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Abstract. In order to evaluate the scientific feedback of a spaceborne radar in the frame of future 
space missiona towards the asteroids, we present a method able to calculate mono-dimensional or two- 
dimensional simulations of the surface of any asteroid, or of the Moon. 

A first set of results related to statistical geometrical properties of the surface, i.e. height and slope 
distributions, etc..., is given. Discussion shows that these results are in good agreement with obser- 
vational data obtained from Earth for the Moon and for a few asteroids. In particular, we find r.m.s. 
slopes much greater on big asteroids than on the Moon. 

1. Introduction 

More than 50 asteroids have been observed by Earth-based radars since the first 
radar detection of Icarus in 1968 (Goldstein, 1968, 1969; Pettengill et al., 1969). 
Since the intensity of the radar signal is very distance dependent, only two kinds 
of objects could be observed: 

- Earth-grazing, Aten-Apollo-Amor asteroids, very small objects but studied 
at their closest approach to Earth; 

- Main Belt asteroids, generally the largest ones in the Inner Main Belt detected 
at their opposition time. 

Nevertheless, important scientific data were obtained for almost all these ob- 
served asteroids, concerning their shape, rotation period and axis, and surface 
roughness. in several cases, the signal to noise ratio was good enough to allow 
the determination of an evolution model of the backscatter coefficient with the 
incidence angle. 

In order to study the primitive objects of the Solar System, the French and 
Soviet national space agencies (CNES and INTERCOSMOS respectively), studied 
an international mission called Vesta (Perret et al., 1988). The Vesta mission is 
composed of two spacecraft which would fly-by about six to eight asteroids (from 
less than ten to several hundred kilometers in diameter) and two or three comets, 
at flyby velocities of several kilometers per second, and at distances at closest 
approach of about one to two thousand kilometers. A radar-altimeter-radiometer 
was planned for this mission, with a one-meter antenna working at 35 GHz (Rai- 
zonville et al., 1988). 

Scientific capabilities of such a radar are quite obvious, but have nevertheless 
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to be certified by very deep and precise analyses. Use of Earth-based observational 
data is of course possible for this, but two problems remain: 

- these observations do not represent a significant sample of what the Vesta 
spacecraft could observe in the Main Asteroid Belt, especially for the small 
and medium-sized asteroids; 

- the spatial and height resolutions of the radar will be much better than for 
Earth-based observations. 

Since the scientific data obtained with the radar-altimeter aboard the Vesta 
spacecraft would be wholly derived from the received echoes, it seemed necessary 
to simulate asteroids of all diameters and types in order to compute the radar 
echoes that would be obtained; the processing of these echoes will then be deter- 
mined and validated from this simulated data set. 

One important point is to verify that simulated asteroids give the same global 
results as the real ones. So, comparisons with real data will be performed as often 
as possible to validate the models. 

The way of obtaining radar echoes from simulated asteroidal surfaces, and 
discussion about computed echoes will be the subject of a forthcoming article. 
This paper presents the surface simulation method and gives the major geometrical 
results about simulated asteroids. The principle of the simulations will be discussed 
in Section 2. Section 3 will develop theoretical aspects of description of asteroidal 
surfaces. Results of one-dimensional simulations will appear in Section 4 and 
will be compared to observational data in Section 5. A small series of conclusions 
in Section 6 will complete this paper. 

2. Principle of the Simulations 

2.1. BACKGROUND AND HYPOTHESES 

Asteroids represent a very diversified population because of their different types 
and diameters. But their collisional history represents a major common point in 
their evolution. In fact, the absence of any geological evolution has not yet 
been proved. It is generally believed that asteroids several hundred kilometers in 
diameter may have been differentiated. Collisional fragmentation of such different- 
iated bodies could explain for example the existence of nearly entirely metallic 
asteroids. Debris caused by a very large number of impacts on asteroids may have 
formed a layer of material called regolith. We will see that regolith can’t grow on 
asteroids where gravity is too small to retain any ejecta. 

2.2. PROPOSED METHOD 

In our simulations, we will only consider the collisional evolution of asteroids. For 
the biggest ones, differentiation of the body may have partly melted the surface 
and obliterated existing craters, as on lunar maria. In this case, the simulations 
will refer to the non-melted part of the surface. 
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Of course, different types of asteroids will produce different kinds of cratering 
process and regolith evolution. We have chosen to describe three kinds of aster- 
oids : 

- weak bodies, that can represent carboneous asteroids; 
- strong asteroids, corresponding to stony materials; 
- very strong asteroids, with density and strength of metallic materials. 

Even if the correspondence between these classes of asteroids and observational 
classes is not perfect, they will be called respectively C, S and M classes. Physical 
characteristics of these different types will be given thereafter. 

To simulate the surface, we use a Monte-Carlo process; the surface is built step 
by step with craters chosen randomly in location and size, their shape depending 
on their size and on the type of the simulated asteroid. So. for a given asteroid, 
we propose the following scheme: 

- to calculate the position of craters of any given diameter on its surface; 
- to calculate the ‘maximal crater’, i.e. the largest crater caused by an impact 

that could almost destroy the asteroid; 
- to calculate the mean depth of the regolith; 
- to estimate the morphology of all craters, considered as fresh impacts; 
- to take into account the difference between a ‘fresh’ and an ‘old’ surface, i.e. 

to include (i) obliteration of old craters by young ones, and (ii) erosion of 
each crater; 

- to model the asteroid by including the regolith and all the simulated craters. 

Prior to develop each of these points, it is important to define the spatial 
sampling of the simulations. In order to estimate the geometrical parameters of 
the surface for radar applications, it is theoretically necessary to know the surface 
to a h/10 precision, where A is the radar wavelength (e.g., Ulaby et al., 1986). So, 
at 35 GHz, we would need a millimetric precision! Considering that it is nearly 
impossible to simulate any individual small pebble or boulder, a two-scale model 
will be used: 

- the surface of the asteroid will be modelled with craters down to ten centime- 
ters in diameter. At this scale, regolith will be considered as perfectly smooth; 

- then the influence of the grain size distribution of the regolith, and of small 
pits will be estimated. For statistical reasons, boulders up to ten centimeters 
in diameter will be taken into account. In practice, as far as height and slope 
distributions are concerned, we will neglect larger boulders, because they are 
statistically rare at the surface of any asteroid. Data about a ‘typical square 
meter’ of any asteroid can be estimated from measures on terrestrial samples 
with appropriate materials and grain size distributions. This point will be 
discussed later. 

We will see how to avoid prohibitive calculation times in simulating an asteroid 
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with a centimetric precision. The first step will be to do only mono-dimensional 
simulations, and to deduce two-dimensional properties of the surface from the 
mono-dimensional results. 

3. Theoretical Aspects of Description of Asteroidal Surfaces 

3.1. CRATER DENSITIES ON ASTEROIDS 

If we neglect the particular localization of secondary craters, craters of all diame- 
ters will be randomly distributed on the surface of any asteroid. The number of 
craters between a given diameter D and D + dD per square kilometer is generally 
given by 

dN(D) = aDP dD, (1) 

where (Y and p are constants. 
Some authors prefer to speak in terms of cumulative densities, which represent 

the number of craters greater than D. After simplification, relation (1) yields 

N,‘(D) = a,D 6 , (2) 

where 

a!, = -al@ + 1) 

and 

Another notation is to give the number of craters in the interval [D; 21’2D] (or 
sometimes [2-1’4D; 21’4D], that we will not use). In this case, we shall adopt an 
expression of the form 

Ni(D) = qD@i , (3) 

where 

(yi = -Ql - 2(P+w) 

and 

A straight line is then obtained when we plot these laws in log-log coordinates. 
Experimental results for different objects. in the Solar System show that there is 
sometimes a break in the slope of this curve, which corresponds to the transition 
between the production density and the saturation density: for a given diameter 
of crater, so many impacts may have occurred that recent impacts have only 
obliterated older ones, leading to a limiting ‘saturation’ value for the density. The 
problem of saturation density has been discussed elsewhere (e.g., Hartmann, 
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1984). For asteroids in the Main Belt, we can assume that their highly collisional 
environment has created a ‘near saturation’ state for all diameters considered 
here. From values given for Phobos and Deimos (Thomas and Veverka, 1980), 
and for heavily-cratered surfaces in the Solar System (Hartmann, 1984), we will 
accept 

a = O.l77(log (Y = -0.75) and /3 = -2.90 , 

which gives 

and 

a, = O.O93(log a, = -1.03) and PC = -1.90 

(Yi = 0.045 (log (Yi = -1.35) . 

An important remark is that this distribution seems unlikely to depend on the 
diameter and the type of the asteroid. In fact, the distribution of impacting bodies 
is constant in the Asteroid Belt. We can assume that the mean relative impact 
velocity is a constant too. But, for a given impacting body, the diameter of the 
resulting crater would depend on the strength and sometimes on the gravity field 
of the target asteroid, too (cf. Equation (4)). However, the concept of saturation 
density leads us to assume that this distribution is the ‘maximal’ one, and that it 
is the same for all types of asteroids. Of course, there will be a limitating value 
for each asteroid corresponding to the disruption of the body. That is the subject 
of the following section. 

3.2. THE MAXIMUM DIAMETER 

We can write an expression which relates the crater diameter to the energy of the 
impact (e.g., Housen, 1981; Housen and Wilkening, 1982) 

D = K&%(g) ) (4) 
where K. depends only on the strength So of the material of the asteroid, 6 is a 
parameter which depends on the cratering regime, and h(g) is function of the 
gravity g of the asteroid 

g= YP4, (5) 

where 4 is the diameter of the asteroid, p is its density (we consider homogeneous, 
non-differentiated asteroids), and y is a constant that can be easily calculated by 
using relation (5) with Earth values. In order to be consistent with the literature, 
we will use the c.g.s. system to formulate the following equations, but constants 
and results will be given in the metric system as often as possible. 

The cratering regime is characterized by the f number which is defined (cf. Gault 
and Wedekind, 1977) as 

f = S,lpgD . (6) 
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When f+ 1, material strength dominates gravitational forces, and such a regime 
is called ‘strength-scaling’ regime; 
When f+ 1, gravitational forces predominate and we have a ‘gravity-scaling’ re- 
gime; 
When f- 1, we are in a transitional regime. We will note Of the crater diameter 
for which f= 1. 

The expression of h(g) is then: 

in strength-scaling h(g) = 1 (74 

in gravity-scaling h(g) = g-1’6 . 0) 

Let Ed be the minimum energy required to disrupt the asteroid (it is smaller 
than the minimum energy required to disperse the fragments, but we will not take 
re-accretion process into account). We can write 

Ed = S1 V, = n-S1 $3/6 , (8) 

where V, is the volume of the asteroid and S1 is its ‘average ultimate strength’: 
strength of materials increases with the pressure related to an impact. This factor 
of increase may reach lo4 to lo5 in certain cases of asteroidal impacts. So, S1 may 
be defined as the average strength of the asteroid due to destructive impact. It 
can be shown (Davis et al., 1985) that 

S1 = So + ~Gkp%$*/15 , (9) 

where G is the gravitational constant, and k is a constant that will be taken equal 
to 1. 

Combination of Equations (4) to (9) leads to calculate the maximal diameter 
DM for a given asteroid. The constants that we will use for the different types of 
asteroids will be: 

for C-type asteroids: p = 2.0 g cme3 and So = lo4 N me2 , 
for S-type asteroids: p = 3.5 g cmm3 and So = 3 x lo6 N m-* , 
for M-type asteroids: p = 6.0 g cmP3 and So = 10’ N m - * . 

The constants K. and 6 have been estimated for weak and strong materials 
(e.g., Housen, 1981). We have tentatively extrapolated these values for very strong 
materials. So, for: 

C-type asteroids: for gravity-scaling: K. = 8.00 x 10m3 and 6= 
0.333 
for strength-scaling: K. = 6.36 X lo-* and 6 = 
0.290 

S-type asteroids: for gravity-scaling: K. = 2.75 x lop3 and 6 = 
0.333 
for strength-scaling: K. = 4.20 x lo-* and S = 
0.290 
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M-type asteroids: for gravity-scaling: KD = 1.0 x lop3 and 6= 
0.333 
for strength-scaling: KD=2.0x 10m2 and S= 
0.290. 

Equations have to be solved by assuming that the maximal diameter will corre- 
spond to a given regime. If this is not verified, the regime is changed, and if no 
regime is applicable, we average the two values. It is interesting to note that, as 
a consequence of the two cratering regimes, the maximal diameter of weak bodies 
is smaller for small asteroids, and greater for large asteroids, than the maximal 
diameter of strong bodies. The regime changes when C$ is, respectively, about 
equal to 5, 50, and 200 km for weak, strong and very strong asteroids. The results 
will be shown on Figure 3. 

3.3. MEAN DEPTH OF THE REGOLITH 

The problem of the evolution of asteroidal regolith has been dicussed elsewhere. 
Main models in the literature are the Housen et al., model (Housen et al., 1979a,b; 
Housen, 1981; Housen and Wilkening, 1982), and the Langevin and Maurette 
model (Langevin and Maurette, 1980,1981, Langevin, 1982,1986). In this section, 
we will attempt to determine the mean depth of the regolith with a simple analytical 
model. We will not calculate local variation of the regolith thickness. Of course, 
we will consider that the thickness to asteroid diameter ratio is very small. 

The regolith growth is due to the formation of ejecta from impact cratering. So, 
it is important to know what is the fraction of ejecta that falls back on the asteroid 
surface. In fact, ejecta with initial launch speed greater than the escape velocity 
of the asteroid will never participate to the growth of the regolith (except if a 
third body creates gravitational perturbations of the trajectory of the escaped 
ejecta, as it could have been the case for the Martian satellites (Soter, 1971). We 
suppose that it is not the case here). 

For a given crater, the fraction of ejecta with launch speed greater than v has 
been given by Langevin et Maurette (1980) 

x(v) = (vJvj2 > (104 

where v, is the ejecta velocity at the crater rim. 
The exponent of this law has been discussed by Housen (1981), but the nominal 

value is generally believed to be very close to 2. Uncertainties mainly come from 
the asymptotic variations of x (in a log-log plot) when v tends to very small values. 
So, a better model would be 

/y(v) = (1 + (vlvy)2)-1 ) (lob) 

which is of the same form as the model proposed by Langevin (1982). Of course, 
expressions (10a) and (lob) differ only for small values of (vlvr). 

The assumed expressions for v, are: 
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for strength-scaled craters, 

for gravity-scaled craters, 

v, = (gR/6)l” ; Wb) 

where S, is the cohesive strength of the target material, and R is the crater radius. 
To be consistent with the literature, S2 has to be taken between So and Si. We 
will choose S2 = 5& (Housen, 1981). This value would be much lower for impacts 
in the regolith itself. But, we will see that the most important craters are large 
enough to reach the bedrock under the regolith. 

Experimental data have shown that expression (lla) describes also the gravity- 
scaled craters. 

The expression of the escape velocity at the asteroid surface is 

ve = (&y (12) 

Thus the fraction of ejecta which escapes the asteroid is 

F = (1+ g$lv$)-’ . (13) 

Figure 1 shows the difference for the F factor when applying relation (lla) to 
(lob) or (lOa). 

The (1 - F) fraction of ejecta falls on to the surface and participates to the 
growth of the regolith. The volume of ejecta produced by an impact crater may 
be approximated by the volume of a spherical cap. If the depth to diameter ratio 
is X, the corresponding volume is 

V= n-x(3 + 4x2)D3/24 . (144 

We will see in the following section that a good approximation can be made by 
choosing x = 0.2. Therefore, 

V=vD3, (14b) 

where Y- 8.27 x 10P2. 
The total volume of ejecta produced by craters with diameters between D and 

D+dDis 

d2VT=VdNdS= vaDPt3dDdS. (15) 

The total volume of ejecta created by all craters between Do and DS (with 
D,, @ DS) can be expressed by 

dVT = Y(u/( p + 4) Dq+4 dS . (16) 

The problem is to define the proper limit for this integration. The choice of Ds 
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Fig. 1. Evolution of the escape factor F for strength-scaled craters with the asteroid diameter. For 
all figures, data concerning C-type, S-type, and M-type asteroids will be respectively represented with 
plus signs, open circles, and crosses. For each asteroid type, the top curve (solid line) corresponds to 

the Housen model, and the bottom curve (dashed line) is from the Langevin model. 

is determined from geometrical considerations about ejecta distribution that we 
present thereafter. 

By integrating Equation (16) among all the asteroid surface, and taking the 
(1 - F) fraction of this volume, we find the total volume of produced ejecta for 
the asteroid to be given by 

VT= 7r(l- F)Viyl(P-t 4)og+4@. (17) 

One important hypothesis is then to suppose that this volume of ejecta is 
uniformly distributed among the asteroid surface. In fact, this supposes that, for 
any given diameter between D and D + dD (and not for any individual crater), 
the corresponding ejecta is uniformly distributed. Ds will be defined as the crater 
diameter for which a non-negligible part of its total ejecta does not recover 
uniformly all the asteroid. 

If 8, is the mean depth of the regolith, we can calculate the total volume of 
regolith on the given asteroid: i.e., 

v, = ?r(b2s, . (18) 

The definition of Ds allows us to write that VT= V,, and the final expression of 
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the depth of the regolith becomes 

8, = (1 - F) VCQ + 4pg+4. (19) 

The last unknown parameter in this equation is Ds. 
For a given impact, the fraction of volume of non-escaped ejecta which falls on 

to the surface at distances from the center of the crater from r, (minimal range 
of the ejecta) to Y is: 

y=l-YJY. (20) 

So the fraction of ‘forgotten’ volume when we proceed to integration until Y instead 
of the infinite is 

r=r,Ir. (21) 

Let DES be the saturation diameter of ejecta related to the saturation diameter 
Ds. We have 

DES = 2r,,/r, . (22) 

The definition of Ds implies that the total elementary surface, covered by the 
ejecta of craters of diameters between Ds and Ds + dD, reaches the surface of 
the asteroid. So the conditions can be written as 

aD@~c$~(~rD~~/4 - m$,) = n-4 2. , 

so that 

7T(yDf+~,(~;* - 1) = 1 . (23) 

In gravity-scaling, r, = D/2, so that 

Ds = [m+-* - 1)/4]-1’(p+2). (24) 

In this case, the saturation diameter does not depend on the asteroid. In practice, 
this value will be used to calculate the asymptotical depth of the regolith (when 
F--+0). 

In strength-scaling, r, = D/2 + v$/g so that 

mD~(Ds/2 + v:/g)‘(~;’ - 1) = 1. (25) 

This relation can be easily solved by using a dichotomy method. 
The estimate of 7s is a critical point. An empirical choice would lead to a value 

between 10% and (say) 30%. A physical choice should be preferable, and this is 
why we will suppose that the calibration of the method will be determined by a 
case where the depth of the regolith is relatively known: i.e., the Moon. 

The Moon has approximatively the same physical characteristics as a S-type 
asteroid. The mean depth of the regolith is about 5 m. The crater density is 
certainly not the same as for the asteroids: for considered impacts, the heliocentric 
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velocities are about three times greater for the Moon (= 15 km s-l) than in the 
Asteroid Belt (=5 km s-‘) (e.g., Hartmann, 1977). 

So this different speed will give different energies of impact (Eav2), and then 
different crater diameters (DC&“). Moreover, the number of impacting bodies is 
believed to be 30 to 50 times lower for the Moon than for the Asteroid Belt, with 
about the same shape in the mass distribution (Langevin and Maurette, 1980; 
Housen, 1981). 

We assume (our assumptions will be verified effectively) that: 

- firstly that the saturation diameter does not correspond to the production 
zone, so we can keep p- -2.9. 

- secondly that this saturation diameter corresponds to strength scaling, so 6 = 
0.333. 

In this case, we can estimate the cx parameter for the Moon, which is between 4 
and 6 times lower than for the asteroids. This correponds to values generally found 
in the published data for the Moon (e.g., Hartmann, 1984). Then, assuming that 
F = 0, which is obvious for the Moon, we can calculate the saturation diameter 
(several hundred meters), which yields: 

This value is in the supposed interval, and we will use it for all the other cases. 
Results about 8, are shown in Figure 2. Obtained values are smaller than in the 

ASTEROID DIAMETER (KM) 

Fig. 2. Mean depth of regolith for asteroids between 5 and 1000 km in diameter. Note the maximum 
value for each asteroid type, and the asymptotical tendency for C-type asteroids. 
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Housen model, and are much closer to the Langevin and Maurette values. It is 
interesting to notice that, for a given type of body, there is a diameter of asteroid 
for which the depth of the regolith is maximum: for smaller asteroids, there is 
more escaping ejecta, and for larger asteroids, gravity concentrates ejecta in the 
proximity of most craters. 

CRATERS MORPHOLOGIES 

Craters morphologies have been widely studied on the Moon (e.g., Pike, 1977; 
Wood and Andersson, 1978; Croft, 1985; Ravine and Grieve, 1986). Some analyses 
on Martian satellites exist too (cf., Turner, 1978; Veverka, 1978). We will not use 
results about Mars or icy satellites because of their particular cratering process. 

Based on these studies, it seems possible to determine what will be the approxi- 
mative morphology of any considered crater for any type of asteroid. We will 
consider in this section that all these craters are fresh. We will simulate neither 
terraces the existence of which is not certain on large craters on large asteroids, 
nor centrals peaks which are negligible here for slope and height distributions. 
The general shape of a crater is represented in Figure 4. We will note that 

- D, its internal diameter (rim to rim) (and R, its radius); 
- d its total depth: d =p + h, where p is the depth below the zero-level and h 

is the rim height; 
- F the diameter of its (eventual) flat floor (and fits radius); 
- RF its rimwall width; 
- D, its total diameter (D, = 2R,; R, = R, + RF). 

We will distinguish three main types of craters, on the assumption that the body 
is non-differentiated: 

(a> D -=c 56,. 

Small craters are entirely in the regolith. They are characterized by a paraboloid 
shape (bowl-shaped craters), and are entirely below the surface level. The depth 
to diameter ratio is near 0.2 for the Moon as well as for Martian satellites. This 
class will concern all craters with diameter smaller than about 56,. As the minimum 
crater diameter in our simulations is 10 cm, this class will only exist if 6, is superior 
to 2 cm in depth. 

The two other types will depend on the cratering regime. In practice, the 
transition diameter DT between strength-scaled crater and gravity-scaled craters 
will not exactly be equal to Of. It would be more appropriate to say that between 
Df and DT, the morphology of craters is closer to the second type than to the 
third one. The analysis of data suggests that DT= 2Df for C-type asteroids and 
DT=3Df for S-type asteroids. So we will take DT=5Df for M-type asteroids. 
This gives a transition diameter for the Moon at about 16 km, which corresponds 
to the observed value between 15 and 20 km. The shape of DT evolution for all 
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Fig. 3a. 

S-TYPE ASTEROIDS 
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Fig. 3b. 
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Fig. 3. Limiting values of craters for C-type (3a), S-type (3b), and M-type (3~) asteroids. The 
minimum considered crater diameter is 10 cm. Solid lines, dashed lines and chain-dotted lines corre- 

spond repectively to 5&, DM and &. 

types of asteroids is represented in Figure 3. We can now describe the two last 
types: 

(b) %,.<D<D,. 

Craters are nearly bowl-shaped, but with a small flat floor. Their rim-wall goes 
just a little above the surface, and still has a paraboloid shape. Experimental data 
show that the height of rim-flank decreases with the third power of the distance 
to the center. 

(cl D,<D<D,(ifD,<D,). 

Fig. 4. General cross-section of a crater (see the text for notations) 
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Fig. 5. Three-dimensional aspect of the three types of craters. Vertical reliefs are exaggerated. The 
crater diameter is normalized to D=. (i) above: small, bowl-shaped craters. (ii) middle: intermediate, 
bowled-shaped craters with small flat floors and rims. (iii) bottom: great craters with important flat 

floors and flti rim-walls. 
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TABLE I 

Geometrical urouerties of craters 

Crater type a 

(if 8, > 2 cm) 
Diameter lOcm<D,<58, 

P~DT 0.196(0,/D,) 
hlDT 0. 
FIDr 0. 

RdDr 0. 

b 

56,<D,<D, 
0.196(D,/D7) 
o.08g~~~oyD,/DT) 
0.445(Dc/DT)1.765 

0.267(D,/Dr)‘~o” 

C 

(if DT< DM) 
DT<Dc<D,,, 
0.196(D,/DT)o~30’ 
0.08g~.208(D~/D~)7.399 
0.445(0 lDr)‘.249 
(F,, = 0.6850,) 
0.267(Dc/D~)o~836 

Craters greater than DT in diameter correspond to usual big (but not complex) 
lunar craters: the flat-floor is more important than in the precedent type, the depth 
to diameter ratio decreases with increasing diameter, rim-walls are approximately 
flat, and rim-flanks have the same shape as for the previous case. 

The three different types of craters are represented in Figure 5. For this Figure, 
vertical relief is exaggerated, and all diameters are normalized to DT. 

The geometrical parameters for each type of crater are given in Table I. In this 
Table, g, corresponds to the gravity of the asteroid relative to Earth (the height 
above the zero-level depends on the gravity at the surface of the body). For the 
tlat floor diameter of the last type of crater, we used a fixed limiting value relative 
to the diameter of the crater (which is related to the maximum slope of the rim- 
wall for lunar craters). 

Equations of craters appear in Table II. 

3.5. CRATER EROSION 

In the preceding section, we studied the morphology of a fresh crater - i.e., whose 
impact has just occurred. We will now describe the direct effects of any impact 
crater (down to 10 cm in diameter) on the substratum, which causes progressive 
eradication of old craters by new ones. In this section, other factors will be taken 
into account: impacts due to very small bodies (giving craters smaller than 10 cm 

TABLE II 

Equations of craters 

Tvue Radius Eauation 

a O<v<R, z/d = -1 + (IVR,)~ 

b Oir<f 2=-p 
fCr<R, (z - h)ld = -1 + [(r-f)l(R, -f)]’ 
R,<r<R,+R, zlh = (R, + RF - r)‘iR$ 

C O<r<f 2=-p 
f<r<R, z = d(r - R,)/(R, -f) + k 
R,ir<R,+RF z/h = (R, + RF - r)3/R$ 



in diameter), micro-impacts, and influence of the distribution of ejecta for all 
impacts. 

In fact, the distribution of ejecta is influenced by the local slope. For example, 
ejecta will not be uniformly distributed for an impact which occurs on the rimwall 
of a bigger crater. In this particular case, a small part of ejecta could hardly reach 
the edge of the rimwall, while the greater part could go down the slope and reach 
the crater floor. 

When we consider the global effect of all impacts on any given crater, it may 
be described by an erosion, which slowly smoothes slopes and reduces height 
extremas. It may be shown (Langevin, 1988, private communication), that the 
mathematical modelling of such an erosion yields a Laplacian form 

&z/at = E( d2zlc3x2 + a2z/ay2) 

where E is a parameter (e.g., in square kilometer per gigayear) which will describe 
the importance of the erosion. The erosion will depend on time and on the area 
of the considered crater. Expression (26) may be easily written in a discrete and 
iterative form. To describe all stages of erosion with enough precision, and to 
obtain a compromise between the precision of the algorithm and the computer 
time, we have finally chosen to simulate very old craters with fifty iterations. 

I Y 

a b 

C d 
Fig. 6. Three-dimensional aspect of a fresh (a), young (b), mature (c) and old (d) crater. Vertical 

scale is nearly not exaggerated if we consider that g, = 0.1. 
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Although a theoretical approach was possible, the adjustment of the E parameter 
was done so that the most eroded craters have the same aspect as very old lunar 
craters. Figure 6 shows the three-dimensional aspect of fresh (a), young (b), 
mature (c), and old (d) craters. This corresponds, respectively to zero, ten, twenty 
and fifty iterations in the numerical algorithm. The nomenclature is from Moore 
et al. (1980), who defined the absolute and relative abundances of these classes 
for small lunar craters (with up to seven morphologic types). Information about 
degradation of bigger craters can be found elsewhere (e.g., Malin and Dzurisin, 
1977). When the number of iterations (i.e., = the age) of the algorithm is random- 
ized, relative abundances of eroded crater types fit very well with Moore et aZ.‘s 
data. 

3.6. CRATERS OBLITERATION 

When we want to ‘superimpose’ a new crater to an old one, we must take into 
account the influence of preexisting morphology. This morphology will not be 
affected beyond the limit of rim flank (as defined in Section 3.4), while the effect 
will be maximum at the center of the crater (i.e., the location of the impact) (e.g., 
Helfenstein, 1988). Then we can intuitively define the final uplift as a linear 
combination of the preexisting and of the new crater heights of the form 

Zf@) = %-)zp(4 + (1 - +(e)Znw 9 (27) 

where q(r), z,(r), and zn(r) are, respectively, the final height, the old one, and 
the elevation of the new crater, at a distance Y from its center, and c$(Y) is a 
parameter that has to be defined. In this simple model, we suppose that +(I) does 
not depend on the cratering regime. 

A general expression for 4(r) will be 

$(r) = (rIRT)+. cw 

A somewhat more complicated expression is proposed by Langevin (1988, priv- 
ate communication), with two horizontal tangents for $(r) at r = 0 and Y = RT. 
A physical approach of the impact would perhaps provide the I,!J parameter. 
between 0.5 and 3 seem reasonable, and changes in the final aspect are nearly 
indistinguishable. However, comparisons of two-dimensional simulations with 
lunar images made us choose 4 = 2. 

4. Simulations 

4.1. MATHEMATICAL APPROACH 

There are more than seven decades between the diameters of the smallest craters 
to simulate and the biggest ones, and about 15 decades between their respective 
abundances. So, it is not a priori possible to simulate all these craters. 

The first idea is to make only mono-dimensional simulations - i.e., to simulate 
a ‘line of an asteroid’. Of course, two-dimensional simulations were previously 
done to validate the model, but only with less resolution, or on a very small area. 
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The second idea is to ‘fractalize’ the profile: The smaller craters will be only 
simulated on a limited length, which will be repeated, here ten times, at a greater 
scale where will be included greater craters, etc... in practice, craters will be 
simulated in intervals of the form [Dj; 21’2Di[, which will be called the i-th interval, 
where Dr = 10 cm, and Di + 1 = 21’2Dj. The number of craters in each interval will 
be determined, and it is possible to show that the diameter of each crater in a 
given interval can be determined by: 

D z Di[l _ ,,,(I - 2(b+W)]Nb+l) , (29) 

where w is a random number with an uniform density in the interval [O; l] 
There will be a special processing for the last interval (i.e., the interval contain- 

ing the largest crater for a given asteroid). 
Figure 7 shows the basic concept of these simulations. The problem is to define 

the dimension of each Table so that computing time is not prohibitive. Statistical 
constraints may be: 

- the smallest crater in a Table must be sampled with at least ten points; 
- there must be a minimum number (say, ten) of simulated craters for the last 

interval of each table (except for the biggest craters on the asteroid). 

Several attempts were done. The found optimization is to use 5 tables, with 
100000 elements in each table. Thus, it represents: 

- a 1 km line, with a 1 cm step, which contains the eight first intervals (from 
Dj=lOcmto D,=l.l3m); 

- a 10 km line, with a 10 cm step, which contains the following eight intervals 
(from Di= 1.6m to Dj= 18.1m); 

- a 100 km line, with a 1 m step, which contains the following eight intervals 
(from Di=25.6m to Di=290m); 

- a 1000 km line, with a 10 m step, which contains the following seven intervals 
(from Di = 410 m to Dj = 3.28 km); 

- a 10000 km line, with a 100 m step, which contains the last fifteen intervals 
(from Di = 4.63 km to Di = 593 km). 

The first statistical demand is thus respected. For a given diameter interval i the 
corresponding line Ii can be influenced by craters at distances up to 
Lj = Ri+l + RF,+1 on each side of the line. The total number of craters to simulate 
for this interval will be (from (3)) 

Izi = 2LiIjai,,Df+’ . (30) 

Thus it is possible to verify that the number of, craters in the last interval of a 
given line is more than 10, except for very large craters, - in the fifth line -, which 
can hardly exist on very big asteroids. The position of each crater along the line 
will be determined by a random number (with a uniform distribution). The total 
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Fig. 7. Principle of the simulations: models for smaller scales are introduced and repeated in greater 
scales. Optimization (see the text) yields a factor 10 between each stage, and 5 successive stages. 

number of craters for each line is about 1000, which is very small and possible to 
simulate. 

Each line will be simulated using theories developed from Section 3.1 to Section 
3.6. Parts of craters which are out of the limits of a simulated line at one end will 
not be eliminated but transferred at the other end, in order to avoid problems 
when connecting a line to itself. For all considered asteroids, the total simulated 
“pseudo-line” will be 10000 km long. That is of course much longer than the 
perimeter of the asteroid, but very useful to obtain good statistical results. 

The ‘pseudo-table’ corresponding to the pseudo-line contains lo9 elements 
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(10000 km with 1 cm step). The altitude of each element will be obtained by the 
combination of the altitudes of the 5 simulated lines at the correct places. Linear 
interpolations will be used to determine the altitude between two points when the 
step is greater than 1 cm, i.e., in the last 4 lines. 

Simulations have been made on CDC 990lVE and 992NE computers. Each line 
requires about 10 set CPU: and obtaining statistical results for the pseudo-tables 
takes about 3000 set CPU. 

These results relate to: 

(i) Heights 
The program gives mean height h and r.m.s. height h,,,. Height distribution is 
also calculated; 

(ii) Slopes 
As mean slope is zero, the program gives Ia/, i.e., the mean of absolute values of 
slopes, and r.m.s. slope e,,,. Slope distribution is given too. In fact, we give the 
distribution of the angles (in degrees), and the distribution of the slopes (i.e., the 
tangents of the angles). For discussion, we will only use the angle distribution. 

(iii) Correlation length [ 
The correlation length measures the minimum distance from which one can con- 
sider that two points have independent heights. This distance is generally difficult 
to measure. It is possible to get it from the normalized autocorrelation function. 
Its expression for discrete mono-variate tables with A4 elements is 

M-j-l 

/3(Xj) = IX ZiZjtl 
i=o / 

M-l 

x Zl? j=O,M-1, 
i=O 

where zi is the altitude at the xi abscissa. Then we have 

[= p-‘(l/e) . 

(31) 

(32) 

Therefore, it is a priori possible to estimate 5 by a dichotomy method (p is 
decreasing in the concerned interval), but there are two main problems: 

- each iteration requires an important calculation time, which is nearly prohibit- 
ive for our problem; 

- for very great values of M, numerical imprecisions appear in the division of 
the two sums in (31), because values of these sums are very important while 
the division is near 1. 

To avoid these problems, it is possible to use known models of p. Two main 
models can be used (Ulaby et al., 1986): 

the gaussian model: 

p(x) = e-X2/E: (334 
a little more complex model: 
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p(x) = (1 + XYC$Z))3’2 Wb) 

Then we know that 

so that 

ens = -cnsP”(0) > (34) 

and 

6 = 21’2hrms~kns WI 

c2 = (3/2)“2& = 1.22& . Wb) 

We have decided to calculate 5 from (31) only for the lines 1, (i = 1,5), and to 
compare it with estimates given by (35). So we hope that found relations will 
allow to give 5 for the final table from its estimates from (35) 

The last problem is to determine two-dimensional asteroidal characteristics from 
mono-variate ones: 

(i) for altitudes, there is no problem: we suppose that the final table is represent- 
ative of the asteroid, so all the statistical results for heights are valid and unchanged 
for the case of bi-variate analysis; 

(ii) the problem of slopes is different: slopes that we calculate in the simulations 
are along the line axis. In fact we know the slopes in the perpendicular direction 
too. So, we could give the two-dimensional slopes from 

0, = cos-1[cos(&) cos(e,)] . (364 

For small slopes, this expression can be rewritten as 

Wb) 

But none of these expressions can be calculated lo9 times in reasonable time. So, 
we will give only mono-variate values for the mean absolute slope and the slope 
distribution. 

However, it is necessary to estimate the rms two-dimensional slope for compari- 
sons of our model to values obtained from real radar measurements. In fact, it is 
possible if we assume that: 

- all angles are small. We will see that it is generally, but not always, the case; 
- the slope distributions upon the X- and the y-axis are independent. It can be 

not true for a single crater (for example, maximum slopes on the x-axis near 
the top of the rim corresponds to null slopes in the perpendicular direction), 
but we can consider that it is true for the final distribution, because combi- 
nations of craters, plus their eradication and erosion, greatly redistributes the 
slopes. 

Thus, for small angles we can approximate tan(e) by 0; and since mean slope 
is zero, we simply have 
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where P is the probability density function of two-dimensional slopes. Since slopes 
along X- and y-axis are independent, Equation (37) yields (using relation 36b): 

= 
J(i e3w4) de, > py(ey) de, + 

JCJ e:p,(e,) de, fwc) de,. ) (38) 

Since we have 

J 
Pj(eL) dej = i , (39) 

the expression (38) yields 

8 b rms = (e;.,, + e: .ms>1’2 = 21% rms , (40) 

which is a very simple expression that we will use in the following section; 
(iii) for the length correlation, Equations (35) and (40) yield 

C$ib = 2-‘“[ix . (41) 

4.2. RESULTS 

Results will be given for asteroids from 5 to 1000 km in diameter. However, results 
for the largest asteroids are only tentative. We will only give two-dimensional 
values, resulting from corrections described in Section 4.1. For each asteroid, 
three independent computations were made, with a variation in the initial random 
number as the only change. Results did not show variations greater than about 
8%. For the mean values presented here, we will then admit that uncertainties 
do not exceed 5% (1 sigma). 

Mean heights and r.m.s. heights are presented in Figures 8 and 9. For con- 
venience, the mean height is in fact a mean depth, because all mean heights are 
negative. The zero-level corresponds to the hypothetical non-cratered surface. 
Up to about 100 km in diameter, the curves seem to be parallel. C-type asteroids 
have smoother surfaces than S-type asteroids, which have slightly smoother sur- 
faces than M-type asteroids. This may be related to the depth of the regolith, 
which is more important for C-type asteoroids than for S-types and M-types. 

For larger C-type asteroids, mean and r.m.s. heights gently decrease, which 
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Fig. 8. Mean depths of asteroids (these values correspond to negative heights). The zero-level is for 
uncratered surface. 
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Fig. 9. R.m.s. heights of asteroids. 
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seems surprising. The regolith depth tends to a limiting value, so more cratered 
surfaces should give greater r.m.s. heights. However, as it is easily seen in Figure 
3a, the crater morphology evolves toward the third type of crater, i.e. more 
degraded craters than for the second type. While the surface does not seem to 
change at metric scales, craters of several kilometers in diameter become slightly 
smoother as the asteroid diameter increases. 

The comparison between S-type and M-type asteroids is more difficult to ana- 
lyse. It results from greater depths of regolith for the big M-type asteroids than 
for the S-types, while the influence of the third type of crater is not clearly seen 
in Figures 3b and c. 

Figure 10 presents results for r.m.s. slopes. Curves shows oscillations which we 
consider real because they are present on three independent computations, and 
therefore do not represent statistical variations. The values are much greater than 
for the Moon (computations for the Moon give a r.m.s. slope of about 8.5 deg), 
which is not surprising since we know (cf., Section 3.3) that asteroidal surfaces 
are much more cratered than lunar ones. 

Up to 50 km in diameter, the general tendency is the same for r.m.s. slopes as 
for r.m.s. heights. The difference doesn’t exceed one or two degrees, which is too 
small to allow a future classification of asteroids by their r.m.s. slopes. The C- 
type asteroids larger than 50 km in diameter have smaller r.m.s. slopes, certainly 
for the same reasons as those for r.m.s. heights. A behaviour of S-type asteroids 

! I I 
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ASTEROID DIAMETER (KM) 

Fig. 10. R.m.s. slopes of asteroids. Note the very high obtained values 



26 E. THOUVENOT 

and M-type ones is inverted from and above 100 km in diameter, and similar 
values are obtained for 1000 km asteroids. 

The erosion parameter E is certainly the most uncertain parameter of our simula- 
tions. To study its influence, we made simulations (only for S-type asteroids) with 
an erosion parameter two times smaller and two times greater than the ‘optimal’ 
one. Figure 11 presents r.m.s. slopes that have been obtained for the three values 
of E. It shows that variations of about 15% are observed (the same relative 
variations are found for r.m.s. heights). However, mature craters are clearly too 
young and old craters too old when the erosion parameter is respectively two 
times smaller and two times bigger than the chosen value. Several simulations 
performed lead us to think that this value doesn’t differ from the ‘real’ one by 
more than 20%, which corresponds to variations in r.m.s. slopes or heights less 
than 3%. 

Results about the correlation lengths (as defined in Section 4.1) are presented 
in Figure 12. Simulations show that the direct calculation of the correlation length 
gives values which are always greater than the values estimated from a gaussian 
model. Minimum differences yield values 10% greater than gaussian values, while 
maximum differences correspond to values 80% greater than gaussian ones. So, 
for the gaussian two-dimensional values presented here, we can only say that the 
real values are probably no more than 40% greater. Relative classification of the 

I I I 

1 70 100 lo3 

ASTEROID DIAMETER {KM) 

Fig. 11. R.m.s. slopes of S-type asteroids obtained with the ‘optimal’ (middle curve) value of the 
erosion parameter, and values two times smaller (top curve) and two times greater (bottom curve). 
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curves is certainly real, since it is correlated to the r.m.s. heights. In fact, the 
influence of the r.m.s. slopes is not important, because of their small variations 
relative to r.m.s. heights. It is interesting to note that the correlation lengths are 
always much greater than the wavelength of any radar, and two to three times 
greater than the r.m.s. heights. 

Finally, we present in Figures 13 and 14, as an example, the height and slope 
distributions for a S-type asteroid about 500 km in diameter, and in Figures 15 
and 16 the same results for simulations of the Moon. 

It is important to note that we have used for these curves logarithmic scales 
for normalized densities, due to the very small abundances of the non zero heights 
or slopes. To obtain about the same number of points for the height distributions, 
we chose a 100 m step for the Moon and a 500 m step for the asteroid, since the 
height distribution is much narrower for the Moon than for the asteroid. We know 
that the 500 km S-type asteroid is much more cratered than the Moon and so very 
large depths can be obtained. But they represent very rare events, and if we search 
for the depth for which the probability is, for example, 1%) we find about 200 m 
for the Moon and 12 km for the asteroid. Positive altitudes, due in our simulations 
only to the top of crater rims, rapidly decrease and the 1% probability corresponds 
to about 200 m for the Moon and 1.7 km for the asteroid. 

Abundances for the null slopes in the slope distributions are interesting to 
compare: this density is about 5 times greater for the Moon than for the asteroid. 

8 

Fig. 12. Correlation lengths of asteroids. Note the likeness to the r.m.s. heights (Figure 9). 

ASTEROID DIAAfETER (KM) 
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Fig. 13 Height distribution of a S-type asteroid 500 km in diameter. For Figures 13 to 16, note the 
log scale for the y-axis. Note the very great abundance of the near-zero heights. 

SLOPE (deg) 

Fig. 14. Mono-dimensional slope distribution of the same asteroid than for Figure 13 



ESTIMATION OF STATISTICAL GEOMETRICAL PROPERTIES 29 

Fig. 15. Height distribution of the Moon. Compare abundances with Figure 13. 

0 20 40 60 80 

SLOPE (deg) 

Fig. 16. Mono-dimensional slope distribution of the Moon. Note the very near 1 density for the ‘flat’ 
surfaces. Compare to Figure 14. 
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The 1% density yields about 16 deg for the Moon and 30 deg for the asteroid. 
But the most important result is certainly the shape of these distributions with the 
logarithmic scales of Figures 14 and 16: 

- for the Moon, this shape is not far from a straight line, which corresponds to 
an exponential slope distribution; 

- for the 500 km S-type asteroid, there is a parabolic shape, which corresponds 
to a Gaussian slope distribution. 

This difference can be certainly explained by the fact that the asteroid surface 
has received much more impacts than the lunar surface. We believe that the slope 
distribution tends to a Gaussian law when the number of impacts becomes great 
enough. 

5. Discussion 

5.1. INFLUENCE OF THE PARTICLE SIZE DISTRIBUTION 

We have seen that the simulations presented in this paper are adapted to a 
centimetric radar wavelength (i.e., about 1 to 10 cm). But we only took the 
influence of craters and the depth of regolith into account. We must now discuss 
the influence of roughness of a ‘typical square meter’ of any simulated asteroid, 
which will be called microroughness in the following. This corresponds to the 
contribution of small or big boulders, and down to small particles of several 
millimeters (due to the h/10 sampling). 

It is difficult to simulate this square meter, mainly because of the three-dimen- 
sional spatial arrangement of grains. For this reason, geometrical and radar studies 
are actually made (Thouvenot et al., in prep.) with real square meters of appropri- 
ate materials, and with various grain size distributions (mean particle size from 
several millimeters up to ten centimeters) and porosities. For valid statistical 
distributions of grains, the maximal boulder size in our samples is about 10 to 
20 cm. So, we will not take bigger boulders into account, and we will consider 
that they are rare enough on the surface of any asteroid that their influence on 
heights or slopes distributions can be neglected. 

In this paper, we will only give estimates of the contribution of this regolith 
grain size distribution. Of course, we can easily affirm that its contribution on the 
height distribution is null, and so the mean heights and r.m.s. heights are not 
modified by the regolith grain size distribution. 

On the other hand, we cannot suppose that its contribution to the slope 
distribution is negligible. To a first approximation, we consider that the slope 
distribution of the regolith is independent-of the slope distribution of the underly- 
ing ground, and we then admit that the ‘very small scale slopes’ (the regolith 
slopes) and the ‘other scale slopes’ (the simulated slopes) are simply added quad- 
ratically. 

The r.m.s. slope due to the microroughness on the Moon can be estimated from 
Apollo mission data. Its value does not exceed 5 deg and is generally of 2 or 3 deg. 
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Aspects of lunar regolith have been discussed elsewhere (e.g., Langevin and 
Arnold, 1977), but the estimate of the grain size distribution of an asteroidal 
regolith is more difficult to predict (e.g., Langevin, 1982). Of course, it mainly 
depends on the strength of the material, because it is easier to obtain fine-grained 
particles with a weak material than with a strong one. This is in good agreement 
with Earth-based radar estimates of the centimetric smoothness of several asteroids 
(e.g., Ostro et al., 1985). According to these results, at a centimer scale, C-type 
and S-type asteroids seem not much rougher, and are sometimes much smoother, 
than the Moon. Extrapolations to M-type asteroids might be uncertain, but we 
will assume that the upper limit for the r.m.s. slope of the microroughness of any 
asteroid is, say, 5 deg. 

If we calculate the miminum slope necessary to increase quadratically a 1.5 deg 
r.m.s. slope by only 1 deg, we find a little less than 6 deg (and more than 9 deg 
for a r.m.s. slope of 30deg). So, we will consider in the following that the 
contribution of the regolith grain size distribution to the r.m.s. slope of any 
asteroid is smaller than 1 deg. 

5.2. COMPARISONS WITH OBSERVATIONAL DATA 

In this section, we present three different comparisons of the results of our 
simulations with observational data. The main problem is the lack of data for 
asteroidal surfaces. 

(a) R.m.s. Slope on the Moon 
Values of r.m.s. slope for the Moon at various radar wavelengths have been 

compiled by Pettengill (1978). We will not take the value (33 deg) at 0.86 cm into 
account because it is much higher than all other values given elsewhere in the 
literature and then seems doubtful. The most interesting value is 9.1 deg for a 
3.5 cm wavelength (Evans, 1969), which is correlated with values of 7.1 and 5.9 deg 
at respectively 23 cm and 70 cm wavelength (Hagfors, 1970). 

R.m.s. slope given by the simulations for the Moon is 8.5 deg. If we suppose 
that the contribution of the regolith grain size distribution is between 2 and 5 deg, 
final values for the r.m.s. slope is between 8.7 and 9.4 deg. It fits very well with 
observational results at centimetric wavelengths. 

(b) Maximum Heights on an Asteroid 
Estimates of asteroidal heights are very rare. Effective resolution of speckle inter- 
ferometry is not yet good enough to obtain results about altitudes on asteroids 
(e.g., Drummond et al., 1988). An interesting technique to get information about 
altitudes on their limbs might be the occultations by stars. Unfortunately, residuals 
of observations after the estimate of the profile of the asteroid are difficult to 
interpret in terms of altitudes above or below the mean surface (e.g., Millis et al., 
1985). Increasing the timing accuracy will certainly reduce the uncertainties about 
these residuals. 

The case of Phobos provides an interesting comparison. Of course, Phobos has 
particular physical characteristics, so we have to take values given in the literature 
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for our simulations. In particular, we have used crater densities given by Thomas 
and Veverka (1980). In his model of Phobos, Turner (1978) concludes that the 
greatest elevation difference on Phobos is about 3.2 km, which seems very impor- 
tant because it represents about 30% of its mean radius. 

Our simulations of Phobos lead to a maximum variation in elevation of about 
1.7 km, It corresponds in a maximal depth of about 1.45 km and a maximal height 
of 0.25 km. Thus if the lowest elevation is in good agreement with Turner’s value 
(1.6 km), our model does not simulate the highest altitudes (1.6 km). For Phobos, 
it corresponds to the extremely high raised rim of Stickney (more than 1 km), 
which seems enormous and may be due to particular geological processes during 
this impact, i.e. a nature consequence of impact mechanisms on an ellipsoidal 
body of this size. 

However, high positive altitudes are very rare on the surface and certainly do 
not deeply affect the slope and height distributions. On the other hand, this 
example points out an important potential problem for radar altimetric studies of 
small asteroids: the possibility of having such an irregular shape that topography 
becomes uncertain. 

(c) R.m.s. Slopes on Asteroids 
About fifty asteroids have been observed by Earth-based radar, but we know 

only one estimate of the r.m.s. slope of an asteroid, Pallas, given by Ostro et al. 
(1985)) which is 27 * 3 deg at a 13 cm wavelength. But for nearly all radar observed 
asteroids, and each of the twenty asteroids studied by Ostro et al., their surfaces 
are, according to these authors, “much rougher than the Moon at some scales 
between several meters and many kilometers” and “must have very large r.m.s. 
slopes”. 

Unfortunately, Pallas classification is not certain and may be between C and S 
type. For an asteroid, 530 km in diameter, our simulations give an r.m.s. slope 
of 19.7 and 26.6 deg for C-type and S-type respectively. These values may be 
incremented by about 1 degree according to Section 5.1, which leads to 21 deg for 
C-type and 28 deg for S-type, with an uncertainty of about 1.5 deg. On the other 
hand, observational values have to be slightly increased (certainly by less than 
2 deg) in order to correspond to centimetric wavelengths. 

So, the only conclusion that we can give is that our simulations are in good 
agreement with Pallas observations only if its material has the same mechanical 
properties as S-type material. For our simulations, the most important point is the 
crust composition, and it does not exclude an upper layer or a regolith with a 
different composition. Since Pallas seems nearly spherical, it may have been 
differentiated. The density of Pallas, 2.8 -+ 0.5 g cme3 (Wasserman et al., 1979), is 
compatible with the existence of a stony material on or near the surface. 

6. Conclusions 

Mono-dimensional simulations of asteroidal surfaces may be realized with good 
precision by computer simulations. A limited number of physical considerations 
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provides an estimate of the evolution of the surface of minor planets. However, 
the results are restricted to non-differentiated asteroids, because the geological 
consequences of melting the surface are difficult to predict precisely. 

The model presented here contains several free parameters, which could lead 
to uncertain results. However, although uncertainties about asteroids preclude a 
good estimate of these parameters, the case of the Moon may be very useful. Of 
course, it must be done with caution because the Moon is physically different from 
an asteroid, but its surface is much more precisely known than that of any asteroid. 

Simulations confirm these great differences between the Moon and asteroids. 
Surfaces of asteroids are extremely cratered, saturated for nearly all crater diame- 
ters. They are generally covered with a layer of regolith, but its thickness greatly 
depends on the type and the diameter of the asteroid. In spite of erosion, r.m.s. 
slopes and heights given by the simulations depend on cratering. They correspond 
to much rougher surfaces than on the Moon, at metric or larger scales, as suggested 
from radar observations. 

Comparisons with observational results are difficult because of the lack of data, 
but the simulations seem realistic. The main problem for their applications to bi- 
dimensional simulations is the optimization of the algorithm to avoid prohibitive 
computer times. The results of our first attempts allow us to be optimistic on this 
point. 
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