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Abstract. Assuming that the Rayleigh-scattering atmosphere of a planet is homogeneous and plane- 
parallel we estimate the influence of non-conservativeness of the atmosphere and the state of polariz- 
ation of the incident radiation upon the phase curves both for flux and polarization. 

1. Introduction 

About twenty years ago the optical properties of the clouds of Venus were under 
careful scrutiny. It appeared that the measured polarization was a very sensitive 
function of wavelength (Coffeen and Gehrels, 1969), thus allowing to rule out 
many speculations about the physical constituents of the clouds. Assuming that 
the atmosphere of Venus is Rayleigh-scattering, Horak (1950) had made the first 
calculations based on the results of Chandrasekhar (1947).This work was continued 
by Horak and Little (1965). These calculations showed clearly that the major 
contribution to the polarization reflected from Venus in the range of 3400 to 
9900 8, was from aerosols rather than molecules as was later proved by in situ 
experiments. 

Horak (1950) employed the integration over the visible crescent of Venus thus 
generalizing the exact method given by Schoenberg (1929) for local scalar reflection 
according to the laws of Lambert and Lommel-Seeliger. Since Horak (1950) had 
to extensively interpolate between the tabular values his calculations were in 
considerable error as has been shown by Kattawar and Adams (1971) who had 
used the invariant-imbedding approach (Adams and Kattawar, 1970) and the 
Monte Carlo method. However these errors could not change the verdict on the 
hypothesis of the molecular atmosphere. 

Though the problem of the physical constituents of the clouds of Venus is 
comfortably settled it is of considerable interest to determine the flux and polariz- 
ation of the radiation reflected from an imaginary planetary atmosphere assuming 
the non-conservativeness and linearly polarized incident flux. 

This task turned out to be a rather easy one after we had compiled a package 
of FORTRAN subroutines to solve the vector equation of transfer (Viik, 1989). 
The solution is based on the method of discrete ordinates by Chandrasekhar (1960) 
and on the kernel approximation method (Viik et al., 1985). 
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2. Formulation of the Problem 

We consider a planetary atmosphere being illuminated by a parallel beam of 
radiation, the state of polarization of which depends on the components of its flux 

F = (F,, Fr, Fu, Fv)~ 

Natural light is described by the set F, = F, = 0.5, FU = Fv = 0. Linearly polarized 
light is described either by FI = 1, F, = FU = Fv = 0 or by Fl = FU = Fv = 0, F,. = 1. 

Usually the following assumptions are made: 
(1) The planetary atmosphere is homogeneous and locally plane-parallel since 

the geometrical thickness of the atmosphere is very small compared with the radius 
of the planet. 

(2) The atmosphere is horizontally homogeneous. 
(3) The distance between the planet and the source of illumination is infinitely 

large (incident beam is parallel). 
(4) The atmosphere is bounded by a Lambert bottom with albedo A. 
We computed the flux, the polarization and the albedo of the radiation reflected 

from such an atmosphere. 
Since Horak (1950) was the first to discuss this problem we shall adopt his 

notation as has also been done by others (Kattawar and Adams, 1971; de Rooij, 
1985). Let p be the planetary radius, Y - the distance between the Sun and planet, 
R - the distance between the Sun and the Earth and A - the distance between 
the Earth and planet. Phase angle (Y is the angle Sun-planet-Earth. In Figure 1 P 
is an arbitrary point on the planetary surface, b is the longitude and 7~ is the 
colatitude. 

We set up a local coordinate system at the point P choosing the outward normal 
as the z-axis, x-axis is chosen so that the azimuthal angle q& for the incident solar 
ray is zero. Having defined x and Z, the y follows from the assumption of a right- 
handed coordinate system. 

At the point P the angles of incidence and reflection are defined as follows 

~Lg=cos/3=sin77cos(~-cu), (1) 

~=cos0=sin~cos~, (2) 

where p and 0 are acute angles. 
According to the formulae of spherical trigonometry the azimuthal angle of the 

reflected ray is 

cos cp = (cos 0 cos p - cos cY)(sin 0 sin /3-l, (3) 

sin cp = sin a cos q(sin 0 sin /3-. (4) 

In order to find the flux and polarization over a planet’s disc we have to rotate 
the Stokes vector by the angle 4, where 
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Fig. 1. Planetary coordinates. 

cos q3 = sin q sin {(sin f3) - I, (5) 

sin 4 = cos r(sin 19)-l; (6) 

respectively, the matrix of linear transformation is the following (de Rooij, 198.5) 

\o 0 0 o/ 

The next step is to find the differential surface area da at the point P 

du=$sin Tdqd& (7) 
To obtain the flux density and polarization we integrate the Stokes vector over 
the visible crescent 

D = (plA)2j( a) = (p/A)’ 
I 

x dq(sin 77)2 
.I 

d2 

dl’U#)I(O, rl, 579) ~0s 5, 
0 a-d2 

(8) 

where I is the Stokes vector at the point Q. 
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3. Numerical Results 

There are at least three methods to numerically integrate Equation (8), the first 
of them was elaborated by Horak (1950) and the others by de Rooij (1985). Since 
our method to find the Stokes vector (Viik, 1989) does not depend on the pre- 
scribed set of /-L and p. values (we need no interpolation) thus we may exploit the 
method by Horak (1950). Hence we make the following transformation 

[=(2sinJ+coscu-l)(coscr+l)-‘, (9) 

q!f= cos 77. (10) 

Then 
j(a) = 1/2(cos (Y + 1) 

I 

fl 

d$(l - @)“” dSL(dW> $> 5, cp>> 
-1 

or in scalar notations, 

jI(Ly) = 1/2(cos ct! + 1) 

*I 
Cl 

i 
+1 

d$(l - e2)“” dtW> IL> 5, cp>, 
-1 -1 

j,(a) = 1/2(cos a + 1). d$(l - I/?‘)“~ 

(11) 

(12) 

(13) 

Horak (1950) and Kattawar and Adams (1971) performed the first integral by a 
quadrature employing Chebyshev polynomials of the second kind and the second 
integral by Legendre-Gauss quadrature. We used for both integrals Legendre-- 
Gauss quadrature of the order of M=6 while the order for the discrete ordinate 
method was N=8. 

To test the scheme of numerical integration we, too, compared the exact results 
computed for Lambert’s law I=F~: namely, 

j(a) = 2/3 cos a(cos a sin cy + 7~ - a) + l/3 sin a( 1 - cos 2~), (14) 

with the results obtained by the numerical quadrature. The maximum relative 
error for M = 6 was 2~10~~ and for M = 12 - 3 x lo-‘. It is clear that the flux 
reflected by a planetary atmosphere is larger if the atmosphere is less absorbing. 
Figure 2 shows that at smaller phase angles this difference is more pronounced 
than at large phase angles. The flux decreases rapidly in the region of phase angles 
from -10” to -70”. Then the decrease continuous at a slower pace up to -140 
where it again begins to decrease more rapidly. This behaviour is the same for all 
albedos of single scattering. We were especially interested in how does the non- 



0.12 

0. oc 

9 
q 

0.04 

A =l.O 

\ 

7, =0.2 

\ A =0.6 

I 

o*o+ ’ 0.0 30.0 60.0 90.0 120.0 160.0 180.0 
phase angle 

A NOhCONSERVATIVE RAYLEIGH-SCATTERING PLANETARY ATMOSPHERE 45 

Fig. 2. Flux versus phase angle for a Rayleigh-scattering atmosphere as a function of optical thickness. 
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Fig. 3. Degree of polarization versus phase angle for a Rayleigh-scattering atmosphere as a function 

of the polarization of the incident radiation (F, = 0.5, F, = 0.5). 
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Fig. 4. Same as Figure 3 only F, = 1 and F, = 0. 
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Fig. 5. Fig. 5. Same as Same as Figure Figure 3 3 only F, only F, = 0 and F, = 1. = 0 and F, = 1. 
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conservativeness influence the degree of polarization of the reflected radiation. It 
appears that this influence is not very large since the degree of polarization for 
h = 0.3 and h = 1.0 differs at most 10% in the region of phase angles from 80” 
to 110” only, the degree of polarization being larger for smaller h (Figure 3). 
Approximately the same may be observed also in the cases when the incident 
radiation is not natural but linearly polarized either in 1 or in Y direction (Figures 
4 and 5). 

If the incident radiation is not polarized, the degree of polarization of the 
reflected radiation is positive almost in the whole region of phase angles. Only at 
very large phase angles there exists a small negative polarization. One is inclined 
to suppose that if the incident radiation is linearly polarized in I direction (in the 
plain of the main meridian) the negative polarization will prevail for all phase 
angles. This is not the case since the degree of polarization becomes negative only 
at approximately 130” if the optical thickness is 0.2 (Figure 4). And vice versa, 
if the incident radiation is linearly polarized in r direction there exists a small 
region of negative polarization from 0” to 20” (Figure 5). 

Kattawar and Adams (1971) pointed out that for ground albedos other than 
zero the polarization phase curves are skewed toward larger phase angles since 
the unpolarized radiation from the surface will have less of a chance to escape 
for larger phase angles. The nonconservative atmospheres show the same trend 
as observed in Figure 6. 
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Fig. 6. Degree of polarization versus phase angle for a Rayleigh-scattering atmosphere as a function 

of the ground albedo. 
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Fig. 7. Spherical albedo versus albedo of single scattering as a function of the optical thickness of 
the atmosphere. 

In Figure 7 we give the dependence of the spherical albedo of a planet on the 
albedo of single scattering in its atmosphere. For thicker atmospheres the spherical 
albedo increases steeply toward larger A-s. 

4. Conclusions 

The preceding calculations and discussion have concerned effects associated with 
non-conservativeness of the Rayleigh-scattering planetary atmosphere and with 
the different states of polarization of the incident radiation. 

It is concluded that, in our model: the effects are rather pronounced, thus 
allowing to better understand the physical situation in real planetary atmospheres. 
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