning sets of a set S (with respect to C) have size at most
VCdim(C).

Theorem 1 or statements equivalent to it have appeared in several places, including (Natara-
jan, 1987; Boucheron, 1988). Note that any shattered set is its own minimal spanning set.

An important fact about our algorithms is that in some sense they converge to the target
concept from below. This idea is made more precise in the following lemma.

LEMMA 2. When given a set of examples consistent with some c = cl - (c2 (C p - - 1

- cp) " ') in DIFF(C), both the Total Recall and Space Efficient algorithms produce a
hypothesis h = hi -- (h2 (hp,_ 1 - hp,) "") where p ' < p and for all 1 _< i _<
p', ci D_ hi. In addition, the Total Recall algorithm's hypothesis is consistent with the set
of examples.

Proo f By induction on p ' for the Total Recall algorithm and by induction on the number
of mistakes made by the Space Efficient algorithm. []

Often we will want to focus our attention on concepts in DIFF(C) of restricted depth.
To meet this need we define the concept class DIFF-<P(C) (for p _> 1) as the set of all
concepts in DIFF(C) whose depth is between 1 and p. The concept class DIFF=P(C) is
defined analogously.

It is easy to see that FCdim(DIFF=e(C)) = p • FCdim(C) for at least some concept
classes (for example, orthogonal rectangles). The following lemma shows that this is also
a general upper bound on the VC dimension of DIFF-<P(C).

LEMMA 3. I f C is intersection closed s and p -> 1, then

VCdim(DIFF=P(C)) <_ VCdim(DIFF<-P(C)) <_ p VCdim(C).

P r o o f The first inequality is trivial since DIFF=P(C) _ DIFF-~P(C). We prove the sec-
ond inequality by induction on p. Let d = VCdim(C). The lemma trivially holds when
p = 1 since by definition DIFF---I(c) = DIFF=I(C) = C.

Assume to the contrary that DIFF-P(C) shatters at most p d elements, but DIFF -<p+ 1(C)
shatters a set S of size (p + 1)d + 1. This means that for every assignment of labels
to instances in S, there is a concept Cl - (c2 - (c3 (cl-1 - Cl) "")) ~ DIFF~P+I(C)
(where l _< p + 1) agreeing with the label assignment.

176 D. H E L M B O L D , R. SLOAN, A N D M . K . W A R M U T H

Let S ' be a minimal spanning set of S with respect to C. By Theorem 1, 1S'] < d. Con-
sider a labeling of the instances in S where every instance in S ' is labeled positive. I f a
concept c = c~ - (c2 - (c3 (Cl-1 - Cl) "")) fi DIFF---P+I(C) is consistent with
this labeling, then ca must contain all of S ' (and thus all of S). Therefore, for S to be shat-
tered, the remaining ci's (which form concepts in DIFF-P(C)) must be capable of shat-
tering the remaining pd + 1 instances in S - S'; contradiction. []

Observe that (a) the hypothesis of the Total Recall algorithm is always consistent with
the examples seen and (b) the hypothesis produced does not depend on the order in which
the examples are seen. We can use (b) to obtain estimates of the permutation and sample
mistake bounds described in Sections 3.3 and 3.2. Note that the Space Efficient algorithm
satisfies neither (a) nor (b); however, we are still able to prove a worst case mistake bound
for the Space Efficient algorithm (deferred to later) expressed as a function of the worst
case mistake bound of the Closure algorithm for C.

Since (a) holds for the Total Recall algorithm, we can apply the following result of (Blamer
et al. 1989):

THEOREM 2. Let B be a concept class over some instance domain X, and let P be a
fixed well-behaved 6 probability distribution on X. Then for a sample S of size at least

~4 48VCdim(B) ? ~
max - log2 8 ' log2 ,

C ~

drawn independently at random according to P, and labeled consistently with some target
concept c E B, the probability that all b E B that are consistent with S have error at most
e is at least 1 - 8. This holds for any e and 8 between 0 and 1.

Using our notation, the above theorem shows that for any algorithm 6~ which produces
consistent hypotheses from (B,

~ 4 4 8VCdim(B) log2 13 t~(B, e, 8) _< max - l o g 2 , - - .
8 C E

Applying this result with B = DIFF-<P(C) together with the fact that the Total Recall
algorithm produces a consistent hypothesis in DIFF-P(C) (Lemma 2) leads to the
following:

THEOREM 3. For the Total Recall algorithm,

t(DIFF<-P(C)'e'6) <max ~41°g2~'8pVCdirn(B) l°g2?~

To bound both the probability of making a prediction mistake on the t-th instance and the
expected total number of mistakes on the first t instances, we use the methodology developed

L E A R N I N G NESTED DIFFERENCES 177

in (Haussler et al. 1988), which bounds the probabil i ty of a mistake at trial t by averaging
over all permutations of the input (Lemma 1).

DEFINITION. Let S be a sequence of t examples, x E S, and 6t an on-line algorithm. The
instance x is a corner of S (with respect to 6~) i f there is a permutation of S where both
x occurs last and (~ makes a mistake on instance x when given the permuted sequence
of examples.

The following lemma relates the maximum number of corners with respect to some algo-
ri thm to that algorithm's instantaneous permutation mistake bound.

LEMMA 4. Let ~ be an on-line learning algorithm for concept class C, and n be the max-
imum number of corners (with respect to 60 in any sequence of t examples labeled con-
sistently with some c fi C. Then

-~- n
MIa(C)(t) _< - .

t

Proof . Let S be any multi-set of t examples labeled consistently with some concept in C.
Consider the t! permutations of S. Each element of S occurs last in exactly (t - 1)! of
the permutations. Since S has at most n corners, there are at most n(t - 1)! permutations
of S where 6t makes a mistake on the t-th trial. Therefore,

n(t-1)I _ n []

MIa(C)(t) -< tl t "

Note that an example x is a corner of S with respect to the Closure algori thm if and
only i f x fi P O S (S) and x ~ C L O S (P O S (S) - {x}). Unless stated otherwise, corners are
with respect to the closure algorithm. The corners of a set are in some sense the extremal
instances of the set. Notice that some minimal spanning sets of S may contain instances
that are not comers of S, and that the closure o f the comers of S may not be equal to
S (see Figure 8 for examples). However , the following lemma points out an important
relationship between minimal spanning sets and corners.

LEMMA 5. Let S be a (multi-)set of positive instances in the domain. The set of corners
o f S (with respect to the Closure algorithm) is the intersection of all the (minimal) span-
ning sets of S.

Proo f . Let x be a corner of S. Since x is not in the closure of S - {x}, x must be in every
S ' _~ S for which CLOS(S ') = CLOS(S). Therefore x is in all minimal spanning sets of S.
Conversely, i f x is in every minimal spanning set of S, then no subset of S - {x} (includ-
ing S - {x} itself) can have the same closure as S. Hence x must be a comer . []

178 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

be

~f

d

w

a b

Figure R Only points c and d are corners. Both {a, c, d, e} and {a, c, d, f} are among the spanning sets.

It follows from Corollary 1 and Lemma 5 that, when S is a set of positive examples
of a concept, the number of corners of S (with respect to the Closure algorithm) is no
greater than the VC dimension of the concept class. The canonical Closure algorithm for
learning intersection closed concept classes makes a mistake on the t-th instance, xt, only
when xt is one of the corners of the set of all positive examples seen in the first t trials.
By Lemma 4, the probability that the Closure algorithm makes a mistake on the t-th trial
is at most

of corners VCdim(C) __<
t t

and the expected total number of mistakes in the first t trials is thus bounded by
VCdim(C) • Ht (where H t is the t-th harmonic number).

THEOREM 4. For the Total Recall algorithm:

1. M I.(DIFF-P(C))(t) <_ p VCdim(C)/t,

2. MT.(DIFF-<P(C))(t) <_ p VCdim(C)Ht,
3. MI.(DIFF-<P(C))(t) <_ p VCdim(C)/t, and
4. /VIT.(DIFF---P(C))(t) <_ p VCdim(C)H r

Proof We prove the first part of the theorem here. The other statements follow from the
relationships between performance measures in and following Lemma 1. The Total Recall
algorithm for learning DIFF(C) makes a mistake only when the Closure algorithm makes
a mistake learning some ci at level i. I f the Total Recall algorithm makes a mistake on
xt, then xt is a comer (with respect to the Closure algorithm for C) of some EX/. Therefore,
given a sequence of t examples labeled consistently with some concept in DIFF-<P(C), the
number of corners with respect to the Total Recall algorithm is at most p VCdim(C). By
Lemma 4, MI.(DIFF-<P(C))(t) <_ p VCdim(C)/t. []

N o t e that if the Closure algorithm is used when learning an intersection-closed class,
no mistakes are made on the negative examples. Furthermore, negative examples do not
cause changes to the hypothesis. Each mistake is caused by a positive example which

LEARNING NESTED DIFFERENCES 179

increases the closure of all positive examples seen. Thus MCLOS(C) is the maximum
number of mistakes made by the Closure algorithm on any sequence o f pos i t i v e instances
of c.

Using McLos(C) we can obtain a worst case bound on the number of mistakes made
by our master algorithms.

THEOREM 5. For both the Total Recall and the Space Efficient algorithm, M.(DIFF-<P(C))
_< pMcLos(C). The Space Efficient algorithm stores at most p VCdim(C) examples when
the target concept is in DIFF~P(C).

P r o o f Both master algorithms apply the Closure algorithm to a stream of positive examples
at each level. The master algorithms make a mistake only when one of the Closure algorithms
make an incorrect prediction, triggering an update to (at least) that closure. The Closure
algorithm makes at most McLos(C) mistakes on any sequence of positive examples (con-
mined in a concept of C), and, by Lemma 2, at mostp levels are initiated when the target
concept is in DIFF-<P(C). Therefore our master algorithms make at most pMcLos(C)
mistakes.

For the second part, observe that the Space Efficient algorithm stores a minimal span-
ning set for each level of the hypothesis. By Lemma 2, the number of levels is at most
p when learning a concept in DIFF-<P(C). Since, by Corollary 1, each minimal spanning
set has size at most V C d i m (C) , the second part of the theorem follows. []

5. Extensions of the inclusion/exclusion algorithms

In this section we extend our approach for learning DIFF(C) to two related nested dif-
ference classes defined below.

DEFINITION. Let the concept classes Cj, for 1 _< j _ s, be classes over the same domain
that are intersection closed. Then the class DIFF(U}=ICj) consists of all concepts of the
form c = Cl - (c2 - (c3 (cp_ 1 - cp) "")) where each c i is in one of the s classes Cj.

The learning algorithms for DIFF(('Jj=l Cj) will make use of the closure algorithms for
the Cj's. However, a difficulty arises from the fact that the learning algorithms need to
determine which of the s Closure algorithms to apply at each level.

The second nested class we consider is defined in terms of an intersection-closed class
and a class that is not necessarily intersection-closed.

DEFINITION. Let C be an intersection-closed class and let B be any learnable class over
the same domain. Then the class DIFF(C, B) consists of all concepts of the form Cl -
(c2 - (c3 (cp-1 - b) "")), where the ci are concepts in C and b is a concept of B.

Again we use superscripts after DIFF to denote depth restrictions on the concepts. For
example, the class DIFF <-P(C, B) consists of all concepts of DIFF(C, B) of depth between
1 and p.

180 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

The learning algorithms for DIFF(C, B) will use the Closure algorithm for C and a given
learning algorithm 63 for B as subroutines. We will present several learning algorithms
for DIFF(C, B) that make different assumptions about 63. These assumptions include: 63
has a good instantaneous permutation mistake bound; the worst case mistake bound of 63
is bounded; 63 always produces a consistent hypothesis. Note that for various models of
learning, a concept class is polynomially learnable if and only if there exists a polynomial
time algorithm for finding a consistent hypothesis for a given sample (Pitt and Valiant,
1988; Haussler et al. 1990; Board and Pitt, 1990). Thus, if the Closure algorithm can be
implemented in polynomial time, then, for these models, DIFF(C, B) is polynomially learn-
able if and only if the class B is polynomially learnable.

The ideas presented in the next two subsections can be used to solve other problems
as well. For example, by combining the analysis of the DIFF(U~=ICj) case with that for
DIFF(C, B), we could design algorithms for learning concepts of the form c - cl - (c2

- (c3 (Cp-1 - b) .-.)) where each ci, 1 < i < p - 1, is in some intersection-
closed Cj, 1 <_ j <_ s, and b is in some concept class B for which there exist a learning
algorithm 63 fulfilling the appropriate assumptions.

5.1. Learning algorithms for DIFF(Uff=lCj)

As mentioned above, when learning DIFF(U}=ICj) the master algorithms need to decide
which Closure algorithm to apply at each level. In the case where each class Cj contains
the entire domain, which we call the universal concept, we can bypass this dilemma by
applying all s closure algorithms at each level. In the resulting hypothesis, h = hi - (h2

- (h3 (hp-l - hp) ---)), each h i is set to the intersection of all s closures at that
level. Instead of learning DIFF(U}=ICj), we actually learn a related class, DIFF(A]=ICj).

We first define DIFF(A~=aCj) and then develop the relationship between DIFF(A~=~Cj)
and DIFF(U}= 1Cj). The resulting algorithm for DIFF(U}=~ Cj) uses hypotheses from the
class DIFF(A}=ICj) and assumes that each Cj contains the universal concept.

DEFINITION. Let Cj, for 1 < j _ s, be concept classes over the same domain. Then A}=IC j
denotes the concept class { O}=lC/ : cj E Cj}.

The closure with respect to the class Cj (for 1 _< j _< s) is denoted by CLOS ~, and
the closure with respect to A}=ICj by CLOS (^).

LEMMA 6. If each class Cj, for 1 __. j _< s, is intersection closed, then A}-IC j is also in-
tersection closed, and for every subset S of any concept in A}=I Cj, we have CLOS(^)(S)
= O}=ICLOS(/)(S).

Proof Let S be any subset of a concept in A]=ICj, SO at least one concept in each Cj con-
tains S. Therefore each CLOS(I3(S) is defined and the concept O]=ICLOS(t~(S) is in A~=ICj
and contains S. Now we need only show that any concept in A]=IC j which contains S also
contains N~=ICLOSO)(S).

Let c~ n c2 n ... n cs, where each cj ~ Cj, be any concept in A}=ICj containing S.
Therefore each cj contains S and, by the definition of closure, each cj O CLOS(/)(S). This
implies that cl n c2 o ..- n c3 contains O~=ICLOS(J~(S), completing the proof. []

LEARNING NESTED DIFFERENCES 181

The above lemma shows that if membership in CLOS0~(S) can be decided efficiently
for each 1 < j < s, then the same can be done for CLOS(^)(S). Thus, given efficient
algorithms for deciding membership in CLOS0)(S), the Total Recall algorithm for learn-
ing DIFF(A}=ICj) can be implemented efficiently.

LEMMA 7. Let S be any set of instances contained in a concept of ^}=lCj.

1. Let Nj, for 1 _ j < s, be a minimal spanning set of S with respect to Cj. Then
CLOS(^)(U]=lNj) = CLOS(^)(S), so that U]=INj is a (not necessarily minimal) span-
ning set o f S with respect to A~=IC j.

2. Let Nbe any minimal spanning set of S with respect to A~=IC j. There are minimal span-
ning sets Nj with respect to Cj, such that N = U]=INj.

3. Let N (respectively Nj) be the set of corners of S with respect to the closure algorithm
for A~=lC j (respectively the closure algorithm for Cj). Then N = U}=INj.

Proof of Part L By Lemma 6, CLOS(^)(U]=INj) = N~=ICLOS(k)(u}=INj). Since Nj ___
U~-INj c_ S and each Nj is a spanning set of
CL~Sq)(Nj) = CLOS0)(U'S'=INj) = CLOSfi)(s) • S with respect?o CLOS 03, _we have

Therefore, f3 ~_ICLOS(k)(U;_INj) - -

("Ij=ICLOSO)(S) = CLOS(^5(S).

Proof of Part 2. Since N is a spanning set of S with respect to Aj=ICj, S _c CLOS(A)(N).
By Lemma 6, CLOS(A)(N) = fq}=ICLOS0)(N), so CLOS09(N) _~ S for each j. Thus for
each j , N contains a minimal spanning set Nj of S with respect to Cj. By Part 1, U]=INj
contains a spanning set of S with respect to A}=, Cj. Because U is minimal, U - U]=INj
must be empty, and N = U]=IN j.

Proof of Part 3. Observe that x is a corner of S with respect to some CLOS if and only
if CLOS(S - {x}) # CLOS(S). By Lemma 6, CLOS(^)(S - {x}) # CLOS(^)(S) if and
only if for some j , CLOS0)(S - {x}) # CLOS0)(S). Thus x is a corner of S with respect
to CLOS (^) if and only if x is a corner with respect to some CLOS 0). []

By Part 1 of the preceding Lemma 7, if small spanning sets with respect to each Cj can
be found efficiently, then small spanning sets can also be found with respect t o Aft= 1 Cj.
This observation can be used in the implementation of the Space Efficient algorithm for
DIFF(A}=ICj). We next use Part 2 of Lemma 7 to bound VCdim(U}=ICj).

LEMMA 8. Assuming each Cj contains the universal concept then:

1° U;=lC j cz A;=lCj and DIFF-<P(U}=,Cj) ___ DIFF-<P(A]=ICj).
2. max]_l({VCdim(Cj)}) < VCdim(U]_lCj) < VCdim(A}=lCj) < psi=, VCdim(Cj)

<- s max~=l({ VCdim(Cj) }). 7
3. VCdim(DIFF<-P(U}=ICj) <_ VCdim(DIFF<-P(A}=ICj) <_ p ~=1 VCdim(Cj)

<_ ps max}=l({ VCdim(Cj) }).

182 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

Proof The first part follows from the definitions and the fact that each Cj contains the
universal concept. Part 3 follows from Part 1 and Lemma 3. We now show the inequalities
of Part 2. The first and the last inequalities are trivial and the second follows from Part 1.

The third inequality of Part 2 is the most interesting one. Let S be a maximum cardi-
nality set that is shattered by A]=ICj. The set S is its own minimum spanning set with
respect to ^]=ICj and, by Part 2 of Lemma 7, is at most as large as the sum of the sizes
of minimal spanning sets of S with respect to each Cj. By Theorem 1, the sizes of the mini-
mal spanning sets of S with respect to each Cj are bounded by VCdim(Cj) and the inequality
follows. []

By Part 1 of Lemma 8, we can learn the concept class DIFF(U~= 1 Cj) by using the
Closure algorithm for Aj=IC j in our master algorithms. If the target concept from
DIFF(U]=ICj) has depth p then the depth of the master algorithm's hypothesis from
DIFF(A]=ICj) will be at most p.

THEOREM 6. Let each Cj, for 1 < j < s, be an intersection-closed concept class contain-
ing the universal concept. The Total Recall algorithm, when using the Closure algorithm
with respect to A]=IC j, has the following performance bounds when learning a target con-
cept in DIFF(O]=ICj):

s

t.(DIFF<--P([,J Cj), e, 6) _ max log2 ~, 8p ~ = 1 VCdim(Cj) log2 .
j= l (5

lVlI.(DIFF---P(0 O) -< I~I-(DIFF-~P(0 Cj)) _< p ~=1 VCdim(O
t j= l j= l

s

1VIT'(DIFF-<P(0 Cj)) _< MT.(DIFF~P(LJ cj)) <_ pHt ~ VCdim(Cj).
j= l j= l j= l

Proof. By Lemma 6, A]=ICj is intersection closed and by Lemma 8, it has VC dimen-
sion at most Zs~=l VCdim(Cj). Now the theorem follows from the corresponding theorems
in Section 4. []

Note that assuming each concept class Cj contains the universal concept does not
significantly affect our performance bounds since VCdim(C U {universal concept}) _<
VCdim(C) + 1.

THEOREM 7. Let each Cj, for 1 _< j _< s, be an intersection-closed concept class contain-
ing the universal concept. When given a sequence of examples labeled consistently with
a concept from DIFF(U]=ICj), for both the Total Recall and the Space Efficient
algorithms

M (DIFF- (0 O) p Z ncLoSj)
j= l j= l

LEARNING NESTED DIFFERENCES 183

when the Closure algorithm with respect to A}= 1Cj is used. The Space Efficient algorithm
stores at most p Y-'j=I VCdim(Cj) examples when learning DIFF-<P(I, Jj=ICj).

Proof. By Lemma 8, [,.Jj=lfj c: A}=ICj and by Lemma 6, ^}=lCj is intersection closed.
Thus (by Theorem 5) when the master algorithms use the Closure algorithm for ^}=ICj,
M.(DIFF-<P(Uj=ICj)) --< pMcLos<^), and the Space Efficient algorithm stores at most
pVCdim(A]=lCj) many examples. By Lemma 8, VCdim(Aj=ICj) <_ E]=I VCdim(Cj).

By Lemma 6, the closure with respect to A]= 1Cj is a function of the closures with respect
to the Cj's. Thus whenever the Closure algorithm for ^}=1Cj makes a mistake, at least one
of the Closure algorithms for the Cj's makes a mistake, and MCLOS^)(A}=ICj) _<
Xj=IMcLos~3(Cj) • []

5.2. Learning DIFF(C, B)

Since B is not necessarily intersection closed, we cannot rely on the closure algorithm
for it. Therefore, we assume that a learning algorithm (B for B is given to our master algo-
rithms. Intuitively, master algorithms for DIFF(C, B) need to determine for each level
whether to apply the Closure algorithm for C to produce the next portion of the hypothesis
or whether the current level is the innermost one and the algorithm (B should be applied.
Thus we need criteria that tell the master algorithm when it has arrived at the innermost
level. Various assumptions about (B lead to such criteria.

Our first master algorithm for learning DIFF(C, B) is a variant of the Total Recall
algorithm. It assumes that (B produces a consistent hypothesis for a given sample whenever
there is a concept b fi B that is consistent with the sample. Given any set of examples label-
ed consistently with a target concept in DIFF(C, B), this master algorithm produces a con-
sistent hypothesis hi - (h2 - (h3 (hp-1 - hp) ...)) in DIFF(C, B) where the depth
p of the hypothesis is at most the depth of the target.

The master works roughly as follows. Let EXi be all examples remaining at the current
level i. The master algorithm first attempts to find a consistent hypothesis in B for EXi
by feeding the examples to algorithm (B. I f a consistent hypothesis is produced, then the
master algorithm concludes that it has arrived at the innermost level and h i is set to the
concept output by (B. Otherwise, the master algorithm knows that the current level is not
the innermost level of the target concept, and filters the examples with another concept
from C. This is done by applying the Closure algorithm of C to the current example set,
EXi, and setting h i to the concept of C output by the Closure algorithm. At this point all
examples outside of hi are classified correctly by the current hypothesis and we can restrict
ourselves to the example set EXi+ 1 = FLIP(h/ ("1 EXi) for the next level. See Figure 9
for a detailed description of the algorithm.

Our first step towards determining the performance of this algorithm is to bound the
VC dimension of DIFF(C, B).

LEMMA 9. I f C is intersection closed and p _> 1, then

VCdim(DIFF=P(C, B)) < VCdim(DIFF<-P(C, B)) <_ (p - 1) VCdim(C) + VCdim(B).

184 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

Algor i thm Total Recall for DIFF(C , B)
Inputs: Examples of concept.
/* Computes hypothesis h and depth p. * /
/* Uses algorithm B for learning B */
EX1 := all examples; i := 1
while B (EXi) fails to produce a consistent hypothesis do

hi := CLOS(POS(EX~))
EXI+I := FLIP(h l A EXi)
/* "FLIP ~ flips the labels of the examples */
i : = i + 1

end while;
p := i; h v := B (EX~)
hp+l := 0
h : = h i - (h , (h _l -

Figure 9. Total Recall algorithm for DIFF(C, B) when depth is not known.

Proof. Use the same arugment as the one in the proof of Lemma 3. []

Again it is easy to find concept classes C and B that show that the inequalities are tight.
Applying this lemma together with Theorem 2, we can generalize Theorem 3 to: after

~ 4 4 8((p - 1)VCdim(C) + VCdim(B))log2 ?
max - l o g 2 - ,

e ~ e

examples drawn independently at random, the Total Recall algorithm in Figure 9 produces
a hypothesis whose error is at most e with probability at least 1 - 6 where p is the depth
of the target concept in DIFF(C, B).

THEOREM 8. For the Total Recall algorithm in Figure 9,

4 4 8((p - 1)VCdim(C)
t.(DIFF<-P(C, B), e, 6) <- max ~-log2~, e

+ VCdim(B)) 1 " 13~ ° 2VJ

Proof. Apply Theorem 2 using the bound in Lemma 9 on the VC dimension of
DIFF-P(C, B). []

Theorem 4 gives a bound on the probability that the Total Recall algorithm makes a
mistake at trial t. The generalization of this theorem to the Total Recall algorithm in Figure
9 is not so straightforward. Our goal is to obtain a good estimate of the cumulative sample
mistake bound as a function of the depth p of the target concept, the VC dimension of
C, and the instantaneous permutation mistake bound for B. We need the following assump-
tions on the instantaneous permutation mistake bound for B:

L E A R N I N G NESTED DIF F ERENCES 185

DEFINITION. An algorithm 63 for concept class B is suitable if in addition to producing
a consistent hypothesis from B (if such a hypothesis exists) for the given set of examples
the following condition holds:

• It has an instantaneous permutation mistake bound, I~II~(B)(t), such that tMI~(B)(t)
is non decreasing. 8

THEOREM 9. If 63 is a suitable algorithm for concept class B, then the Total Recall algorithm
in Figure 9 has the following cumulative sample and cumulative permutation mistake bounds:

I~T.(DIFF-<P(C, B))(t) <_ I~T.(DIFF~P(C, B))(t)
t

_< (p - 1) VCdim(C)Ht + p - 1 + ~ I~I~(B)(i).
i=1

Proof The first inequality follows from Lemma 1. Thus it suffices to bound the cumulative
permutation mistake bound.

Let S be any multi-set of examples labeled consistently with some concept c in
DIFF-<P(C, B). Thus the depth of c is at most p. We will bound the expected total number
of mistakes made by the algorithm over all permutations of S.

Note that whenever the Total Recall algorithm makes a mistake on some example, its
hypothesis, h, is updated to some h ' ~ h. 9 We divide the mistakes made by the Total
Recall algorithm into three categories based on how the hypothesis gets updated and bound
the expected total number of mistakes in each category separately.

If the depth of h ' is greater than the depth of h then the mistake is a level mistake. If
h and h' have the same depth k, but some hi ;~ hi' for 1 _< i < k, then the mistake is
a C-mistake. Otherwise, h and h ' differ in only the innermost concept, hk, and the mistake
is a B-mistake.

The depth of the Total Recall algorithm's hypothesis is initially 1. By induction it is
easy to show that the depth of the hypothesis is non-decreasing and bounded by the depth
of the target concept. Therefore, at most p - 1 level mistakes will be made on any se-
quence of examples consistent with a concept in DIFF-P(C, B).

The Total Recall algorithm makes a C-mistake on the t-th example only when the t-th
example is a comer of some EXi (1 _< i __. k), where k is the depth of the hypothesis.
Since k _ p, the chance that the t-th example is one of these corners is at most
(p - 1) VCdim(C)/t. The argument of Theorem 4 shows that, over all permutations of
S, the average total number of C-mistakes in the first t trials is bounded by (p - 1)
VCdim(C) Ht.

We now bound the number of permutations of S where the Total Recall algorithm makes
a B-mistake at trial t. Let EXk be the set of examples fed to 63 when building h ' , the
hypothesis produced after trial t. If a B-mistake is made at trial t of a permutation of S,
then both:

• An example of EX k appears last in the permutation, and
• 63 made a mistake predicting the label of the last instance in EX k.

186 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

The fraction of the permutations of S where the last example is in EXk is EXk/t. The frac-
tion of the permutations of S where .algorithm 63 makes a mistake predicting the label of
the last instance in EXk is at most I~I®(B)(IEXkl). Note that the relative ordering of the
examples in EXk is independent of whether one of them appears last in the permutation
of S. Therefore, the fraction of the permutations of S where the Total Recall algorithm
makes a B mistake at trial t is at most:

[EXkII~I~(B)(IEX~[)

Since 63 is suitable,

IEXkIMI~(B)(IEXkl) < t~I~(B)(t) = I~II(~(B)(t) .
t t

Summing over t, we see that the average, over all j2ermutations of S, of the total number
of B-mistakes in the first t trials is at most r~=IMI~(B)(i).

Combining the bounds from the three cases gives us:

MT.(DIFF-P(C, B))(t) <_ p - 1
t

+ (p - l) VCdim(C)H t + Z N~I(~(B)(i).
i = l

[]

Two related factors make it difficult, if not impossible, to obtain good instantaneous
mistake bounds on the Total Recall algorithm's performance when learning DIFF(C, B).
First, the hypothesis can suddenly change dramatically whenever its depth is increased
(in addition to adding a level, an arbitrary concept in B is replaced by CLOS(0)). In addi-
tion, an instantaneous mistake bound holds only if the domain is labeled consistently with
a concept in the class being learned. Here, however, even though the particular examples
given to algorithm 63 may be labeled consistently with a concept in B, the labeling of
the domain from which these examples are drawn may be some nested difference.

To illustrate this point, we exhibit a concept class B' whose instantaneous sample mistake
bound does not apply to other concept classes even when all of the examples seen are labeled
consistently with a concept in B'. Let the domain contain four points and the concept class
B ' contain all pairs of instances. The trivial algorithm for this class keeps track of the
(at most two) " + " examples previously seen, and predicts " + " on these instances and
" - " on all others. The chance that this algorithm makes a mistake on the third trial is
at most 8/27, achieved when each of the two " + " instances has probability 1/3. Con-
sider now the situation when the four points are labeled " + , + , + , - " and the three
plus points are given probability 1/5 each. The probability that both the first three trials
contain at most two distinct " + " instances (and thus are consistent with a concept in B ~)

1 and the algorithm makes a mistake on the third trial is 3(½) ((I) 2 - 2(1) 2) > 7"

LEARNING NESTED DIFFERENCES 187

In the remainder of this section we discuss space efficient algorithms for learning
DIFF(C, B). These algorithms store only a small number of examples and are usually not
consistent with previous examples seen. In the simplest case the depth p of the target is
known. For levels 1 through p - 1 we simply run the space efficient algorithm of Figure
5 and at depth p we use the given space efficient algorithm 63 for learning the class B.
This master algorithm is called ~Dp and is shown in Figure 10.

It is easy to see that Algorithm ~)p makes at most (p - 1)McLos(C) q- Ma~(B) mistakes
on any sequence of examples consistent with a concept in DIFF(C, B) of depth p, giving us:

THEOREM 10. M ~ (DIFF=P(C, B)) < (p - 1)McLos(C) -]- M~(B).
P

If C contains the universal concept, then any target concept described by a nested dif-
ference can be syntactically changed by inserting two copies of the universal concept into
adjacent levels without changing the target concept. This leads to the following corollary
of the above theorem:

COROLLARY 2. I f C contains the universal concept, then for any depth/3 < p which has
the same parity as p, M~p(DIFF=P(C, B)) _< (p - 1)McLos(C) + M6~(B).

Algorithm family Pp, the Space Efficient algorithm for DIFF(C, B)
Parameters: The family has parameter p, the known depth of the target concept.
Inputs: Current hypothesis h and instance x.
Uses: Closure algorithm for C, algorithm B for B with initial hypothesis Blot
/* On-line algorithm */
If first call then

h~ := ~mt; hp+l := ¢
f o r k : = l t o p - 1

initialize Sk := 0; h~ := CLOS(0)
Call Predict(h, x)
If mistake made then

l : = 0
repeat I := l + 1 until x ~/ht
if I < p then

/* update one of the outer shells */
h, := CLOS(S, U {x})
S, := minimal spanning set(S, U {x})

else I : p
/* update hp e B */
hp := ~(h~, x)

end i f /* l < p */
end i f /* mistake made */

Figure 10. Space Efficient algorithm for DIFF(C, B) when depth of target is known.

188 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

In the case where the depth of the target is not known, we can successively try various
values for the depth p of the target. However for this to work we need a criterion for deciding
whether the current choice o f p is wrong, and which value for p to try next. We assume
that the worst case total number of mistakes made by (B on any sequence of examples labeled
consistent with a concept of B, Mr~(B), is bounded and that the master algorithm knows
Ma~(B) (or an upper bound thereof). Whenever the number of mistakes made on the inner-
most level exceeds MB(B) (or its upper bound) then the master algorithm tries the next
choice of p. The algorithm of Figure 11 implements this approach by iteratively trying p
= 1, 2, It is easy to see that it achieves the following worst case mistake bound.

THEOREM 11. The Space Efficient algorithm of Figure 11 which iteratively guesses depth
1, 2, . . . for the target concept has a worst case mistake bound,
M.(DIFF=P(C, B) = (p - 1)(McLos(C) + 1) + pMm(B).

Algorithm Space Efficient for DIFF(C, B) when depth of target unknown.
Inputs: Current hypothesis of depth p, mistake count m, and instance x.
Uses: Closure aid. for C, algorithm B for B with initial hypothesis Sitar
/* On-line algorithm */
If first call then

initialize p := 1; Sx := 0; hx := Bimt; h2 := 0; m := 0
Call Predict(h, x)
If mistake made then

1 : = 0
repeat l := l + 1 until x ~ h~
if l < p then

/* update one of the outer shells */
h, := CLOS(S, u {~})
St := minimal spanning set(St tO {x})

else 1 > p
/* update hp */
if m + 1 > MB (B) then

/* initialize new shell */
s~ := 0; h~ := CLOS(0)
hp+l := ~mt; hp+~ := 0
m := 0; p := p + 1

else m < M8 (B)
h~ := 8(h~,~)
m : = m + l

end i f / * m + 1 > M8 (B) */
end i f / * l < p */

end i f / * mistake made */

Figure 1l, Space Efficient algorithm for DIFF(C, B) when depth of target is unknown.

LEARNING NESTED DIFFERENCES 189

Proof For each level between 1 and p - 1, the algorithm makes at most McLos(C) +
M~(B) + 1 mistakes. On the innermost level, the algorithm makes at most M~(B)
mistakes. []

I f C contains the universal concept then we can do better by using a doubling trick and
by applying Corollary 2: use the sequence 1, 2, 3, 4, 7, 8, . . . , 2 k - 1, 2 k of guesses
for the depth, and each time the total number of mistakes made on the innermost level
p exceeds M~(B) go on to the next value/~ in the sequence. (This is done by setting
Sk := 0; hk := CLOS(0), forp _ k </~; and hp- : = (~init when a new shell is initialized.)
The reason for trying a pair of consecutive guesses at each power of two is that the guessed
depth must have the proper parity with respect to the depth of the target concept. Once
the guessed depth reaches a value that has the same parity as, and is at least as large as,
the depth of the target then the guessed depth will never be changed. The construction
of the above sequence ensures that, if the depth of the target is p, then the guessed depth
will never be larger than 2p - 2. Thus by Corollary 2 the doubling trick improves the
bound to

THEOREM 12. The Space Efficient algorithm of Figure 11 for learning DIFF(C, B), when
modified to use the sequence of guesses 1, 2, 3, 4, 7, 8, . . . , 2 ~ - 1, 2 ~ for the depth
of the target concept, has a worst case mistake bound, M.(DIFF-<P(C, B)), which is
O(pMcLos(C) + log p • M~(B)).

Proof See preceding paragraph. []

Although the doubling trick reduces the mistake bound, it may use a hypothesis almost
twice as deep as that of the algorithm in Figure 11.

The space efficient algorithms presented so far in this section required that either the
depth of the target (Theorem 10) or an upper bound on M~(B) (Theorems 11 and 12) be
given to the master algorithm. Surprisingly, there is a reasonably space efficient master
algorithm that assumes neither knowledge of the depth of the target nor of M~(B). The
worst case mistake bound of this new algorithm is O(pMcLos(C) + M~(B)), only a con-
stant times larger than for the case when the depth is known (Theorem 10).

The new master algorithm runs, in parallel, multiple copies of the algorithm ff)~ (de-
scribed in Figure 10) with different depth parameters. Whenever it is asked to predict on
a new instance, the master first obtains the predictions made by each copy of ~D~ and then
uses a weighted majority voting scheme to decide on its fmal prediction. The weights of
the various copies are updated so that the influence of those copies making mistakes is
decreased. When the final prediction is incorrect, new copies of ff)~ may be initiated. The
resulting master algorithm for learning DIFF(C, B) is still space efficient in the sense that
at most O(log(PMcLos(C) + M~(B))) copies of ~Dp are run in parallel (i.e., logarithmic
in the worst case mistake bound of the master). However, some copies may have depth
guesses up to a constant times the total number of mistakes made.

The new master algorithm is an application of one of the Weighted Majority algorithms
(called ~,VgES) introduced in (Littlestone and Warmuth, 1989). In the appendix, we give
a description of ~,VgE5 and prove the following (see Theorem 14) theorem.

190 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

With appropriate parameters, the algorithm ~79E5 has the following properties:

1. The worst case mistake bound, Mw~(DIFF=V(C, B)), is O(pMcLos(C) + M~(B)).
2. At most O(log[Mve~(DIFF=P(C, B))]) copies of Dp are initiated.

6. Conclusions and open problems

In this section we discuss the optimality of our master algorithms for learning the concept
classes DIFF(C), DIFF(U}=ICj), and DIFF(C, B) with respect to the performance criteria
introduced in Section 3 and in particular, discuss our results on space efficient master
algorithms. A number of open problems are given.

All our performance bounds are a function of the VC dimension of the target class (or
the hypothesis class if it is different from the target class). Thus the quality of our perfor-
mance bounds depend on whether our estimates of the VC dimension of the target class
are exact. The upper bounds for VCdim(DIFF(C)) and VCdim(DIFF(C, B)) given in Lem-
mas 3 and 9, respectively, are tight in the sense that there are many concept classes C
and B where the upper bounds are reached.

Recall that we learned the class DIFF<-P(t_J]=ICj) using hypotheses from
DIFF-<P(A]=ICj). According to the bounds of Lemma 8, if VCdim(DIFF<-P(U~=ICj) >_
p max}= 1 VCdim(Cj) then VCdim(DIFF<-P(A]=ICj)) is at most a factor of s larger than
VCdim(DIFF<-P(U]=ICj)). In (Helmbold, Sloan, and Warmuth, 1989c) an alternate
method was given where the VC dimension of the hypothesis class is at most a factor
of 2s larger than VCdim<-P(U}=ICj).

It is an open problem to find tight bounds for VCdim(O]=~Cj). (This is discussed in
more detail in (Helmbold, Sloan & Warmuth, 1989b).)

All instantaneous and cumulative sample mistake bounds for learning DIFF(C) with the
Total Recall algorithm are of the form d/t and dH t, respectively, where d is the VC dimen-
sion of the target class. In the worst case, our bounds on d are tight (see previous paragraph)
and for these two performance measures there are matching lower bounds. In (Haussler
et al. 1988) it is shown that for any concept class of VC dimension d and large enough
t, the instantaneous sample mistake bound of any algorithm is [2(d/t), and for any d there
are intersection-closed classes C of VC dimension d (containing the universal concept)
such that the cumulative sample mistake bound for any algorithm is fl(d log t). Therefore
the instantaneous and cumulative sample mistake bounds of the Total Recall algorithm
for DIFF(C) are within a constant factor of optimal.

The VC dimension is a trivial lower bound on the total number of mistakes made
in the worst case (Littlestone, 1988). Thus if McLos(C) = VCdim(C) and
VCdim(DIFF<-P(C)) = pVCdim(C), then, under the worst case total number of mistakes
performance criterion, both the Space Efficient algorithm and the Total Recall algorithm
optimally learn DIFF(C), since by Theorem 5 they make at most pMcLos(C) many
mistakes ~o.

Recall that (under reasonable assumptions) the VC dimension of the hypothesis class
used when learning DIFF(U]=ICj) could be up to a factor o f s greater then the VC dimen-
sion of the target class. Because of this gap, the performance of the Total Recall algorithm

LEARNING NESTED DIFFERENCES 191

for DIFF(U]=ICj) may be up to an O(s) factor worse than the optimum performance for
the instantaneous and cumulative sample mistake bound measures. For similar reasons the
worst case total mistake bounds of the Total Recall and Space Efficient algorithms for
DIFF(U}=lCj) might differ by an O(s) factor from optimum.

It is much harder to design master algorithms for learning the class DIFF(C, B) with
good mistake bounds. In the case of the instantaneous and cumulative sample mistake bounds,
the main obstacle is that the distribution with which the innermost concept of B is learned
does not stay fixed. In Theorem 9 we were still able to achieve an excellent cumulative
sample mistake bound provided that an algorithm for B is given with a good instantaneous
sample mistake bound. It is an open problem to find master algorithms for learning
DIFF-<P(C, B) with O(d/t) instantaneous sample mistake bounds where d = (p - 1)
VCdim(C) + VCdim(B). 11

We next consider learning the class DIFF(C, B) space efficiently using the worst case
total number of mistakes as the performance criterion. When McLos(C) = VCdim(C),
M~(B) = VCdim(B), and VCdim(DIFF=?(C, B)) = (p - 1) VCdim(C) + VCdim(B), the
version of the Space Efficient algorithm for learning DIFF(C, B) (Figure 10) which is given
the depth p of the target in advance is optimal (Theorem 10). When p is not given to the
master algorithms, but a worst case mistake bound for learning B is given, various strategies
for trying successive guesses for the depth p lead to reasonable algorithms, but their worst
case number of mistakes is suboptimal (Theorems 11 and 12).

A powerful method based on weighted majority voting that is ideally suited to dealing
with cases when a parameter (here the depth p) for an algorithm is not known was given
in (Litflestone and Warmuth, 1989). An application of these methods leads to a reasonably
space efficient master algorithm (given in the Appendix) for learning DIFF(C, B) which
does not require knowledge o f p and is optimal to within a constant factor. The space re-
quirement for this algorithm might be roughly up to a O(log(pMcLos(C) + M~(B))) factor
larger than the space used by the Space Efficient algorithm which is given p in advance.

The major intriguing open problem is to analyze the Space Efficient algorithms with
respect to the probabilistic performance measures. Although the Space Efficient algorithm
is simple, its hypothesis is neither consistent with all of the examples previously seen, nor
independent of their order. Therefore additional analysis techniques are needed to deter-
mine to what extent it is necessary to remember all previous examples for good probabilistic
performance.

There are other approaches to designing space efficient algorithms for which one can
prove reasonable probabilistic bounds. We did not present these algorithms in the main
body of the paper because they are significantly more complicated than the Space Effi-
cient algorithms presented here. We now sketch such an algorithm for learning DIFF(C)
with respect to Valiant's criterion of producing with probability at least 1 - 6 a hypothesis
of error at most e: first draw a number of examples keeping track of a minimal spanning
set of the positive examples; set the first shell hi to the closure of the spanning set; make
the number of examples large enough so that with large enough probability the error of
hi is small enough; do the same for the second shell by drawing enough further examples
and by setting h2 to a spanning set of all the negative examples falling into hi; continue

192 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

fixing further shells until the number of examples (with the proper label) falling into the
innermost shell is small enough. The algorithm is space efficient since it stores at most
p spanning sets, where p is the depth of the target.

As can be seen from the above high-level description, a lot of fine tuning needs to be
done to determine how long each shell should be trained. Furthermore, this type of algorithm
needs to know e and 6.

Weighted majority voting can also be used to design master algorithms for DIFF(C, B)
with a cumulative sample mistake bound of O(d log t), where d = (p - 1) VCdim(C) +
VCdim(B). Simply modify the variant of the Total Recall algorithm of Figure 9 for the case
when the depth p is given as a parameter. A corner argument shows that this modified
algorithm learns DIFF =p with an O(d log t) cumulative sample mistake bound. When the
depth parameter is not given, use a weighted majority voting scheme on the following pool
of algorithms: the i-th algorithm is the above variant of the Total Recall algorithm with
depth parameter i. Surprisingly, this method leads to an algorithm for learning DIFF(C, B)
for the case when the depth of the target is not known whose cumulative sample mistake
bound is within a constant factor of optimal.

We conclude by summarizing our results for the performance criterion introduced by
Valiant (Section 3.4). This criterion gives bounds on the number of examples required to
produce, with probability at least 1 - 6, a hypothesis of error at most e. We presented
variants of the Total Recall algorithm for learning each of the classes DIFF(C),
DIFF(U}=ICj), and DIFF(C, B). The bounds on the number of examples required by each
of these algorithms are proven using Theorem 2 of (Blumer et al. 1989). This theorem

dlo 1 1 shows that any consistent algorithm needs only O(~ g(~) + ~ log(I)) examples to pro-
duce, with probability at least 1 - 6, a hypothesis that has error at most e. Note again
that the bounds on the number of examples depend linearly on d, the VC dimension. In
(Haussler et al. 1988) it has been shown that for some algorithms the bounds of this theorem
are tight to within a constant factor. The theorem does not exclude the possibility that par-
ticular algorithms might require significantly fewer examples to produce, with probability
at least 1 - 6, a hypothesis with error at most e. However, a lower bound theorem of
(Ehrenfeucht, Haussler, Kearns & Valiant 1989) shows that the savings can be at most a
factor of log(J): any algorithm requires fl(~ + ½ log(])) examples to produce, with prob-
ability at least 1 - 6, a hypothesis with error at most e. It is an open problem whether
the performances of the Closure algorithm for intersection-closed classes and the Total
Recall algorithm are within a constant factor of this lower bound.

Acknowledgments

This research was supported by ONR grant N00014-86-K-0454. In addition, Robert Sloan
was also supported by an NSF graduate fellowship and by ARO grant 03-86-K-0171, and
Manfred Warmuth was also supported by ONR grant N00014-85-K-0445.

We thank David Haussler and Nick Littlestone for valuable discussions, as well as Phil
Long and Naoki Abe for their helpful comments. In particular, we would like to thank
David Hanssler for an early proof of the Closure algorithm's instantaneous mistake bound.

LEARNING NESTED DIFFERENCES 193

Notes

1. Learnability with one-sided error implies learnability from positive examples (Kearns et al., 1987). The
opposite is not quite true.

2. Such submodules are also called integer lattices of Z k.
3. If the concept class is finite (considered in (Natarajan, 1987)) this definition is equivalent to requiring that

the intersection of any pair of concepts in the class is also in the class.
4. Some work can be saved by placing x directly into EX t (the label o fx must be flipped if l is even). Further-

more, the repeat loop need only be executed when a mistake occurs, and can be started with i initialized
t o / - 1.

5. The definition of intersection closed ensures that VCdim(C) _> 1. If C contains only a single non-empty
concept then VCdim(C) = 0, but VCdim(D1FF=2(C)) = 1.

6. Some relatively benign measure-theoretic assumptions are required (Blumer et al. 1989) on the probability
distribution.

7. The inequalities VCdim(A}=ICj) < ~;=1 VCdim(Cj) and VCdim(U]=ICj) <- ~j=l VCdim(Cj) do not hold
for arbitrary concept classes Cj (Dudley, 1984). Also, if each Cj is intersection closed and contains the univer-
sal concept then the second inequality does not appear to be tight for large s. See (Helmbold et al. 1989b)
for a more detailed discussion.

8. Ift~lI~(B)(O is not nondecreasing, it may be possible to substitute a slight overestimate of l~I6~(B)(t) where
t times the overestimate is nondecreasing.

9. The converse does not necessarily hold since 63 could change the innermost part of the hypothesis even
when no mistake is made.

10. Note that (Littlestone, 1989) gives an optimal transformation from an algorithm making at most M mistakes
to an algorithm producing with probability at least 1 - ~5 a hypothesis of error at most e from O(M + ~ log
l) random examples.

11. Note that by a theorem of (Haussler et al. 1988), any consistent algorithm for learning DIFF(C, B) (including
the variant of the Total Recall algorithm given in Figure 9) achieves an instantaneous sample mistake bound

i d
of O(1og(7)7), for large enough t.

Appendix: The weighted majority algorithm

This appendix describes one version of Weighted Majority Algorithm, ~ 0 g S , presented
in (Littlestone and Warmuth, 1989). Algorithm % V ~ 5 has the following inputs:

• Two parameters ot and ~ in the interval (0, 1). For simplicity of presentation we set
a = /3 = ½. Optimizing these parameters for particular applications appears to be
nontrivial.

• A specification of a countably infinite sequence of algorithms (~ , (~2, • • •
• Two computable functions, W and ~,' defined on the positive integers. The first function

is used to determine the initial weights; that is, W(i) is the initial weight of algorithm
6~. The second function is used to bound the tails of the sequence W(i). More precisely
W is any function satisfying W (i) >_ Z)%iW(j).

Description of ~ O E S : At any point %V9~5 runs an initial segment (~1, (~2 (~f of the
infinite sequence of algorithms in parallel. This segment is called the active pool and l
the active pool size. Initially, l is set to 0; then, and whenever a mistake is made, it is

1 7 m~,,(1 increased (if necessary) until the inequality W(1 + 1) __< ~(~)) holds, where m is the
number of mistakes so far. The initial weights of the algorithms that are newly added into

194 D. H E L M B O L D , R. SLOAN, A N D M.K. W A R M U T H

the active pool are determined with the function W. Whenever ~VBE5 is asked to predict
on a new unlabeled instance, it compares the total weight qo of the algorithms in the cur-
rent active pool that predict 0 to the total weight ql of the algorithms predicting 1. Algorithm
~V0qZ5 predicts according to the larger total (or arbitrarily in case of a tie). When ~¢¢925
makes a mistake then the weights of those algorithms in the active pool that agreed with
the master algorithm (i.e., those that mislead the master) are cut in half.

The goal is to keep both the number of mistakes made by ~,VOE5 and the active pool size
small. The performance can be tuned by judiciously choosing the functions W and W. In
the theorem below (very similar to Corollary 4.4 in (Littlestone and Warmuth, 1989)) we
give a worst case mistake bound for ~,VBE5 when the functions are chosen appropriately
for our application.

We choose the initial weight function W(i) = lZ ~il2], for i _ > 1, and bound the tails of
= 12 ~i/zq-2 > y~,~o=iW(j)" the sequence W(i) by W(i) 2 - -

TFIEORE~ 13. Let S be any sequence of examplesand m i (for i -> 1) be the number of mis-
takes made by ~ on S. Let the function W and W be chosen as above. Then the following
holds for ~¢¢0]Z5 when applied to the countably infinite pool ~ , 6t2 on the sequence S.

1. The total number of mistakes made by ~,VOE5 on the sequence S is at most
8 inf(2 Ill21 + mi)/log2 7"

i>_l
2. After m mistakes have been made by W ~ 5 the size of the active pool is at most

F2 log2(m log2 ~)~ + 5.

We apply the above theorem for the case where ~ is the algorithm of Figure 10 with
depth parameter p = 2 Fi/21 - - odd(i), where odd(i) = 1 if i is odd and 0 otherwise. In
other words, each 6t~ is the algorithm ~D 2 [i/2] -odd(i)" Note that the sequence of depth
parameters produced by the function 2 Fi/21 _ odd(i) (for i _> 1) is the same as the se-
quence used in Theorem 12.

THEOREM 14. The algorithm ~vVOE~ using the pool ~ -~ ~2 Fi/21 -odd(i) (i _> 1) and the
above weight functions W a n d ~Zhas the following properties when the target concept is in
DIFF=P(C, B):

1. The worst case total number of mistakes M.(DIFF=P(C, B)) is O(PMcLos(C) +
M~(B)).

2. The size of the active pool is at most O(1) + 2 log2(M.(DIFF=P(C, B))).
3. The largest depth parameter of all algorithms in the active pool is

O(M. (D IF F =P (C, B))) .
4. The total space used is O(scM.(DIFF=P(C, B)) + s~log[M.(DIFF=P(C, B)]), where

Sc and s~ bound the space used by the on-line Closure algorithm for C and the given
on-line algorithm for B respectively.

Proof o f Part 1. Let i be the smallest number such that/3 = 2 Fi/21 _ oddO) >_ p
and/3 has the same parity a s p . It is easy to see t h a t p __< /3 -< 2p - 1. Let
my = M~DIFF=P(C, B)). By the above bounds on/3 and by Corollary 2, m~ _< (2p - 2)

LEARNING NESTED DIFFERENCES 195

MCLos(C) + M~(B). Part 2 of Theorem 13 guarantees the following bound on the worst
case total number of mistakes of ~d?0g5 when applied with the specified inputs:

M.(DIFF=P(C, B)) -< 2 Fi/21 + m{ = O(pMcLos(C) Jr M~(B)).
8 log2

This proves Part 1 of the theorem.

Proof of the remaining parts. Part 2 follows from the first part and Part 1 of Theorem 13.
Part 3 is derived from plugging the maximum pool size of Part 2 into the depth function
2 Fi/2l _ odd(i). To prove Part 4, split the space used by all algorithms in the active
pool into two portions: the space used for closure algorithms for C and the space used
for simulating copies of 6] and for storing weights. Since the depth function grows doubly
exponentially with i, the total space used for the first portion is at most O(sc" P~x),
where Pmax is the maximum depth parameter of any call to fi)p that was bounded in Part
3. The space used in the second portion is on the order of sB times the maximum pool
size, which was bounded in Part 2. []

References

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis
dimension. Journal of the ACM, 36, 929-965.

Board, R. and Pitt, L. (1990). On the necessity of Oecam algorithms. Proceedings of the Twenty-Secnd Annual
ACM Symposium on Theory of Computing.

Boucheron, S. (1988). Learnability from positive examples in the Valiant framework. Unpublished manuscript.
Dudley, R.M. (1984). A course on empirical processes. Lecture Notes in Mathematics No. 1092. New York:

Springer-Verlag.
Ehrenfeucht, A., Haussler, D., Kearns, M., and Valiant, L. (1989). A general lower bound on the number of

examples needed for learning. Information and Computation, 82, 247-261.
Haussler, D. (1989). Learning conjunctive concepts in structural domains. Machine Learning, 4, 7-40.
Haussler, D., Kearns, M., Littlestone, N., and Warmuth, M.K. (1990). Equivalence of models for polynomial

learnability. Information and Computation. To appear.
Haussler, D., Littlestone, N., and Warmuth, M.K. (1988). Predicting {0, 1}-functions on randomly drawn points.

Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 100-109. White Plains,
NY: IEEE. Tech. Report, U.C. Santa Cruz. To appear (longer version).

Haussler, D. and Welzl, E. 0987). Epsilon-nets and simplex range queries. Discrete Computational Geometry,
2, 127-151.

Helmbold, D., Sloan, R., and Warmuth, M.K. (1989a). Learning lattices and reversible, commutative regular
languages. (Technical Report UCSC-CRL-89-23). Santa Cruz, CA: U.C. Santa Cruz, Computer Research
Laboratory.

Helmbold, D., Sloan, R., and Warmuth, M.K. (1989b). Learning nested differences ofintersection-clased con-
cept classes. (Technical Report UCSC-CRL-89-19) Santa Cruz, CA: U.C. Santa Cruz, Computer Research
Laboratory.

Helmbold, D., Sloan, R., and Warmuth, M.K. (1989c). Learning nested differences of intersection-closed con-
cept classes. Proceedings of the Second Workshop on Computational Learning Theory (pp. 41-56). Santa Cruz,
CA: Morgan Kaufmann.

Kearns, M., Li, M., Pitt, L., and Valiant, L. (1987). On the learnability of boolean formulae. Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing (pp. 285-295). New York.

196 D. HELMBOLD, R. SLOAN, AND M.K. WARMUTH

Kearns, M. and Valiant, L.G. (1989). Cryptographic limitations on learning boolean formulae and finite automata.
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (pp. 433-444). Seattle,
Washington.

Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine
Learning, 2, 285-318.

Littlestone, N. (1989). From on-line to batch learning. Proceedings of the Second Workshop on Computational
Learning Theory (pp. 269-284). Santa Cruz, CA: Morgan Kaufmann.

Littlestone, N. and Warmuth, M.K. (1989). The weighted majority algorithm (Technical Report UCSC-CRL-89-19).
Santa Cruz, CA: U.C. Santa Cruz, Computer Research Laboratory. An extended abstract is available in Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer Science (pp. 256-261). Research Triangle,
NC: October 1989.

Natarajan, B.K. (1987). On learning boolean functions. Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing (pp. 296-304). New York.

Pearl, J. (1978). On the connection between the complexity and credibility of inferred models. Journal of General
Systems, 4, 255-264.

Pitt, L. and Valiant, L.G. (1988). Computational limitations on learning from examples. Journal of the ACM,
35, 965-984.

Pitt, L. and Warmuth, M.K. (1990a). The minimum consistent DFA problem cannot be approximated within
any polynomial. Journal of the ACM. To appear.

Pitt, L. and Warmuth, M.K. (1990b). Prediction preserving reducibility. Journal of Computer and System Sciences.
To appear in special issue consisting of papers from the third annual IEEE Conference on Structures in Com-
plexity Theory, 1988.

Rivest, R.L. (1987). Learning decision lists. Machine Learning, 2, 229-246.
Salzberg, S. (1988). Exemplar-based learning: theory and implementation. (Technical Report TR-10-88) Cam-

bridge, MA: Harvard University, Center for Research in Computing Technology.
Shvaytser, H. (1988). Linear manifolds are learnable from positive examples. Unpublished manuscript.
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.
Vapnik, V.N. (1982). Estimation of Dependences Based on Empirical Data. New York: Springer-Verlag.
Vapnik, V.N. and Cherv0nenkis, A.Y. (1971). On the uniform convergence of relative frequencies of events to

their probabilities. Theory of Probability and its Applications, 16, 264-280.

