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Abstract. This paper is concerned with the problem of learning simple deterministic languages. The algorithm 
described in this paper is based on the theory of model inference given by Shapiro. In our setting, however, nonter- 
minal membership queries, except for the start symbol, are not permitted. Extended equivalence queries are used 
instead. Nonterminals that are necessary for a correct grammar and their intended models are introduced automatic- 
ally. We give an algorithm that, for any simple deterministic language L, outputs a grammar G in 2-standard 
form, such that L = L(G), using membership queries and extended equivalence queries. We also show that the 
algorithm runs in time polynomial in the length of the longest counterexample and the number of nonterminals 
in a minimal grammar for L. 

Keywords. Language learning, Polynomial time learning, Simple deterministic languages, Generating nonterminals. 

1. I n t r o d u c t i o n  

We consider the problem of learning simple deterministic languages using membership 
queries and extended equivalence queries. A simple deterministic language (SDL) is a 
language that is accepted by a 1-state determinist ic push-down automaton by empty store. 
The class of SDLs is a proper  sub-class of deterministic languages. The SDLs may also 
be characterized as the languages that are generated by context-free grammars  in a special 
form of Greibach normal  form, called simple deterministic grammars (SDGs). 

Angluin (1987a) shows that the class of k-bounded context-free grammars  is learnable 
in polynomial  t ime using membership queries, nonterminal membership queries and 
equivalence queries. The algorithm described in this paper  is based on her algorithm. Both 
algorithms are essentially based on the theory of model  inference given by Shapiro (1983). 
Our setting, however, differs from Angluin 's  and Shapiro's in the types of queries that are 
available to the learning algorithm. That is, the algori thm is allowed to use membership 
queries but not nonterminal membership queries. This difference leads to the problem of 
introducing new nonterminals that are not observed in interactions between the teacher 
and the learner. 

This relates to the problem of introducing theoretical terms in the learning of first order 
theories from facts. Recently, there have been several approaches to this problem (Banerji, 
1988; Muggleton & Buntine, 1988). However, in settings where the algorithm learns not 
only a concept but also a language for describing the concept, it becomes difficult to en- 
sure the convergence of a learning process. Of  course, i f  the concepts are described by 
a sufficiently restricted language, then we can expect to have an algorithm that learns the 
concept even in such a setting. This paper  presents one such learning algorithm. 
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Another feature of our setting is that the algorithm is allowed to use extended equivalence 
queries. The equivalence query defined in (Angluin, 1988) is allowed to conjecture only 
elements of  the original hypothesis space. For example, if the target class I of learning is 
a set of concept representations R = {r~, r2, . •. }, then any equivalence query made by 
the learning algorithm must be with some r i from R. We lift this restriction in this paper. 
In particular, the learning algorithm described in this paper is allowed to make an equivalence 
query conjecturing any grammar in 2-standard form; not necessarily simple deterministic. 
Hence, each intermediate hypothesis conjectured by an extended equivalence query might 
define a general context-free language. 

Yokomori (1988) gives another algorithm for learning SDLs in polynomial time. Our 
setting also differs from his, as will be described in Section 4. Berman and Roos (1987) 
show that the class of deterministic one-counter languages is learnable in polynomial time 
using membership queries and equivalence queries. Although the class of one-counter 
languages is incomparable with the class of  SDLs 2 it is interesting that both are classes 
with decidable equivalence problems. 

2. Preliminaries 

We will give some basic notions and the notation needed in this paper. We follow Angluin 
(1987a) and Yokomori (1988) wherever possible. The algorithm and its presentation parallel 
those of Angluin's result on learning k-bounded context-free grammars. 

2.1. Context-free grammars  and languages 

An alphabet is a finite non-empty set of distinct symbols. For a given alphabet X, the set 
of all finite strings of symbols from X is denoted X*. The empty string is denoted e. X + 
denotes the set X* - {e}. For a string x, Ixl denotes the length o fx .  If  S is a finite set, 
then IsI denotes the cardinality of S. 

Let ~ be an alphabet. A language L over I2 is a subset of 12" For a string x in E* and 
a language L over r~, let YL = {y ] xy E L} (I_2 = {y [ yx E L}). The set YL (Lx-) is called 
the left(right)-derivative o f  L with respect to x. For a string x = ala2 "'" an, Prei(x) denotes 
the string alaz "'" ai, and Suf(x)  denotes the string ai+lai+2 " "  a n. 

A context-free grammar (CFG) is a 4-tuple G -- (N, 12, P, S), where N is an alphabet 
of nonterminals, r, is an alphabet of terminals such that N f') ~ = O, S E N is the start 
symbol, and P is a finite set of  production rules of the form A ~ c~, where A E N, o~ E 
(N U ~)*. A CFG G is in Greibach normal form if and only if each production rule of 
G is of the form A ~ ac~, where A E N, a E I2 and a E N* Note that, in this paper, we 
consider only e-free grammars and languages. A CFG G is said to be in m-standard form 
if G is in Greibach normal form and, for each production A --* a s  of G, I~1 - m. The 
size of a grammar G is the sum of INI, 1121, IPI, and the sum of the lengths of the right- 
hand sides of  all the productions in P. 

For/3, 3' E (N LJ I])*, binary relation ~ is defined as follows: /3 = 3' if and only if 
there exist 61, 61 E (N U ~)* and a production rule A --* a E P such that/3 = 61A62 
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and 3" = 6 1 o ~  2. A derivation from/3 to 3" is a finite sequence of strings/3 =/30, /31 . . . . .  

/3, = 3" such that, for each i, 3i ~ /3i+1. If  there is a derivation from 3 to 3', then we denote 
it by 3 ~ *  3/, that is, the relation = *  is the reflexive, transitive closure of = .  In each 
step of a derivation, i f  the left-most nonterminal occurrence in/3i is replaced,  then such 
a derivation is said to be a left-most derivation of 3" from/3. In what follows, unless other- 
wise stated, /3 ~*  3' denotes a left-most derivation of  3" from 3. 

The language of a nonterminal A, denoted L(A), is the set of all x E ~* such that 
A =*  x. Similarly, for ot E N*, L(ot) denotes the set of all x E E* such that ~ = * x. 
(To emphasize the grammar  being used, we sometimes use the subscript G, for example, 
S = cer or LG(A). ) The language of  a grammar G, denoted L(G), is just  L(S), where S 
is the start symbol of G. A language L is called context-free i f  there exists a CFG G such 
that L = L(G). 

A derivation tree T of a grammar  G = (N, ~,  P, S) is a tree such that each internal 
node of T is labeled with an element of N, each leaf  of T is labeled with an element of 
E and, for each internal node labeled with A E N, there exists a production A -~ c~ in P, 
where o~ E (N tO ~)* is the concatenation of the labels of its children in left-to-right order. 
Let Tbe  a derivation tree of  a grammar. The root label of T is denoted by rt(73. The fron-  
tier of T, denoted by fr(T),  is the concatenation of  the labels of its leaves in left-to-right 
order. A derivation tree T illustrates a derivation from rt(T) E N to fr(T) E E* 

2.2. SDG and SDL 

A context-free grammar in Greibach normal form G is simple deterministic if  the follow- 
ing condition holds: for any A E N, a E ~,  a ,  /3 E N*, i f  there exist productions A ~ ao~ 
and A ~ a/3 in P, then c¢ =/3 .  A language L is simple deterministic i f  there exists an SDG 
G such that L(G) = L. 

For example, the grammar  G = ({S, A, B, C}, {a, b}, P, S), where 

P = { S ~ a A ,  A ~ b , A - - * a B ,  B ~ a B C ,  B ~ b C ,  C ~ b } ,  

is one of the SDGs that generate an SDL {ambm]l < m}. 
The following proposit ions (see, for example, (Harrison, 1979)) provide properties of 

SDGs and SDLs that are useful for our purpose. 

PROPOSITION 1. For  any SDG G = (N, r,, p, S), G is unambiguous, that is, for any 
w E L(G), there is a unique left-most derivation of w from S. 

PROPOSITION 2. Let  G = (N, ~,  P, S) be an SDG. For any A E N, x E ~ + and ~ E N*, 
i f  there exists a derivation A ~ *  xc~, then L(c~) = £L(A). 

PROPOSITION 3. Let G = (N, ~,  P, S) be an SDG. For  any A E N, L(A) is prefix-free, 
that is, if  x E L(A), then, for any y E E+, xy ~ L(A). 
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PROPOSITION 4. For any SDG G, there exists an equivalent SDG G '  that is in 2-standard 
form, that is, there exists an SDG G'  = (N', ~, P',  S) such that 

1. L(G) = L(G');  
2. Each production in P '  is of  one o f  the following forms: A ~ a, A ~ aB,  A ~ aBC,  

where A, B, C E N ' ,  a E ~. 

Proposition 4 allows us to consider only (e-free) context-free grammars in 2-standard 
form as the hypotheses of  our learning algorithm. 

We will analyze the complexity of  our learning algorithm on two types of  complexity 
measures: one is the length o f  the given example strings and the other is the number of  
nonterminals of  a minimal  S D G  for the target language. Let L be an SDL. A minimal  

S D G  f o r  L is an SDG G = (N, E, P, S) in 2-standard form satisfying the following 
conditions: 

1. L(G) = L; 

2. For any SDG G '  = (N',  Y, P ' ,  $3  in 2-standard form such that L(G' )  = L,  INI -< IN'l. 

2.3. Models and incorrectness~correctness 

Our algorithm for learning SDLs is based on Shapiro's (1983) model inference algorithm 
and Angluin's  (1987a) learning algorithm for k-bounded CFGs. The most important com- 
ponent of  these algorithms is the diagnosis routine. The diagnosis routine identifies an 
incorrect clause in a hypothesized theory which wrongly implies a negative instance. In 
our present context, we need to clarify the notion of  incorrectness of  a production in a 
grammar. In order to do this, we introduce some model theoretic notions for grammars. 

Let G = (N, E, P, S) be a context-free grammar. For each nonterminal A E N, a model  

of  A, denoted M(A),  is a subset of  E+. A model  M for the grammar G consists of  a model 
of  each nonterminal. 

M = {M(A1), M(A2) . . . . .  M(A[N[)  } . 

A replacement  is a finite tuple (possibly empty) of  pairs of  a terminal string Yi E ]:* 

and a nonterminal A i E N: 

((Yl, A,)  . . . . .  (Yn, An))" 

Let P = ((Yl, A1) . . . .  , (Yn, An))  be a replacement and/3 be a string in (N U E)*. p is 
compatible  with /3 if and only if there are finite strings xo . . . . .  xn E E* such that 
13 = xoAax~A2 "'" Ado n. If  p is compatible with 13, then the instance of 13 by p, denoted p[/3], 
is the terminal string obtained from 13 by replacing each occurrence of  h i in/3 by the 
terminal string Yi. An empty replacement p is compatible with any terminal string x and 
p[x] = x. 
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Let M be a model for a grammar G. A production A ~ ot is incorrect for M if and only 
if there exists a replacement 0 = ((Yl, AO, . . . ,  (y,, An)) that is compatible with c~ such 
that, for each i, Yi E M(Ai) 3, but p[ot] t~ M(A). A production is correct for M if and only 
if it is not incorrect for M. 

For example, consider the SDG given in the previous section. Let M be a model such 
that, for each nonterminal X E N, M(X) = L(X), that is 

g : { M(S) = {amb m I 1 < m } ,  M(A)  = { a m - l b  m I 1 <- m } ,  
M(B) = { a m - 2 b  m I 2 < m}, M(C) = {b}}. 

Then, a production A ~ aBC is incorrect for M, because there exists a replacement 
P = ((bb, B), (b, C)) that is compatible with aBC such that bb E M(B), b E M(C), but 
the string o[aBC] = abbb is not in M(A). More generally, we have the following. 

PROPOSITION 5. Let G = (N, E, p, S) be a CFG and M be a model for G such that, for 
each nonterminal A E N,  M(A) = L(A). Then every production in P is correct for M. 

2.4. Types o f  quer ies  

Let L be the target SDL to be learned by our learning algorithm. We assume there is a 
teacher who knows L and can answer the following two types of queries: 

A membership query proposes a string x E ]~+ and asks whether x E L. The reply is 
either yes or no. 

An extended equivalence query conjectures a grammar G in 2-standard form and asks 
whether L = L(G). The reply is either yes or no. If  it is no, then a counterexample is 
also provided. A counterexample is a string x in the symmetric difference of  L and L(G). 
I f  x E L - L(G), x is called a positive counterexample, and if x E L(G) - L, x is called 
a negative counterexample. The choice of a counterexample is assumed to be arbitrary. 

Note the difference between the extended equivalence query and the equivalence query 
defined in (Angluin, 1988). The equivalence query is only allowed to conjecture members 
of the target class. Thus, in learning SDLs, any hypothesis conjectured by the algorithm 
would have to be a grammar generating an SDL. In contrast, the hypothesis conjectured 
by an extended equivalence query does not have to generate an SDL. 

A teacher who answers equivalence queries and membership queries was called a minimal- 
ly adequate teacher (Angluin, 1987b). We call a teacher who answers extended equivalence 
queries and membership queries an extended minimally adequate teacher. 

The notion of the extended equivalence query corresponds to the notion, in the context 
of  the PAC-learning model, of  learning the target class R in terms o f  the class of represen- 
tations R', not necessarily identical to R (see, for example, (Pitt & Warmuth, 1988)). Infor- 
mally, R is said to be PAC-learnable in terms of R'  if there exists a polynomial time algorithm 
A such that for any target concept (description) r E R, if A is given randomly chosen ex- 
amples of r, A outputs, with high probability, a concept (description) r '  E R '  that approx- 
imates the target concept r. In our setting, R corresponds to the class of SDGs (or SDLs) 
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and R' corresponds to the class of CFGs in 2-standard form. In general, such a relaxation 
of the learnability criterion enriches the learnable classes of concepts. For example, the 
class of k-term DNFs is not PAC-learnable in terms of itself unless RP = NP, but the class 
is learnable in terms of the class of k-CNFs. For the result given in this paper, however, 
the learnability of SDGs in terms of itself (the learnability of SDGs from a minimally ade- 
quate teacher) is still open. 

3. The learning algorithm 

Let L be the unknown SDL to be learned by the algorithm and Go = (No, ~., P0, S) be 
a minimal SDG for L. We assume that the terminal alphabet ~ and start symbol S are known 
to the learning algorithm, but that N - {S} ,  the set of nonterminals except S, and P, the 
set of productions, are unknown. 

The main result of this paper is as follows. 

THEOREM 6. There is an algorithm that, for any SDL L, outputs a grammar G in 2-standard 
form such that L(G) = L using extended equivalence queries and membership queries. 
Moreover, at any point during the run, the time used by the algorithm to that point is bounded 
by some polynomial in INol, the number of nonterminals of a minimal SDG for L, and 
the length of the longest counterexample returned by any equivalence query seen to that point. 

Note that the grammar learned by the algorithm may not be an SDG. The grammar is 
simply in 2-standard form. 

In this section, we will describe our learning algorithm. We begin by giving an informal 
description of the algorithm, omitting details concerning the exact nature of the new nonter- 
minals and their intended models, which will later be made precise. 

3.1. An outline of the algorithm 

First, the algorithm initializes N to {S}, and P to the set of all productions containing S 
as the only nonterminal. As a model M for G, we initially consider {M(S) = L}. Models 
for any other nonterminals introduced by the algorithm will be defined in Section 3.3. Then 
the algorithm iterates the following loop: An extended equivalence query is made, conjec- 
turing G. If the reply is yes, then the algorithm outputs G and halts. Otherwise, a counterex- 
ample w is returned. The algorithm tries to find a derivation tree T of G such that rt(T) 

= S andfr(T) = w. If it exists, that is, when w is a negative counterexample, the algorithm 
diagnoses G on T and finds an incorrect production for M. The incorrect production is 
removed from P. Otherwise, that is, when w is a positive counterexample, new nonter- 
minals are introduced and all new productions constructed from them are added to P. 
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Figure 1. An example of an input to the diagnosis routine. 

In (Angluin, 1987a), such a diagnosis is made through nonterminal membership queries 
of  the type "bb E L(A)?" In our approach, it is performed through membership queries 
only. The next section shows how to introduce new nonterminals and replace nonterminal 
membership queries by membership queries. 

LEMMA 7. Suppose that the diagnosis routine is given as its input a derivation tree T of 
G such that fr(T) ~ M(rt(T)). Then it returns a production in P that is incorrect for M. 

Proof Since each recursive call is with a proper sub-tree of  its input derivation tree, the 
diagnosis routine must eventually terminate and output some production in P (since each 
sub-tree is also a derivation tree of G, the output production is a member of P). 

Let A ~ a be the returned production. For each nonterminal occurrence X in the pro- 
duction, let Tx be the sub-tree of T that is rooted at the corresponding node labeled with 
X in T. From the input condition, it holds that fr(TA) ~ M(A). If  ot contains no nonter- 
minal, then the empty replacement p satisfies p[ot] = ot = fr(TA) ~ M(A). Otherwise, from 
the termination condition of the procedure, for each B i appearing in cz, fr(TBi ) ~ M(Bi). 
Thus there exists a replacement p = ((fr(TB1), B0 ,  . . . ,  (fr(TBn), Bn)) that is compatible 
with cz such that, for each i, fr(TBi ) E M(Bi), but p[ce] = fr(TA) ~ M(A). So A ~ ce is in- 
correct for M. 

Note that, at the initial call to the diagnosis routine, the input derivation tree T is for 
a negative counterexample w. Sincefr(T) = w ~ L = M(S) = M(rt(T)), the input condition 
is satisfied initially. 

3.3. Generating nonterminals and productions 

The key idea of the nonterminal-generating routine has its roots in an extension of a model 
described in (Ishizaka, 1989). 

First, we show an important feature of SDGs for describing the nonterminal generating 
routine. 
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The Learning Algorithm 

Given: An extended minimally adequate teacher for L and a terminal alphabet ~. 
Output: A grammar G = (N, ~, P, S) in 2-standard form such that L(G) = L. 
Procedure: 

N : =  {S}. P :=  {S --+ aSS, S ~ aS, S ~ ala E ~}. G : =  (N, ~, P, S). 

repeat 
Make an extended equivalence query with G. 
I f  the reply is a positive counterexample, then 

introduce new nonterminals with their models. 
Put all candidate productions into P. 

Else if  the reply is a negative counterexample, then 
diagnose G. 
Remove the incorrect production returned by the diagnosis routine from P. 

until the reply is yes. 
Output G. 

In this paper, we assume a parsing sub-procedure that runs in time polynomial in the 
size of a grammar G and ]w[, for example, Angluin's (1987a) parsing procedure 4. In the 
following two subsections, we describe the diagnosis routine and how new nonterminals 
and productions are generated. Then, in the third subsection, we show the correctness and 
characterize the complexity of the entire algorithm. 

3.2. Diagnosing an incorrect hypothesis 

The diagnosis routine finds an incorrect production for M on an input derivation tree T 
of G such thatfr(T) ~ M(rt(T)). It is essentially a special case of the contradiction backtracing 
algorithm given by Shapiro (1983). 

For a given input deviation tree T, the diagnosis routine considers, in turn, each child 
of the root of T. If the child is labeled with a nonterminal and T' is the Sub-tree rooted 
at the child, then the diagnosis routine inquires whether fr(T') E M(rt(T')). Iffr(T')  
M(rt(T')), then it calls itself recursively with T'. Otherwise, it goes on to the next child 
of the root of T. If there is no nonterminal child such that fr(T') ~ M(rt(T')), for the sub- 
tree T' rooted at the child, then the diagnosis routine returns the production rifT) --. c~ 
E P, where c~ is the concatenation of the labels of the children of the root of T in left-to- 
right order. 

For example, consider the derivation tree for a negative counterexample abbb in Figure 1. 
Initially, abbb ~ M(S) = L. First, the child labeled with A generating the string bb is 

considered. The diagnosis routine inquires whether bb E M(A). If  bb ~ M(A), then it calls 
itself recursively with the sub-tree rooted at the child. If bb E M(A), then it goes to the 
next child labeled with B and makes a similar inquiry. If b ~ M(B), then it returns the 
production B ~ b. Otherwise, it returns the production S ~ aAB. 
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LEMMA 8. Let  G = (N, ~,  P, S) be an SDG. Suppose that A = *  rBa for A, B E N, c~ 
E N*, r E Z +, and that t is a string in L(c0 such that Sufj(t) ~ L(a) for any j (1 -< j _< 
It] - 1) (if o~ = e then t = 0-  Then, for any x E r~+, x E L(B) i f  and only i f  (i) rxt E 
L(A) and (ii) rPrei(x)t f~ L(A) for any i(1 _< i _< Ix] - 1). 

Proof Suppose x E L(B). Then A = *  rBe~ =* rxa = * rxt. Thus, rxt E L(A). Since L(B) 
is prefix-free, Prei(x ) ~ L(B) for any i(1 _< i _< Ix] - 1). Hence,  i f  rPrei(x)t E L(A), that 
is, Prei(x)t E rL(A) = L(Bot), then there exists j(1 _< j _< It[ - 1) such that Prei(x)Prej(t) 
E L(B) and Sufj(t) E L(cO. This contradicts the fact that Sufj(t) ~ L(a) for any j(1 _< j _< 
It[ - 1). Thus, rPrei(x)t ~ L(A) for any i(1 _< i _< Ixl - 1). 

Conversely, assume that (i) and (ii) hold. From (i), it follows that xt E ?L(A) = L(Bt~). 
Since there is no proper  suffix of t in L(ot), there exists j(1 _< j _< Ix[) such that Prej(x) 
E L(B) and Sufj(x)t E L(oO. On the other hand, from (ii), Prei(x)t f~ L(Bot) for any i(1 -< 
i _< Ixl - 1). Hence, for any i(1 _< i _< Ixl - 1), Prei(x) f~ L(B). Thus, j = Ixl. This 
shows that Prelxl(X ) = x E L(B). 

In the learning algorithm, new nonterminals are introduced whenever there is a positive 
counterexample w. The nonterminal-generating routine constructs nonterminals with their 
appropriate models  from w. 

Let  w be a positive counterexample such that Iwl -> 2. Nonterminals generated from 
a positive counterexample w, denoted N(w), are defined as follows: 

N(w) = {(r, s, t)lr, s E ~+, t E E* and rst = w}. 

For each tr iple (r, s, t) E N(w), let ~(r, s, t) be the shortest suffix of  t in ~ L ,  that is, 

~(r, s, t) = Suf(t) where i = max {j ] Sufj(t) E rgL}. 
0-<j-< Itl-1 

The intended model  of  each nonterminal in N(w) is defined as follows. For  each triple 
(r, s, t) E N(w), define 

M((r, s, t)) = {x E F, + I rx~(r, s, t) E L and 
rPrei(x)~(r, s, t) ¢ L for any i(1 _< i _< Ixl - 1)}. 

Let  w be a newly given positive counterexample at a stage of  learning. Then N is set 
to N U N(w). Let PN~w~ be a set of  all productions in 2-standard form constructed from 
N that have never appeared in P ,  that is, for each a E r., PN~w~ contains productions 
A ~ ac~ such that Ac~ E N +, I~1 --- 2 and At~ contains at least  one element of  N(w). Then 
P is set to P U PN~w~. Note that, at any point during the learning, P contains at most  
INI x I~1 x (INI + 1) 2 productions for N generated by the algori thm to that point. 

LEMMA 9. Let  N be the set o f  known nonterminals.  Suppose that w is a new positive 
counterexample.  Then the t ime required for generating nonterminals and computing new 
productions is bounded by a nondecreasing polynomial  in INI and Iwl. 
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Proof There are at most Iwl(Iwl - 1)/2 nonterminals in N(w), and N(w) is computable 
in time polynomial in ]w]. For each (r, s, tyln N(w),  the string ~o(r, s, t) is computed by 
making at most Itl membership queries with the strings rsSufj(O (0 <- j <- Itl - 1). 
Moreover the set PN(w) is computable in time polynomial in INI and IN(w)l. These facts 
prove the lemma. 

LEMMA 10. Let L be an SDL, w be a string in L, and G = (N, r., p, S) be an SDG such 
that L(G) = L. For any A E N - {S} that appears in the derivation S = * w, there exists 
a nonterminal (r, s, t) E N(w) such that L(A) = M((r, s, t)). 

Proof  Suppose that S ~ * rAc~ =* rset ~ * rst = w. Then, from the definition of N(w), 
the triple (r, s, t) is in N(w). (Since G is an SDG and A ~ S, neither r nor s is e.) Since 
L(S) = L(G) = L, by Proposition 2, L(o0 = ~L(S) = ~L.  By the definition of ~o(r, s, 
t), ~o(r, s, t) E L(ot) and Sufj(~(r, s, t)) ~ L(cO for any j(1 <__ j <_ ]¢(r, s, t)l - 1). Hence, 
by Lemma 8 and the definition of M((r, s, t)), L(A) = M((r, s, t)). 

The above lemma ensures that if the learning algorithm is given a positive counterexam- 
pie w, then it can make all nonterminals with appropriate models that are necessary for 
generating w. As a result, nonterminal membership queries used by Angluin's (1987a) or 
Shapiro's (1983) algorithm can be replaced by membership queries. For any x E Z* and 
A E N(w), the diagnosis routine can accomplish each inquiry as to whether x E M(A) by 
making Ixl membership queries. 

3.4. Correctness and complexity 

In what follows, let G = (N, E, P, S) be the current hypothesis of the algorithm and 

M = {M(S), M((rl ,  sl, tl)) . . . . .  M((rLNI-1, Slgl-1, tlgl-1))} 

be the model for G defined in the previous section. 

LEMMA 11. At any point during the learning, the time required by the diagnosis routine 
on an input derivation tree for a negative counterexample w is bounded by a nondecreasing 
polynomial in Iwl and e e, where ep is the length of the longest positive counterexample 
returned by any equivalence query seen to that point. 

Proof Since G is in 2-standard form, there are at most ]wl occurrences of nonterminals 
in the derivation tree. Thus, the number of inquiries made by the diagnosis routine is at 
most Iwt. For each inquiry as to whether x E M(A) or not, i fA = S, then only one member- 
ship query "x E L?" is made. Otherwise, that is, if A = (r, s, t), the routine makes at 
most Ix] membership queries "rPrei(x)~o(r, s, 0 E L?" for 1 _< i <-- [xl. Since x is a sub- 
string of w, the total number of queries made in a diagnosing process is at most [wl 2 Since 
the main operations performed in the diagnosis routine are forming strings rPrei(x)~(r, 
s, t) and making membership queries, it is clear that the claim of the lemma holds. 
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LEMMA 12. Let Go = (No, ~, Po, S) be a minimal SDG for the target language L. The 
total number of given positive counterexamples is bounded by INtl. 

Proof Let w, be the n-th positive counterexample given to the learning algorithm. We 
define No(wn) and Po(wn) as follows: 

No(w.) = {A ~ No I 3u ~ ~+, 3or ~N*,  S =~o uAot =~o wn}, 

Po(Wn) = {A ~ aot ~ Po I a ~ ~, Aot ~ ( 0 No(w~))+} • 
i = l  

When wn is given, the learning algorithm computes N(Wn) and sets N to N U N(wn). 
Then it computes all new candidate productions and adds them to P as described in the 
previous section. 

By Lemma 10, for each nonterminal A ~. No(wn), there exists a nonterminal A' ~ N(wn) 
such that L(A) = M(A% Under this correspondence of A and A', for every production in 
Po(wn), a corresponding production is added to P at least once. By Proposition 5, these 
corresponding productions are correct for M. Since correct productions are never removed 
from P, whenever the n + 1st positive counterexample is given, there exists at least one 
nonterminal A E No such that 

A E No(w~+l) and A ~ 0 No(wi). 
i = l  

Thus, the number of given positive counterexamples is at most ]N0l. 

LEraMA 13. At any point during the learning, the number of nonterminals introduced by 
the learning algorithm is bounded by INolep(ep - 1)/2, where fp is the length of the longest 
positive counterexample returned by any equivalence query seen to that point. 

Proof For each positive counterexample wi, IN(wi)l is at most Iwil(Iwil - 1)/2 as stated 
in the previous section. By Lemma 12, the total number of nonterminals introduced by 
the algorithm is bounded by INolep(e  - 1)/2. 

Proof of Theorem 6 From the method of introducing new productions and Lemma 13, the 
total number m of productions introduced into P is at most 

INolep(ep-1) ~ lNolep(ep-1) 
m = x x + 1 

2 2 

By Lemma 7, for each given negative counterexample, at least one incorrect production 
is found and it is removed from P. With Lemma 12, this implies that, after given at most 
INol positive counterexamples and at most m negative ones, the learning algorithm outputs 
a grammar G such that L(G) = L. 
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By Lemma 13, at any point during the learning, the size of G is bounded by a nondecreasing 
polynomial in INol and l,  where / is the length of the longest counterexample given to 
that point. From the assumption on the parsing sub-procedure, the algorithm can deter- 
mine whether a given counterexample is positive or negative in time polynomial in INol 
and t?. The total number of given counterexamples is at most INol + m. With Lemma 9 
and Lemma 11, this proves the claim, made in Theorem 6, on the complexity of the learn- 
ing algorithm. 

4. Conclusion 

We have considered the problem of learning SDLs. The main idea presented in this paper 
was a method of introducing necessary nonterminals with their appropriate models (or in- 
terpretations). The problem of introducing new, unobserved sub-concepts that are useful 
for representing a target concept is one of the most important and difficult problems in 
machine learning. Although there have been several approaches to this problem (for exam- 
ple, Banerji, 1988; Muggleton et al. 1988), it seems that none of the solutions proposed 
to date is satisfactory. Our result presented in this paper is no exception: it suffers from 
the limitation that the class shown as being learnable is too restricted for many practical 
applications. The method for introducing nonterminals given in this paper depends heav- 
ily upon the structural properties of SDGs used in the proof of Lemma 8. For example, 
the uniqueness of a left-most derivation is one of them. So the method is not applicable 
to (at least) the target class containing an ambiguous grammar. In future, we would like 
to find more general and practical solutions to this challenging problem. 

The efficiency of the algorithm given in this paper is also not optimal. As shown in the 
proof of Theorem 6, it is ensured that the algorithm runs in time polynomial in IN01 and 
e. The polynomial has a rather high degree. The polynomial is larger than, at least, the 
size of the largest hypothesis, O(IN013e6). If we can set each intermediate hypothetical gram- 
mar to an SDG, we may be able to decrease the degree. While a grammar G in 2-standard 
form has, in the worst case, INI x El × (INI + 1)2 productions, an SDG G has at most 
]NI x Ir.I productions. Since the operation performed most frequently by the algorithm 
is the parsing of each given counterexample on each hypothesis G, this reduction in size 
of each hypothetical grammar will decrease the complexity of the learning algorithm. Ob- 
viously, such a restriction on hypothetical grammars also results in the development of 
an algorithm that produces an SDG as its output using normal equivalence queries and 
membership queries. The efficient learnability of SDLs from a minimally adequate teacher 
is still open. 

Yokomori (1988) gives another algorithm for learning SDLs in polynomial time. His 
algorithm conjectures only SDGs. In his setting, however, a very powerful teacher is 
assumed. The teacher can answer the following two types of queries: prefix membership 
queries and derivatives equivalence queries. A prefix membership query is an extension 
of the membership query. A derivatives equivalence query proposes two pairs of strings 
(ul, wl), (u2, w2) and asks whether ~L~S = ~L~-S2, where L is the target language. It 
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is c lear  that derivat ives equiva lence  quer ies  can be  used,  in our  a lgor i thm,  to test whe ther  

two candidate  nonterminals  are  identical .  For  example,  for two nonterminals  (ul,  v~, w 0  

and (u2, v2, w2), i f  ~-yL~-~ = ~-~2L~, then they are  identical.  Thus,  the number  o f  non- 

terminals  genera ted  by our  a lgor i thm wil l  be  reduced.  The  re la t ionship be tween  the power  

o f  the teacher  and the eff ic iency of  the learning a lgor i thm remains  an interest ing open 

quest ion.  
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Notes 

1. The target class is a class of representations that define the class of concepts to be learned by the algorithm 
(see, for example, (Pitt, 1989)). 

2. For example, the language { {anb n I n > 1}c} + is deterministic one-couuter, but not simple deterministic. 
On the other hand, the language {ambncanb m I m, n >- 1} is simple deterministic, but not deterministic 
one-counter. 

3. When c~ has no nonterminal, then this condition is not necessary. 
4. Since G is in 2-standard form, Lemma 3 and Lemma 4 in (Angluin, 1987a) hold. In fact, the procedure returns 

a parse-DAG (directed acyclic graph) instead of a derivation tree. Our discussion, however, is not affected 
by the difference. 
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