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Abstract. By its very nature; artificial intelligence is concerned with investigating topics that are ill-defined and 
ill-understood. This paper describes two approaches to expanding a good but incomplete theory of a domain. 
The first uses the domain theory as far as possible and fills in specific gaps in the reasoning process, generalizing 
the suggested missing steps and adding them to the domain theory. The second takes existing operators of the 
domain theory and applies perturbations to form new plausible operators for the theory. The specific domain 
to which these techniques have been applied is high-school algebra problems. The domain theory is represented 
as operators corresponding to algebraic manipulations, and the problem of expanding the domain theory becomes 
one of discovering new algebraic operators. The general framework used is one of generate and test--generating 
new operators for the domain and using tests to filter out unreasonable ones. The paper compares two algorithms, 
INFER* and MALGEN, examining their performance on actual data collected in two Scottish schools and conclud- 
ing with a critical discussion of the two methods. 
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1. Introduction 

P r o g r a m m i n g  is f r equen t ly  u sed  by A I  worker s  as a m e a n s  o f  m a k i n g  a pa r t i cu la r  d o m a i n  

theo ry  m o r e  explici t .  T h e  inves t iga tor  p r o g r a m s  that  pa r t  of  t he  d o m a i n  tha t  he  be l ieves  he  

unde r s t ands ,  and  t hen  con t ras t s  the  p r o g r a m ' s  resu l t s  on  a p r e d e f i n e d  set  o f  tasks w i th  the  

expec ted  p e r f o r m a n c e .  A t h o r o u g h  analys is  o f  the  d i sc repanc ie s  b e t w e e n  the  ac tua l  and  

an t i c ipa ted  p e r f o r m a n c e  (as wel l  as the  cases  no t  covered)  f r equen t ly  he lps  the  inves t iga tor  

see  w h e r e  the  d o m a i n  theo ry  needs  r e f inemen t .  I f  such  a theory  is in su f f i c i en t  to solve the  

p rede f ined  tasks,  it is said to b e  incomple te ,  and  the  t heo ry  needs  to b e  ex tended .  In the  

context  of  ins t ruc t ion  ( the appl ica t ion  d o m a i n  for this  paper) ,  a d o m a i n  theory  is incomple te  
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if it does not have a complete set of rules to cover all student errors. Thus a set of rules 
that are only sufficient to solve tasks correctly still constitutes an incomplete theory, since 
it will never cover an errant "solution." 

We assume the use of the state-space paradigm for problem solving and theory representa- 
tion. A domain theory is thus a set of operators, and if relevant operators are missing, the 
domain theory is incomplete and some tasks will not be solvable. 1 In this paper, we address 
the issue of having the system infer missing operators from the initial formulation of the 
domain theory. We describe two systems that differ in their response to this issue. One 
(INFER*) is used when operators are found to be missing during problem solving (when 
the system fails to solve a task). The other (MALGEN) produces a (more) complete set 
of operators before problem solving begins, expanding the initial domain theory before 
attempting to solve a task. 

The domain in which these issues are explored is the modeling of student solutions of 
high-school algebra problems. An algebra equation is viewed as a state, and algebraic man- 
ipulations, perhaps including incorrect manipulations, are operators that transform one state 
(algebra problem) to another. The problem posed to the student is the initial state, and 
the final answer given by the student is the goal state. The problem of modeling a student's 
solution of an algebra problem thus becomes finding the sequence of operator applications 
that transform the posed problem, the initial state, to the student's answer, the goal state. 
Failure to model a student's solution demonstrates incompleteness in the domain theory, 
signaling the need for the generation of new operators. 

When viewed in the state-space paradigm, problem solving is the process of finding a 
sequence of operator applications that transform an initial state into a goal state. The search 
for such operators can be viewed in a generate and test framework, As depicted in Figure 1. 
An operator proposer generates new operators; this generator may be constrained to limit 
the types of operators it produces. The candidate operators generated by the proposer are 
then tested by a static filter, which eliminates those that are not feasible. The set of new 
operators that pass through the filter, together with the existing operators, are used by the 
problem solver to solve future cases? 

This view of creating new operators does not constrain a priori the type of operators 
generated. For example, the new operators could be macro-operators, generated by compos- 
ing existing operators. Heuristics used in this combinatorially explosive search include Iba's 
[1985] peak-to-peak heuristic. Often the number of macro-operators created is too large, 
and one needs some filter mechanism, such as that in Minton's [1985] MORRIS, to decide 
which should be retained. However, the present work focuses on the generation of missing 
operators that expand a domain theory: the INFER* and MALGEN systems. Because the 

I !  C:nstr:i:t: ] ~  [Static Filter[ 
. . . . . . .  ~ ~ - ~  (Test)[  
erator Proposer I 
(Generate) j /  

Figure 1. Framework for discovering new domain operators. 

I Operators i I 

~Problem Solver ~ 
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domain theory is viewed as operators in our framework, the task becomes one of implement- 
ing operator proposers and appropriate filters to remove some of the wilder proposals. 

In the following section, we review some related work on extending domain theories, 
including earlier work in the area of student modeling. In Section 3, we describe PIXIE, 
the student modeling system that acts as the performance system in our studies. Sections 
4 and 5 describe INFER* and MALGEN, two systems that extend PIXIE's domain theory 
for algebra to let it handle unexpected behavior. The following section evaluates the perfor- 
mance of the two approaches, and Section 7 summarizes the main points of the work, and 
discusses possible extensions. 

2. Related work on extending domain theories 

The use of domain expertise is central to many AI systems, and this has led to a variety 
of techniques for dealing with incomplete domain knowledge. For instance, knowledge 
engineering [Davis, 1979] involves querying the user for missing elements and interactively 
debugging the knowledge base by running a series of examples. In contrast, nonmonotonic 
reasoning works around missing information by using default rules [Reiter, 1980], circum- 
scription [McCarthy, 1980], or default values [Minsky, 1975]. A third approach uses analogy 
[Carbonell, 1986] to reason from past solutions, letting one solve new problems to which 
domain knowledge cannot be directly applied. 

However, this paper is concerned primarily with automated methods for acquiring domain 
expertise. One such approach uses inductive learning methods to generate domain rules 
from positive and negative instances, but most work in this area [for example Larson and 
Michalski, 1977; Quinlan, 1986] has started with little or no domain knowledge. Our 
approach differs in that it assumes one starts with a partial domain theory and extends 
this to account for new observations. Below we review two classes of systems that have 
taken this general approach. 

2.1. Student modeling systems 

When an intelligent tutoring system attempts to correct the errant behavior of a student, 
it requires some representation of the student's current mastery of the domain. This is the 
problem addressed by student modeling systems, forming models of the student's ability 
based on the observed behavior of a student, which is usually in the form of student solutions 
to a set of known tasks. These models are built out of primitives provided to the system, 
and when they are insufficient to accurately model a student's behavior, the set of primitives 
must be extended. This is the task addressed by this paper. 

Langley and Ohlsson's [1984] ACM is an example of a student modeling system. It starts 
with a set of operator-selection rules with overly general conditions. For each student the 
conditions are refined, so that the operators which are selected at any time are consistent 
with the student's behavior. This is done by exhaustively searching for a solution path that 
gives the same solution as the particular student. ACM then uses those operators lying 
on the path as positive instances of the various selection rules, and operators lying one 
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step off the path as negative instances. The conditions on each rule are then refined using 
an ID3-1ike algorithm [Quinlan, 1986]. Hence ACM is altering existing rules rather than 
generating new ones. 

VanLehn's [1987] SIERRA is a computational model that combines the essential aspects 
of both his Repair and Step theories. Repair theory seeks to give an explanation for students' 
ability to complete tasks, even when all the necessary procedures have notbeen learned; 
VanLehn postulates the existence of domain-independent repairs. Step theory attempts to 
explain how students learn incomplete rules when they are presented with correctly worked 
examples. Like Sleeman [1984], he argues that the student infers incorrect or incomplete 
rules from these worked examples. Further, he assumes that only one new subgoal is 
presented to the student at any time, thus simplifying the learning task. 

Notice that ACM and SIERRA have very different objectives. The former produces a 
diagnostic model of an individual student's strategy, whereas the latter models the way 
in which a student learns. 

2.2. Failure-driven learning systems 

If an AI system lacks essential knowledge, it will be unable to solve its task. At least two 
learning systems have addressed this problem by using details of the system's failure to 
determine the additional information necessary to solve the task. These systems thus use 
failure-driven learning to extend their theories. 

Hall's [1988] PA system works in the domain of digital circuit design. His precedent 
analysis technique uses existing design rules to partially explain a givgn design, and proposes 
a new rule that would allow the completion of the design. Hall uses a hill-climbing approach 
for finding the smallest gap in completing a design, so that his technique need not address 
the problem of multiple possible completions. (As discussed later, INFER* instead finds 
all possible completions.) Hall also employs a rule reanalysis process to determine whether 
rules learned earlier can be simplified in terms of rules learned later (cf. Section 7). 

Wilkins' [1987] ODYSSEUS learning apprentice attempts to explain actions taken by a 
domain expert using the knowledge of an existing expert system .3 When it cannot create an 
explanation, the system forms new rules that will enable the underlying expert system to rep- 
licate the action when acting on its own. Rules must take on one of a fixed number of forms, 
and ODYSSEUS uses this knowledge to determine all explanations that could potentially 
exist. The explanation missing only one piece of knowledge is taken as the correct one, with 
an ordering on predicates determining which to select if there is more than one such explana- 
tion. ODYSSEUS uses a confirmation theory as its filtering process that determines whether 
the inferred rule is indeed correct and should be added to the knowledge of the expert system. 

3. An overview of PIXIE 

Before examining the INFER* and MALGEN systems in detail, we will describe in outline 
the PIXIE student modeling system 4 and the principal domain in which it has been used-- 
high-school algebra. The goal of PIXIE is to model a student's problem-solving ability 
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Table 1. Typical student protocols: one correct (A) and two incorrect (B, C) protocols (student solution traces) 
for the task 3X + 5 = 23. 

A B C 

3 x  + 5 = 23 3x+  5 = 23 3x+  5 = 23 

3x = 23 - 5 3x=  23 + 5 8x=  23 

3x = 18 3x = 28 x = ~ 

x =  1% x =  2% x =  2~ 

x = 6 x = 9~ 

and to provide appropriate remediation to improve the student's performance. Ideally, the 
system will respond to a student's input in well under a second. However, the model gen- 
eration phase is compntafionally expensive, and thus potential student models are created 
during an o f f - l ine  phase. When the student is interacting with the on-line system, the answer 
provided by the student is simply compared against a precomputed answer list. 

PIXIE represents its domain operators as rules, some of which may be incorrect operators 
called real-rules .  T h e  off-line sub-system generates a m o d e l s p a c e  for each type of predefined 
problem--using correct rules, previously encountered real-rules, and other information about 
the domain provided by the investigator. This set of rules can be viewed as PIXIE's domain 
theory, and through the remainder of this paper, we will use the terms d o m a i n  theory ,  d o m a i n  

ru l e s ,  and r u l e  s e t  interchangeably. 
The main applications of PIXIE have focused on the domain of high-school algebra. 

For example, Table 1 shows the solutions to the problem 3X + 5 = 23 for three different 
students. Protocol A represents a correct solution; B is a solution in which the student moved 
an integer to the other side of the equation without changing the sign; and C is a case 
in which the student introduced a major error of combining an X-term with an integer. 
PIXIE can only classify answers if the appropriate rules have been encoded for use in the 
model generation phase. If the system lacks the appropriate rules, it is unable to produce 
a model for the student. 

In our earlier work we found mal-rules like those representing the errors above by carrying 
out detailed clinical interviews--a very labor-intensive process. The mal-rules encountered 
in this way include: 

m X  + n = p --* m X  = p + n 

m X  + n = p --* q X  = p 

w h e r e q  = rn + n 
m X +  n = p ~ X + q  = p  

w h e r e q  = m + n 
r e X +  n X  = p --* X +  X +  q = p 

w h e r e q  = m + n 

where m ,  n,  p ,  and q are all integers, and where the first two mal-rules represent the errors 
noted in B and C in Table 1. 5 The objective of the systems described in the following sections 
is to partially automate the process of discovering these missing rules. 
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4. The INFER* system 

The idea behind INFER* is that when a complete operator sequence from initial state to 
goal state cannot be found, one should propose a rule that would fill the gap. The system 
applies rules forward from the initial state, and backward from the student's answer, at- 
tempting to connect each node generated in the forward direction with the closest node(s) 
generated in the backward direction. It removes the assumption taken by its predecessor, 
INFER (Sleeman, 1982), that missing rules always occur as a first step in the student's 
solution path. As originally used, INFER applied reverse forms of rules to a student's answer, 
until either a form similar to the initial problem was reached or no further rules could 
be used, at which point its rule-inference step tried to form a rule to complete the missing 
last step. As INFER* uses a bi-directional search, it generates a larger number of nodes. 
For each pair of nodes generated in this space, it uses a rule-inference sub-algorithm to 
see whether a viable mal-rule between the two nodes can be generated. 

This process can be stated more formally: T-nodes (target nodes) are generated by ap- 
plying forward operators to the initial task, whereas S-nodes (source nodes) are generated 
by applying operators backwards from the student's answer. The S-nodes and T-nodes created 
for a given initial state and goal state along with the connections between them is referred 
to as the S-Tgraph. INFER* compares T-nodes with S-nodes, and calls the rule-inference 
sub-algorithm to look for all possible connections between heuristically selected S-T pairs. 
Figure 2 shows an abstract S-T graph. 

4.1. An introductory example of the INFER* system 

For ease of  experimentation, the INFER* system includes a set of system parameters. 
Specifically, it is possible to run the system either with or without the forward rule set. 
In the absence of this rule set, INFER* generates a series of nodes by working backwards 
from the student answer and then attempting to form new rules between those S-nodes 
and the original target equation. In this mode, the algorithm behaves exactly as the older 
INFER system (Sleeman, 1982). For the sake of clarity we will first discuss an initial run 
of the system using this degenerate mode. 

Given 
Problem 

Inferred Rule 

. . . .  . . . .  

Forward Search ~ ......... " ~ - - ~ ' ~  Backward Search 

Figure 2. A schematic S-T graph. 
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Table 2. Using INFER* to learn a mal-rule given the task 3X + 5 = 6 and the pupil's response X = -2. 

a) x = -2  
$ BS1 [AddSub] 

b) X =  [-2 - n] + [n] 
$ Instantiate to RHS of target equation 

c) X = 6 -  8 
$ B [NtoRHS] 

d) X + 8  = 6  
J, Rule-inference step 

e) 3X + 5 = 6 

Table 2 shows a successful path created by INFER* for inferring a mal-rule  cited earlier, 
namely: 

mX + n = p ~  X + q - = p ,  
w h e r e q  = m + n. 

As can be seen from the table, this process involves four basic steps: 

,e- 
l .  Using domain rules in the backward direction, to transform an equation to something 

potentially closer to the initial problem. For  example, B [NtoRHS], used between steps 
C and D in Table 2, is the use of  NtoRHS in the backward direction, where NtoRHS 
is a rule that moves an integer from the left-hand side to the right-hand side of an equation 
and changes its sign. 

2. Using backward symbolic rules that replace a number in a state by a symbolic expression. 
For example, between steps A and B, the - 2  is replaced by [ - 2  - n] + [n]. In this 
case the responsible rule is BS1 [AddSub], where AddSub is a forward rule used to add 
or subtract two integers. 

3. Using a series of heuristics to transform the symbolic expressions generated by backward 
symbolic rules into numerical  expressions. The heuristics select values based on the 
numbers that actually occur on the left-hand and right-hand sides of the target equation. 
The rule applied between steps B and C is an example of  such a heuristic. 

4. Attempting to create a rule to complete the path when none of the above actions succeed. 
Such a rule is created between steps D and E in the table; we refer to this as the rule- 
inference step. 

The current system incorporates 12 heuristics and backward-symbolic rules. Table 3 presents 
a selection of  them. 

These symbolic rules are necessary since there are an infinite number of  integer pairs 
that sum to any given integer, and a method is needed for selecting the most  suitable pairs. 
More generally, arithmetic operators can usually be applied in reverse in an infinite number 
of ways, but only a l imited number of  them are reasonable. Instead of the rule applying 
the reverse of  an arithmetic operator to an integer i to get two numbers a and b, the reverse 
application results in a symbolic form that must be instantiated with specific numbers, which 
is left as a separate task. This latter task is performed by a heuristic rule, which is applied 
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Table 3. Simplified versions of a selection of backward-symbolic rules. "Target" is short for the target equation, 
such as 3X + 5 = 6 in Table 2, and eqn is short for the current equation, which in Table 2 is initially X = -2 .  

BSI[AddSub] : 
IF lhs(eqn) :~ lhs(target) 

AND rhs(eqn) ~e rhs(target) 
AND rhs(eqn) = i 

THEN replace (i,[i - "n"] + ["n"] 

BS2[AddSub ] : 
IF lhs(eqn) = iX 

AND contains(lhs(target), j X  + kX) 
THEN replace (i,([i - "n"] + ["n"])) 

BS1 [Mult]: 
IF lhs(eqn) ~ lhs(target) 

AND rhs(eqn) :~ rhs(target) 
AND rhs(eqn = i 

THEN replace(i,[/ x "'n"]/["n"]) 

to select the appropriate instantiation for n in a symbolic expression, such as - 2 - n  or 
n, based on information in the target state (Step 3 above). The heuristic rules Ins tant ia te  

to R H S  o f  target  equa t ion  and Ins tan t ia te  to L H S  o f  target  equa t ion  both select values for 
n based on the numbers on one of the sides of the initial equation posed to the student. 
Thus instead of an infinite number of integer pairs that satisfy the relationship a + b = i, 
the set is usually reduced to only a few plausible pairs. 

In addition, the conditions on BS1 [AddSub] and BS2[AddSub] result in selective appli- 
cation of the backward rules so they are not applied to every integer in the state. These 
rules should be contrasted with the Ins tant ia te  to R H S  o f  target  equa t ion  and Ins tant ia te  

to L H S  o f  target  equa t ion  heuristics. 
Notice also that Table 2 only shows a success fu l  path for inferring a new rule. In general, 

several  rules are satisfied by a particular state; for example, both BS1 [AddSub] and 
BS1 [Mult] are satisfied by A. Also, a rule can be instantiated in several ways; for example 
B[NtoRHS] can be used at C to move either the 6 or -8 .  Both factors can lead to con- 
siderable search# which INFER* organizes using a breadth-first search algorithm. 

In the rule-inference step in Table 2 we saw that INFER* learns the mal-rule 

m X  + n = p  ~ X + q = p ,  

w h e r e q  = m + n. 

However, as the algorithm notes which symbols have remained unchanged ,  it is possible 
to infer that the substantive change is 

m X  + n = s t r i n g l  ~ X + q = s t r i n g l  

w h e r e q  = m + n. 

Neves [1978] reports using a similar approach to deduce the essen t ia l  features of rules 
given the several steps of a solution culled from an algebra text. For the moment we 
simply report the result of the rule-inference step; Section 4.3 gives some details of 
its execution. 
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Table 4. Part of the search tree working backwards from X = 8 to 5X + 3X = 24. 

1 2 3 4 5 

X = 8  X = 8  X = 8  X = 8  X = 8  
$ $ $ $ 

5X = 40 3X = 24 2X = 16 3X = 24 X = 24 - 16 

5X = 24 + 16 2X = 24 - 8  X +  16 = 24 

5 X -  16 = 24 2X + 8 = 24 
$ 

X + X + 8 = 2 4  

5X -- 3X = 24 

4.2. Using I N F E R *  without a forward rule set 

In general ,  a range of  focusing heuris t ics  are appl icable  and hence  the a lgor i thm usually 

generates  mul t ip le  mal-rules .  Table 4 shows part  of  the search required for inference of  

the mal - ru le  

m X  + n X = p  ~ X +  X +  q = p ,  

or  its more  general  form 

m X  + nX = s t r ing l  ---' X + X + q = s t r ing l ,  

w h e r e q  = m + n, 

given the initial task o f  5X + 3X = 24 and the student solut ion X = 8. The  table shows 

several paths, only one o f  which (path 3) is successful.  In this example,  the focus is on 

the general  nature  of  the heuris t ic  used  to t ransform the student 's  solution into the second 

node on the respect ive paths, and hence  the level o f  detail is less than those of  earl ier  traces, 

such as Table 2. 
The  first path starts by mul t ip ly ing  both sides of  the equat ion by the coeff ic ient  of  one 

of  the X- terms in the target equat ion (in this case  5). This  fails when  a form similar  to 

the target equat ion is reached  and I N F E R *  is unable  to find a new rule for the final step. 

Paths 2 and 4 are  identical ;  however,  the first results f rom mul t ip ly ing  both sides of  the 

equat ion by the o ther  coeff ic ient  of  the X-terms in the target equat ion (this t ime 3) and 

the second results f rom mul t ip lying both sides of  the equat ion by the factor 

r ight-hand side of  target 

r ight-hand side o f  student equat ion " 

Fur ther  progress  halts on both paths for lack of  an appropriate  Operator. Path 5 starts with 
the combined  appl icat ions of  BS1 [AddSub] with Instantiate to RHS o f  target equation, but 
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fails to find any rules for its final state. 7 Finally, the third column shows the successful 
path that starts by multiplying both sides of the equation by the number of X-terms in the 
target equation. 

4.3. Constraints on the rule inference step 

The rule-inference algori thm forms a rule only if  a numerical  relationship can be found 
between the coefficients of the target and current equations, that is, the T and S nodes. 
As there are an infinite number of numerical  relationships between any set of integers, 
the initial search has been constrained such that: 

1. each operand can occur at most once; and 
2. the division of any two integers is rejected i f  the result is not an integer. 

The first constraint can be relaxed so that operands may be used more than once, if  no 
relationships are found under the constraints. There is no restriction on the number of times 
a particular operator may be used. 

These constraints rule out a number of unlikely combinations. For instance, if  one wished 
to find all combinations of  3 and 4 that make 7, then one might consider 

3 + 4 ; 3  x 4 -  4 -  % ; ~  + 3/3 + ~ + ~ + 3/3 + ~ + ~;  

and so forth. However, the constraints given earlier would exclude all but the first combina- 
tion, that is all the unreasonable ones. There are situations, though, where one may need 
to relax these constraints considerably. For example, we have seen students solve tasks as 

- 3  x 4 ~ 9 - 3  x 5 ~ 12 
- 4  x 5 ~ 16 - 2  x 7 ~ 12. 

From interviewing students, we know that they worked the task - m  × n as m x n - m. 
To enable INFER* to discover this we would have to allow m to be used twice. 8 Deciding 
which constraints to use is a complex process that is based on considerable knowledge. 
We hope to capture this expertise; the constraints listed earl ier  are a first pass. Some more 
complex modes of the system are discussed in the next subsection. 

4.4. Using INFER* with a forward rule set 

The original I N F E R  algorithm [Sleeman, 1982] assumed that the inference step is always 
the first one in the student's solution path. As the student protocol  in Table 5 illustrates, 
this does not always hold; in such cases the INFER algorithm would be unable to determine 
the unknown mal-rule. This was a major  motivation for INFER* which uses all known 
rules (both correct and incorrect)forward from the initial task, together with the backwards- 
chaining approach discussed above. 
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T a b l e  5. Sample of a protocol with a mal-rule used at the fourth step of the solution ( m X  = n ~ X = n - m ) .  

20x  = 312x + 5] 

20x  = 6 x  + 15 

20x  - 6 x  = 15 

14x = 15 
,L 

X = l  

T a b l e s  6, 7, 8, a n d  9 s h o w  al l  t h e  r e c o n s t r u c t e d  p r o t o c o l s  c r e a t e d  by  I N F E R *  f r o m  t h e  o r i g -  

ina l  t a s k  2 0 X  = 3 ( 2 X  + 5) ,  g i v e n  t h e  s t u d e n t ' s  a n s w e r  X = 1. I n  e a c h  p r o t o c o l  F O R W A R D  

m a r k s  t h e  s t a t e s  r e a c h e d  u s i n g  f o r w a r d  o p e r a t o r s  f r o m  t h e  in i t i a l  t a s k ,  a n d  B A C K W A R D  

m a r k s  t h e  s t a t e s  r e a c h e d  u s i n g  b a c k w a r d  o p e r a t o r s  f r o m  t h e  s t u d e n t ' s  s o l u t i o n .  I n  a l l  f o u r  

p r o t o c o l s  o f  T a b l e  6, I N F E R *  w o r k e d  b a c k  f r o m  t h e  s t u d e n t ' s  a n s w e r  X = 1 to 2 0 X  = 

- 1  + 21X; n o  r u l e s  w e r e  a p p l i e d  in  t h e  f o r w a r d  d i r e c t i o n .  T h e  r u l e  i n f e r e n c e  s u b - a l g o r i t h m  

t h e n  c r e a t e d  f o u r  r e a l - r u l e s  b e t w e e n  t h e  n e w  n o d e  a n d  t h e  o r i g i n a l  e q u a t i o n  2 0 X  = 3 ( 2 X  + 5).  

T a b l e  6. Protocols for inferring potential mal-rules for a problem 20X - 3(2X + 5), given the solution X = 
1. No forward rules were applied. 

a) 

b) 

c) 

d) 

FORWARD: 20X = 3(2X + 5) 
20X = (3/(2 - 5)) + (3 x (5 + 2))X 

BACKWARD: 20X = - 1  +21X 
2 0 X -  21X = - 1  
- I X  = - 1  
X = I  

FORWARD: 20X = 3(2X + 5) 
20X = (2/(3 - 5)) + (3 x (5 + 2))X 

BACKWARD: 20X = - 1  +21X 
2 0 X -  21X = - 1  
- I X  = - 1  
X = I  

FORWARD: 20X = 3(2X + 5) 
2 0 X = ( 2 - 3 )  + ( 3  x (5 + 2 ) ) X  

BACKWARD: 20X = - 1  +21X 
2 0 X -  21X = - 1  
- I X  = - 1  
X = I  

FORWARD: 

BACKWARD: 

(Suggested inference step) 

(Suggested inference step) 

(Suggested inference step) 

20X = 3(2X + 5) 
20X = (5 - (2 x 3)) + (3 x (5 + 2))X (Suggested inference step) 

20X = - I  +21X 
2 0 X -  21X = - 1  
- I X  = - 1  
X = I  



22 D. SLEEMAN,  H. HIRSH,  I. ELLERY AND I.Y. KIM 

This set of inferred rules suggested how the student might have transformed 20X = 3(2X 

+ 5) into 20X = -1  + 21X. This can be written more generally as 

m X  = q ( r X  + s)  ~ m X  = n + p X ,  

where p = q x (s + r) and either n = q/ (r  - s) or n = r / (q  - s) or 

n = r -  q o r n  = s -  q x r. 

In Table 7, the original task is expanded f o r w a r d  to 20X - 6X = 15 by means of two 
correct domain rules and the backward rules transform the student solution to X + 14 = 
15. The system finds a single relationship between these two nodes, resulting in a single 
real-rule. Tables 8 and 9 show the f o r w a r d  solution of the task being taken several steps 
further and to real-rules subsequently being inferred that are essentially the same as that 
derived in Table 7. In this example, mal-rules cannot be formed for any other pair of S 
and T nodes because there are no other combinations of the available numbers that can 
be permuted to give 1. 

Table 7. Protocol for inferring potential mal-rule for the problem 20X = 3(2X + 5), given the solution X = 1. 

Two forward rules were applied in this case. 

20X = 3(2X + 5) 

20X = 6X + 15 

FORWARD: 2 0 X -  6X = 15 
X + 20 - 6 = 15 (Suggested inference step) 

BACKWARD: X + 14 = 15 

X = 15 - 14 

X = I  

Table 8. Protocol for inferring potential mal-rule for the problem 20X = 3(2X + 5), given the solution X = 1. 

Three forward rules were applied here. 

20X = 3(2X + 5) 

20X = 6X + 15 

2 0 X -  6X = 15 

FORWARD: 14X = 15 

BACKWARD: X + 14 = 15 

X = 15 - 14 

X = I  

(Suggested inference step) 

Table 9. Protocol for inferring potential mal-rule for the problem 20X = 3(2X + 5), given the solution X = 1. 

In this run, four forward rules were  applied. 

20X = 3(2X + 5) 

20X = 6X + 15 

2 0 X -  6X = 15 

14X = 15 

14X/14 = 15/14 

FORWARD: X = 15/14 

X = 15 - 14 

BACKWARD: X = 1 

(Suggested inference step) 
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The technique of working in both directions and filling in gaps focuses the system's atten- 
tion, and hence, in a sense, acts as a constrained generator. However, even this mechanism 
has the potential for generating many new rules for each problem. Thus the method of 
finding reasonable numerical relationships between states is used additionally to filter out 
some implausible rules. 

In the current system, all the remaining mal-rules are presented to the investigator, who 
decides which are plausible and which are not. In the case of  Table 6, the straightforward 
criterion of simplicity of the mal-rule would have been sufficient to rule out the real-rules 
produced, but in general this may not be true. We view the formulation of a body of exper- 
tise (constraints on rules or meta-knowledge) to reject potential real-rules as an important 
next step in this project; this topic is discussed in Section 7. 

As noted elsewhere [Sleeman, 1987], individual student errors are unfortunately not always 
stable. However, mal-rules that occur several times with either a single student or within 
the population are given greater credence than ones that only occur once. 

5. The M A L G E N  system 

Earlier work in intelligent tutoring systems has demonstrated that incorrect problem-solving 
performance can be represented as variations on correct behavior. Examples are Carr and 
Goldstein's [1977] overlays, in which incorrect behavior is viewed as omitting parts of correct 
behavior, as well as Sleeman and Smith's [1981] real-rules and Brown and Burton's [1978] 
procedural nets, in which correct performance is modified to represent incorrect behavior. 
This is the approach M A L G E N  takes, attempting to form new problem-solving operators 
that represent incorrect problem-solving performance by modifying existing operators. 

The new operators are formed by performing simple perturbations on existing operators. 
The perturbations themselves can be viewed as operators working in a space of possible 
domain operators. New perturbation operators can be added and old ones can be removed 
in much the same way that domain operators can be defined. Perturbations can be applied 
to the newly generated operators, generating more operators, continuing the process as 
long as desired. 

5.1. Rule representation 

To enable perturbations to be somewhat domain independent, M A L G E N  uses a robust 
representation for problem-solving operators. An operator is represented as a rule with 
four parts: a pattern, correctness conditions, actions, and a result. A state must match a 
rule's pattern if the rule is to be considered for use on the given state. I f  the pattern matches 
the state, the variables in the pattern are assigned values for use in the rest of the rule. 
I f  the pattern matches the equation, correctness conditions are checked to determine if 
this is the appropriate operator to apply. The actions carry out local computations that 
generate the new state, and the result specifies the state to be returned after the actions 
have been completed. The effort has been to make a robust representation that is capable 
of handling varying domains in the same, consistent manner. 
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Table 10. The rule ADD, an algebra operator that takes two numbers surrounding a " + "  and correctly adds them. 

ADD: 
pattern: 

the equation matches 
(?STRING1 ?NUM1 + ?NUM2 ?STRING2) 

where ?NUM1 and ?NUM2 are numbers 
correctness conditions: 

?STRING1 does not 
?STRING1 does not 
?STRING1 does not 
?STRING2 does not 
?STRING2 does not 
?STRING2 does not 

actions: 
?NUM3 +- ?NUM1 

result: 
(?STRING1 ?NUM3 

end with x,  and 
end with/,  and 
end with a - ,  and 
start with x,  and 
start with/,  and 
start with a variable 

+ ?NUM2 

?STRING2) 

To i l lus t ra te  this  r ep re sen ta t ion ,  Table  10 p resen t s  the  ru le  for  ADD,  an  ope ra to r  tha t  

co r rec t ly  adds  two n u m b e r s .  T h e  ru le  is on ly  re levan t  i f  two n u m b e r s  in  the  s t a t e - - t h e  

a lgebra  e q u a t i o n - - c a n  b e  added .  T h u s  the  pa t t e rn  for A D D  is tha t  " ? N U M 1  + ? N U M 2 "  

appea r s  in  the  equa t ion ,  w h e r e  " ? N U M I "  and  " ? N U M 2 "  are  p a t t e r n - m a t c h  var iab les  tha t  

m u s t  b i n d  to n u m b e r s .  A D D ' s  co r r ec t ne s s  cond i t ions  c h e c k  p r e c e d e n c e  re la t ions  to m a k e  

sure  the  ru le  is b e i n g  app l i ed  in the  co r r ec t  s i tua t ion ,  and  its ac t ions  c o m p u t e  the  ac tual  

sum of  the  two n u m b e r s  b o u n d  in t he  pa t te rn .  Final ly,  the  resu l t  of  A D D  is the  o r ig ina l  

equa t i on  w i th  s o m e  new " ? N U M 3 "  rep lac ing  " ? N U M 1  + ? N U M 2 " ,  w h e r e  " ? N U M 3 "  

was c o m p u t e d  in the  ac t ions  as the  s um  of  " ? N U M I "  and  " ? N U M 2 " .  

As a f u r t he r  example ,  Table 11 p re sen t s  the  ru le  N t o R H S ,  w h i c h  sub t rac t s  a n u m b e r  

f r o m  b o t h  s ides  of  an  equa t ion ,  m o v i n g  a n u m b e r  ac ross  the  '° = "  and  swi tch ing  its s ign.  

T h e  pa t t e rn  for  this  ru le  checks  i f  a " ? S I G N  ? N U M "  occu r s  o n  the  left s ide  of  the  " = "  

Table 11. Rule NtoRHS, an operator that moves a number across an equals sign and switches its sign. 

NtoRHS: 
pattern: 

the equation matches 
(?STRING1 ?SIGN ?NUM ?STRING2 = ?RHS) 

where ?SIGN is + or - ,  and ?NUM is a number 
correctness conditions: 

?STRING1 has balanced parenthesis, and 
?STRING1 does not end with x,  and 
?STRING1 does not end with a / ,  and 
?STRING2 does not begin with x,  and 
?STRING2 does not begin with /, and 
?STRING2 does not begin with a variable 

actions: 
?NEWSIGN '-- switch sign of ?SIGN 

result: 
(?STRING1 ?STRING2 = ?RHS ?NEWSIGN ?NUM) 
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in the equation, where "?SIGN" is a " + "  or a " - ' "  and "?NUM" is a number. In a similar 
way, the rule's correctness conditions make sure it is correct to move the number across 
the " = "  sign. The variable "?SIGN" gets negated to "?NEWSIGN" in the actions, and 
the new equation--the original equation with "?NEWSIGN ?NUM" appended to the right- 
hand side and "?SIGN ?NUM" removed from the left-hand side of the equation--is returned. 
The condition of  any rule can be a full Boolean expression, with any combination of  con- 
junctions, disjunctions, and negations. 

5.2. MALGEN's  perturbations 

As described in the previous subsection, operators are rules with four parts: pattern, correct- 
ness conditions, actions, and result, with all but the first open to deviation by MALGEN.  
Incorrect versions of correct operators will have the same pattern as the original operator 
and differ in one or more of the other three parts. This section describes the perturbations 
used by MALGEN.  

MALGEN keeps a list of rules pending perturbation, and separately perturbs the correct- 
ness conditions, the actions, and the result, each resulting in a new rule. The system checks 
each of  these newly-generated rules against the existing rules, and only retains those that 
are distinct. Thus, if an incorrect operator can be generated in two different manners, only 
one copy is saved, and if a perturbation results in a correct rule, M A L G E N  does not retain 
the duplicate copy. New rules are placed at the end of  the list of  rules pending perturbation, 
and the system stops when no further rules are pending. 

5.2.1. Perturbing correctness conditions. Incorrect operators that differ in correctness con- 
ditions cause the specified actions to occur at an incorrect time or place. For example, 
an incorrect application of  ADD might be to change "2 + 3 × 4" to "5 × 4", ignoring 
precedence of  arithmetic operators. Another example is " - 2  + 3" to " - 5 "  where the 
minus sign is handled incorrectly. In both these examples a valid action is applied to an 
incorrect state. The correct rule for ADD would check for these circumstances, and rules 
representing the incorrect versions above would be similar to the correct ADD, but with 
correctness conditions that deviate from the correct ones. 

With this in mind, M A L G E N  first perturbs the correctness conditions for all rules by 
negating them. If  the conditions contain a disjunction '541 V A2 V . . .  V An", where the 
A i are arbitrary Boolean expressions, it would be negated to give "-~A 1 A -~A2 A . . .  A 
~An". However, given a conjunction '541 A A2 A . . . A  An", the negation mechanism 

generates n new conditions, and hence n new incorrect rules, namely "-~A1 A A2 A . . .  A 
An'" '541 A "hA 2 A . . . A  A n " . . . ,  through '541 /~ A2 A . . . A  -~An'" with each new rule 
representing a different way the original rule can fail. Further, the negation mechanism 
works recursive!y on each of  the conjuncts, generating even more possibilities if there are 
nested conjunctions. Table 10 shows a simplified version of  ADD, the rule to add two 
numbers, and Table 12 shows an incorrect version of  this operator, generated by perturbing 
the correctness conditions. 9 

Note that the mechanism of negating conditions has the same effect as removing con- 
juncts. Both allow a perturbed rule to apply in the same situations as the original rule, 
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Table 12. The rule M1ADD, which adds two numbers that should not be added, due to precedence of operators. 
It is generated by perturbing the correctness conditions of the operator that adds numbers correctly. 

M1ADD: 
pattern: 

the equation matches 
(?STRING1 ?NUM1 + ?NUM2 ?STRING2) 

where ?NUM1 and ?NUM2 are numbers 

correctness conditions: 
?STRING1 does not end with x ,  and 
?STRINGI does not end with /, and 
?STRING1 does not end with a - ,  and 

?STRING2 does start with x ,  and 
?STRING2 does not start with /, and 
?STRING2 does not start with a variable 

actions: 
?NUM3 ~ ?NUM1 + ?NUM2 

result: 
(?STRING1 ?NUM3 ?STRING2) 

and additionally in new situations in which the deleted conjunct would have caused the 
original rule to fail. ITtwever, by negating the conjunct rather than removing it, the new 
situations in which the rule would have failed are isolated and addressable independently. 
As a result, the new rules created by perturbing the correctness conditions of a single rule 
are mutually exclusive. 

5.2.2. Perturbing actions. MALGEN incorporates three forms of action perturbations: 
changing actions, changing arguments, and removing actions. The first of these uses a list 
of primitive actions, each with a list of other primitive actions that can be used as 
replacements in creating new rules. The replace perturbation of Table 14 gives a simplified 
form of this perturbation operator. MALGEN then forms new rules by copying a rule and 
switching all primitives to similar ones, one at a time. Changing arguments, the second 
form of perturbation, simply takes existing actions and switches their arguments, as shown 
in the switch arguments perturbation in the table. The last perturbation, removing actions, 
takes primitives with one argument and replaces them with the IDENTITY primitive, one 
whose value is just the argument itself. This is shown in a simplified form as the remove 
perturbation in Table 14. For example, it would perturb the operator NtoRHS (Table 11) 
to generate a new operator, M1NtoRHS (Table 13), that moves a number across the " = "  
but neglects to switch its sign. 

5. 2.3. Perturbing results. Perturbation of results takes the general form of the returned answer 
and modifies it slightly. The motivation for this technique comes directly from the observed 
performance of high-school algebra students, who sometimes write the result incorrectly. 
For example, some students transform the algebra problem 4x = 2 into x = 4/2. The final 
switch perturbation rule of Table 14 switches the two arguments of a binary operation, 
generating the domain rule just described. 

Note that these perturbations differ from those involving actions, which create new 
operators that represent miscalculations; here the perturbations create new operators that 
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Table 13. The rule M1NtoRHS, which moves a number across the " = "  sign like NtoRHS, but neglects to 
switch its sign. It is generated by switching the negate action to the identity action. 

M1NtoRHS: 
pattern: 

the equation matches 

(?STRING1 ?SIGN ?NUM ?STRING2 = ?RHS) 
where ?SIGN is + or - ,  and ?NUM is a number 

correctness conditions: 

?STRING1 has balanced parenthesis, and 
?STRING1 does not end with x ,  and 
?STRING1 does not end with /, and 

?STRING2 does not begin with x ,  and 
?STRING2 does not begin with /, and 
?STRING2 does not begin with a variable 

actions: 
?NEWSIGN '-- ?SIGN 

result: 

(?STRING1 ?STRING2 = ?RHS ?NEWSIGN ?NUM) 

Table 14. Perturbations to replace an action with a similar action, to switch the arguments of an action, to remove 
an action, and to rewrite arY equation with a binary operation incorrectly. 

Replace: 
IF 

THEN 

?ACTION is used in the actions, and 
?ACTION2 is similar to ?ACTION 

replace ?ACTION with ?ACTION2 

Switch Arguments: 
IF 

?ACTION is used in the actions, and 
?ACTION has two arguments, and 
?ACTION is not commutative 

THEN 

switch the arguments of ?ACTION 

Remove: 
IF 

THEN 

?ACTION is used in the actions, and 
?ACTION has only one argument 

replace ?ACTION with the identity action 

Switch 
IF 

THEN 

the result matches 
(?STRING1 ?OPERANDI ?OP ?OPERAND2 ?STRING2) 

and ?OP is binary 

rewrite the result as 

(?STRING1 ?OPERAND2 ?OP ?OPERANDI ?STRING2) 
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represent incorrect manipulations. Thus M A L G E N  could generate two operators, one that 
would compute x = 2/4 and give the result x = 2 by calculating division incorrectly, and 
another that would convert 4x = 2 to x = 4/2 by doing the algebraic manipulations incor- 
rectly. Both will result in the same final answer, yet the underlying errors are substantially 
different: one is an incorrect calculation, and the other is an incorrect manipulation. 

5.3. Discussion of MALGEN 

Algebra is a domain in which domain operators can be partitioned into groups of operators 
that are similar MALGEN formalizes this notion by using perturbation operators to specify 
the differences between similar operators and to form new domain operators from existing 
operators. The more general form of  this approach is to apply transformations that form 
plausible new domain operators from existing ones. MALGEN perturbs operators, but one 
might codify other higher-level simularities as transformations and use them in the same 
manner. As such, the problem is related to analogy, in which similarities between some 
domain operators are codified in operators and then applied to new domain operators. It 
also resembles Lenat's [1983] use of mutation operators in AM and EURISKO to explore 
a space of concepts by modifying existing concepts. 

MALGEN only uses "reasonable" perturbations, and so only reasonable operators are 
produced. This makes M A L G E N  a constrained generator of new operators, when viewed 
in terms of  generate and test. Furthermore, when the system generates a new operator it 
queries the user about whether to proceed further with that operator. Thus the user serves 
as a filter for MALGEN.  However, an automated filter would prove useful, especially if 
the perturbations used were less reasonable, such as randomly deleting elements in operators, 
since this would create a space too large for a user to filter. Generating many implausible 
operators could pay off if it produced one new missing operator that would not otherwise 
be discovered, and if the implausible operators generated could be filtered out automatically. 

An early goal of this work, which has not been met, was to generate incorrect operators 
when needed. When the modeling system that uses the domain rules failed to find a solution 
path for a given problem, MALGEN was to suggest a new operator [Hirsh, 1985]. This 
requires a means of generating new operators ordered by some measure of their value to the 
modeling system. In one method that was considered, the strength of a perturbation operator 
was updated when one of  its results proved useful in the modeling system; new operators 
would be created using perturbation operators of higher strength. Unfortunately, the domain 
of perturbations proved more difficult to formalize than algebra, and the credit-assignment 
problem was not as easy as it first appeared. This remains an area for future research. 

6. Experimental assessment 

INFER* and M A L G E N  have been used to automate the process of  expanding incomplete 
operator sets for high-school algebra. Prior to this work, a researcher would analyze proto- 
cols that PIXIE was unable to model and suggest new operators that would allow a successful 
explanation of the protocol. Thus, evaluation of INFER* and MALGEN requires comparing 
their performance to that of the human they are meant to replace. 
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Table 15. A breakdown of the unmodeled errors. 

School Tasks Mal-rule Copy Arithmetic Guess Arith/Mal-rule Total 

LL 58 14.5 4 20.5 19 2 60 
PP 25 4 2 9.5 4.5 7 27 

6.1 Data and evaluation procedure 

We collected data by using PIXIE with groups of 21 and 29 students from two different 
schools, which we will refer to as LL and PP. The students from school LL were divided 
into three subgroups: model-based remediation, reteaching, and control; those from school 
PP were divided into subgroups for model-based remediation and reteaching. Sleeman [1987] 
provides the details of such experiments. For the purposes of this paper we have analyzed 
in detail PIXIE's response to the model-based remediation groups. For school LL, this 
subgroup consisted of 8 students who were presented with 392 tasks; due to the reworking 
of 4 tasks, 396 solutions were generated. Of these, 278 (70.20%) were worked correctly, 
29 (7.32%) were not attempted, and 89 (22.47%) tasks were worked incorrectly. Of those 
worked incorrectly, 31 (7.82 %) were modeled by PIXIE's current collection of mal-rules 
and 58 tasks (14.64%) ycere unmodeled. In school PP, 15 students were in the model-based 
remediation group; they were given 591 tasks, of which 3 were reworked, giving a total 
of 594 solutions. Of these 536 (90.24%) were worked correctly, 4 (0.67%) were not at- 
tempted, and 54 tasks (9.09 %) were worked incorrectly. Of these 54, PIXIE modeled 29 
(4.88%) and failed to model 25 (4.21%). 

Table 15 shows the breakdown of the unmodeled errors for both the data sets. One inves- 
tigator (Sleeman) suggested that for both the LL and PP sets, 2 errors were made on 2 
items, thus making the number of errors occurring in sets LL and PP 60 and 27, respec- 
tively. When the investigator was unable to decide whether the error was due to a real-rule 
or an arithmetic error, 0.5 was assigned to each class, hence the decimal entries in Table 
15. A detailed look at the data shows that the investigator suggested the error might be 
due to a real-rule in 16 cases for the data from school LL and only 5 times for school 
pp.~o The mal-rules and sign dropping (coded as Arith/Mal-rule) account for 30.0% (18/60) 
and 44.4% (12/27) of the total errors for groups LL and PP, respectively. 

For INFER* we simply need to determine whether, when given the student's answer 
and the original task, the system proposes a set of mal-rules that include the one proposed 
by the investigator. Since MALGEN does not take problems as input, its evaluation is based 
on whether it would generate from an existing rule the mal-rule proposed by the investiga- 
tor. Detailed examples will be taken from the data for school PP, shown in Table 16. This 
table contains all the unmodeled errors for school PP which the investigator thought were 
due to a mal-rule or a sign being dropped. Each row specifies a task, the answer given 
by the student, and the analysis given by the investigator. 

6.2. Experimental results for INFER* 

Before giving the results of the experiments with INFER* we would like to highlight features 
of the INFER* system that are relevant to experimentation. As noted earlier, one can run 
the system in a variety of modes, including: 
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Table 16. Mal-rules proposed by investigator for data f rom school PP. 

Student' s Invest igator 's  

Task  Answer  Mal-rule 

P3 2X + 3 = 8 X = 

P4 7X = 2(5X + 6) X = z% 

P5 5X = 8(4X + 6) X =  4~7 

P6 3X + 4 = 19 X = l~  

P7 5 X =  2(3 - 2) X = - %  

P8 2 X =  3(2 + 3) X = 9/4 

P9 7X = 2(5X + 6) X = 4 

P10 6 X =  10(9X + 5) X = 5%4 

P15 6X = 1 0 ( 9 X +  5) X = 4~z5 

P19 6X = 10(9X + 5) X = 5%4 

Arith: 8 - 3 --* 3, or  Mal-rule: m X  + n = p ~ X = n /m  

Mal-rule: 2(5X + 6) -~ 10 + 12 

Mal-rule: 5X - 32X ~ 27X 

Arith: 19 - 4 = 11, or  Mal-rule: 3X + 4 = 19 ~ 3X = 19 - 4 -~ 4 

Arith: 6 - 4 = - 2  

Mal-rule: 3(2 + 3) --, 6X + 9 a n d  Arith: 2X - 6X = 4X 

Arith: 7X - 10X = 3X 

Arith: 6X - 90X ~ 84X 

Mal-rule: 6X - 90X --, 84X a n d  42X = 25 ~ X = 42/25 

Mal-rule: ( - a X  = b ~ X = b/a)  

• using only the backward rule set (cf. INFER), or using both forward and backward rule sets; 
• using complete rule sets with all previously encountered mal-rules, partial rule sets, or 

only correct rules; and 
• using operands only once or a prespecified number of times in an expression. 

Experimentation was done using INFER* with three different rule sets: backward and correct 
only, backward and forward with correct rules only, and complete backward and forward 
(including all mal-rules discovered prior to the development of INFER*). In all cases 
operands were used only once. 

Table 17 presents detailed results for the shorter dataset, from school PP; later we give a 
summary of analogous data for the larger dataset. Three statistics are given for each of the 
three execution modes: the size of the search space generated, the number of real-rules pro- 
posed, and the number of spurious mal-rules created (those that were not substantially the 
same as the investigator's mal-rule). Note that decisions about the equivalence of two mal- 
rules is somewhat subjective. Further, the number of spurious rules also needs some explana- 
tion: for most tasks several real-rules are generated from several different parts of the graph. 

Table 17. Performance of  INFER* on data for school PP. 

Backward and Both Directions: Both Directions: 

Correct Rule Set Correct Rule Set Complete Rule Set 

Search # # Search # # Search # # 

Task Space Rules Spur. Space Rules Spur. Space Rules Spur. 

P3 14 0 0 102 0 0 5613 11 11 

P4 13 1 0 121 3 0 23928 9 5 

P5 12 0 0 104 1 0 23842 5 3 

P6 14 0 0 134 0 0 3842 14 9 

P7 5 3 2 67 3 2 2067 7 6 

P8 4 0 0 68 0 0 1879 6 6 

P9 43 5 5 287 6 5 42449 57 55 

PIO 12 0 0 92 1 0 22190 2 0 

P15 48 0 0 98 0 0 22324 1 0 

P19 12 0 0 92 1 0 22190 2 0 
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In reality, there are many fewer distinct mal-rules; one could argue that the count should 
focus on distinct classes of mal-rules. However, such a classification remains subjective; 
Sleeman and Ellery (1988) give a complete listing of mal-rules inferred for the PP dataset. 

Looking at the results of these experiments, the INFER* algorithm with only the back- 
ward rule set generated two of the suggested twelve mal-rules, whereas the backward and 
forward correct rule set generated six, and the complete backward and forward rule set 
generated nine of the mal-rules. However, note the very considerable increase in the size 
of the search spaces and the corresponding increase in the number of spurious mal- 
rules produced. 

The mal-rule for the first task (P3) in Table 16 is strange, as it involves using only some 
of the coefficients in the original equation; this error could be alternatively explained 
by an arithmetic slip. The other mal-rules that were missed were those in PS, where the 
investigator suggested there were two mal-rules. Had INFER* been able to cope with 
multiple missing rules, then both rules would have been found, as both mal-rules had been 
found when they occurred singly. Note that the investigator also suggested two mal-rules 
for task P15. With the complete rule set, one of the mal-rules inherent in P15 is already 
encoded, and so only one remains to be found. (The other modes fail to find either of 
these mal-rules.) 

For the 10 tasks included in the tables, INFER* suggested 114 mal-rules when running 
with the complete backward and forward rule sets. In addition to the tasks given in the 
tables above, on 4 additional tasks the system proposed acceptable mal-rules where the 
investigator originally proposed none. For example, with the backward and forward com- 
plete rule set for tasks P14 and P17, INFER* proposed the protocols and mal-rules shown 
in Table 18. 

In summary, INFER* has produced acceptable mal-rules for all but tasks P3 and P8. 
Had these new mal-rules been included in the rule base, PIXIE would have diagnosed a 
further 8 of the previously undiagnosed tasks. Thus of the 54 tasks that students of school 
PP worked incorrectly, 37 (as opposed to 29) or 6.23% would have been diagnosed and 
17 (as opposed to 25) or 2.86% would have remained undiagnosed. This is a change of 
just 1.35% when compared to all tasks worked, but it represents a 32.00% reduction in 
the number of undiagnosed tasks, and moreover represents a 37/39 (94.87 %) diagnosis of 
tasks worked incorrectly because of real-rules; the investigator suggested that 15 out of 
the 54 errors were due to guessing, copying, or arithmetic errors. 

T a b l e  18.  Mal-rules suggested by INFER* for tasks P14 and P17. 

Task: P14 p17 

Problem: 4 + 6 X  = 22 7X = 5X + 17 

Solution: X = 6 X = 2 

Proposed Protocol: 4 + 6X = 22 7X = 5X + 17 

10X = 22 X + 7 = 5X + 17 

X =  1~ X =  5 X +  10 

X = 6  X =  1% 

X = 2  

Proposed Mal-rules: X = b / a  --" X = b - a X = a X  + b -+ X = b / a  
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Table 19. Number of mal-rules diagnosed by PIXIE with new rule sets from INFER*. 

original original plus original plus original plus 
rule set only inferred from LL inferred from PP both LL and PP 

LL 3¼8 = 64.58% 4y48 =93.75% 3¾8 = 68.75% 4¾8 = 93.75% 
PP 2%9 = 74.35% 3%9 = 87.18% 37//39 = 94.87% 3~9 =94.87% 

For the more  extensive dataset for school LL we will merely present a summary:  

1. There were 16 mal-rules and 2 dropped signs noted by the investigator. For one task 
2 mal-rules were deemed necessary, and in another a mal-rule and an arithmetic error  
was required. 

2. Of the 18 possible mal-rules,  INFER* with the backward correct rule set inferred 7 
mal-rules,  with the backward and forward correct  rule set it formed 13 mal-rules,  and 
with the complete backward and forward rule sets it formed 14 mal-rules.  

3. One of  the mal-rules not inferred involved using an operand twice (for 3X = 5 --" X 
= 8/5); the other two tasks involved multiple errors, in one case two mal-rules, in the 
other a mal-rule  and an arithmetic slip. 

4. For 13 other tasks where the investigator had not suggested a mal-rule, INFER* proposed 
mal-rules that were accepted as plausible by the investigator, as well as suggesting plausi- 
ble alternative mal-rules for many of the other tasks. 

I f  all the mal-rules produced by INFER* for the LL school been included in PIXIE's  
rule-set when it was diagnosing the protocols from school PP, then a further 5 of the pre- 
viously undiagnosed tasks would have been covered. This represents an increase of  just  
0.84% over all tasks worked, but it constitutes a 20% (5/25) reduction in the number of 
undiagnosed tasks. Moreover, since we estimated that only 39 of the tasks could be attri- 
buted to mal-rules (the others being copying errors,  guesses, etc.), this represents a 87.18 % 
(34/39) diagnosis for errors involving mal-rules. Table 19 summarizes the diagnostic per- 
formance of PIXIE with a variety of rule sets. 

6.3. Experimental results for  M A L G E N  

Unlike INFER* M A L G E N  can only form new rules that are similar to existing rules. 
However, it generates all but four of the mal-rules from Table 16, failing to create the mal- 
rules for P3, P4, P6, and the first of  the two for P8. The reason for this is clear: the ones 
missed are sufficiently far from an existing rule that they are outside of MALGEN's  current 
search space. For task P3 the mal-rule is not similar to any existing rule, and indeed drops 
one of  the operands. Similarly, P4 necessitates using 2 instead of 2 x 6, again dropping 
an operand. In P6 and P8 additional terms are added, in one case by repeating an operand, 
and in the other by adding an X. Such dropping and adding of terms is not included in 
the perturbation set of M A L G E N ,  and thus such mal-rules cannot be generated. 

As noted earlier, the perturbations are merely a set of  operators, and one could include 
others for doing such addition and deletion of terms. However, such operators create much 
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Table 20. Number  of mal-rules diagnosed by PIXIE with the new rule set from M A L G E N  

original  plus rules 
original only generated by M A L G E N  PP 

LL 3¼8 = 64.58% 4%s = 83.33% 

PP 2% 9 = 74.35% 3y39 = 89.74% 

larger search spaces and, as was the case for INFER* result in a more complex and costly 
search. New perturbation operators would require the development of filters to rule out 
most of the unreasonable proposed rules. 

The situation with school LL is similar to that of school PP. In eight of the tasks, the 
mal-rules proposed by the investigator could not be generated by M A L G E N .  In one case 
this was due to the fact that an operand is used twice, and in the remaining seven cases 
an operand, such as an X, is dropped. In all the other cases the necessary mal-rule is similar 
to an existing rule or mal-rule,  and can thus be generated by M A L G E N .  Table 20 shows 
the improvement in diagnostic abili ty using the expanded rule set. Thus M A L G E N ,  as 
reported above, finds a high proport ion of the missing mal-rules but does not do as well 
as INFER* when it uses both forward and backward rules. 

7. Conclusions 

Further work on INFER* should focus on the processes of finding a gap for a given task 
and creating a rule to fill such a gap. A better assessment of  closeness between S-nodes 
and T-nodes would help constrain generation of mal-rules. Another  improvement would 
use other techniques besides pattern matching--such as analogy-- to  determine whether 
there is a connection between two nodes; this would let the system use additional domain- 
specific knowledge. 

From Table 16 it is clear that a previously undiscovered mal-rule can occur several t imes 
in a data set, as in P9, P10, and P15. Thus INFER* would be more effective if, as soon 
as it created a new mal-rule,  all outstanding protocols were checked to see i f  they too could 
be explained by the new real-rule. The system would then only need to process those that 
were still unexplained. 

INFER* currently uses only the initial task and the student's answer. In some cases, the 
system's performance could be greatly enhanced i f  it were also given intermediary steps 
in the student's protocol; such information would greatly reduce the size of the search space. 
For example, consider the protocol: 

3 5 X =  3 + 4 ( 2 X +  5) 
35X = 3 + 8X + 10 
3 5 X =  8 X +  3 + 10 
35X = 8X + 13 

3 5 X -  8X = 13 
27X = 13 

X = 13/27 
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Figure 3. A solution trace from the original task, T, to the solution, S, where the use of two unknown rules, 
U~ and U2, leads to the formation of a composite rule. 

It would be simple for INFER* to decide that the steps from 35X = 3 + 8X + 10 to the 
student's answer were error-free, and merely to look for errors between the first two steps. 

When INFER* determines a gap to which it should apply the rule-inference step, it gen- 
erates only a single rule that covers the gap. This means that even when a combination 
of rules would better explain a protocol, the inference step will only generate a single 
composite rule. However, once discovered, a new rule can then be included in the forward 
and backward rule sets, making INFER* progressively better at analyzing complex proto- 
cols. Indeed, reanalyzing earlier protocols after later rule discoveries could let INFER* 
decompose composite rules, as in Hall [1988]. To clarify this point, Figure 3 shows a solu- 
tion path between the task, T, and the solution, S. In this case there are two unknown rules 
in the path. Node names are given above the nodes, and rules that apply between nodes 
are given under the link. INFER* works in both directions, back from S to node 7, and 
forward from T to node 3, attempting to infer a new rule to cover the gap from node 3 
to node 7 (which would include rules R4 and Rt0). However, if one of the unknown mal- 
rules, say U1, is inferred from a later problem--that is, in another protocol in which it 
is the only unknown rule--it  should be possible to return to this protocol and infer U2, 
since knowing U1 would let INFER* work forward from node T to node 6. 

A further possibility for a static filter for INFER* is motivated by the development of 
the half-order theory in Meta-DENDRAL [Buchanan & Feigenbaum, 1978]. A researcher 
provided a set of constraints on which bonds in a molecule can and cannot break to Meta- 
DENDRAL,  and they were used to limit the possible cleavage rules generated. A similar 
approach can be used more generally. We have formulated two components of  such a half- 
order theory fbr this domain. First, from our extensive observations of students' algebra, 
we believe students do have a strong idea of the acceptable form of an algebra al . . . . . . .  
Thus, although we have seen many types of errors, we have never seen tasks of the form 
m X =  n changed to either X = n / o r  X = /m. This suggests one possible type of filter, 
formalizing the notion of well-formed equations. One difficulty in this approach is that 
rules such as those implied above apply to the description of states rather than operators. 
Before such a filter could be used, it is necessary to determine which operators have the 
potential for creating a state that would fail the given condition. The second component 
suggested by the two pairs of possible algebra rules proposed in section 4.4 is that of sim- 
plicity. In both instances the new rule supported by (clinical) interviews was the simpler 
of the two hypotheses. However, a consistent definition of simplicity can be difficult to 
determine, and it may not always be appropriate. Thus, this approach to formalizing a static 
filter requires inspection of new rules proposed by the generator, and needs criticism of 
the rules by experts to suggest why certain rules are not acceptable. This knowledge then 
needs to be captured and represented as constraints. 

Although the techniques used in INFER* are quite general, certain portions of the system 
could be made even more task independent. All the domain-specific information has been 
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included in the knowledge base for the algebra domain. However, the algorithm that currently 
seeks to establish a (semantic) relationship between elements of the T- and S-nodes looks 
merely for a numerical relationship between the entities (that is, the coefficients). This 
function is probably domain specific, and in general INFER* will need to establish different 
types of relationships, such as the relationship between toenail and arm or the relationship 
between chlorine and halogen (Chisholm & Sleeman, 1979). 

Finally, an improvement in the efficiency of these systems can be achieved by segmenting 
the rule set and only working with the relevant subset at any time. 

This paper has demonstrated the use of several techniques to extend a domain's operator 
set or theory. INFER* proposes new operators to bridge gaps during the reasoning process. 
On the other hand, MALGEN proposes new operators by modifying existing operators, 
using a set of perturbation rules. Although applications to date have focussed on algebra, 
we believe these techniques are applicable in other domains. With other knowledge bases, 
one might use MALGEN to generate an initial set of real-rules and use INFER* to create 
the more rarified, idiosyncratic ones not suggested by the former, as MALGEN is computa- 
tionally less demanding than INFER*. We predict that these techniques will become increas- 
ingly more important as knowledge bases in intelligent systems become larger and--virtually 
by definition--more inconsistent and incomplete. 
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Notes 

1. This is not to say that the only form of incompleteness is missing operators. For example, a state description 
language that lacks relevant attributes can also cause incomplete performance. 

2. This framework is only part of a more general scheme that includes a dynamic filter, to filter possibilities 
during problem solving, and filter compilation [Bennett & Dietterich, 1986]. Iba [1989] uses a similar framework 
in his work on macro-operator learning, and some of the terminology used here is taken from his paper. 
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3. ODYSSEUS has also been used as a student modeling mechanism that attempts to explain the behavior of 
a student when compared to an existing expert system. Both applications of ODYSSEUS have been explored 
in the domain of medicine. 

4. See Sleeman [1983] for a detailed discussion of LMS, the precursor to PIXIE, and the underlying algorithm. 
5. For a more complete list of mal-rules for the domain of high-school algebra, see Sleeman [1985]. 
6. Some of this branching could be avoided if the backward form of NtoRHS were made more sophisticated 

by allowing it to access the target equation; that is, using a heuristic form that is applied selectively, c.f., 
BSl[AddSub]. 

7. INFER* will not create a state that is more complicated (that is, involves more terms or symbols) than the 
target equation. 

8. However, allowing 3 and 4 to be used twice to obtain 7 increases the number of  possible combinations obtained 
from one to ten. 

9. The M preceding operator names is taken form Sleeman's [1983] method of prefixing incorrect mal-rules 
with the letter M. 

10. For the LL data, some 13 were unambiguous and 3 were ambiguous, hence a score in Table 15 of 14.5 (13 
+ 3 × 0.5), corresponding to 16 potential mal-rules. For the PP data, 3 were unambiguous and 2 were ambig- 
uous, hence a score in Table 15 of 4 (3 + 2 × 0.5), which corresponds to 5 potential mal-rules. 
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