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Editorial: Machine Learning and Discovery 

Discovery as learning 

In everyday language, the terms learning and discovery convey rather different 
meanings. The former suggests a gradual process, while the latter suggests a more 
rapid mental event, often involving some form of insight. Learning may lead to 
an unconscious change in knowledge, while one is always aware that a discovery 
has been made. The result of learning can be declarative or procedural, while the 
product of discovery is always declarative. Learning often involves a transfer of 
knowledge from teacher to student; in contrast, discovery involves acquiring 
knowledge from the environment without the aid of a tutor. Finally, all humans 
and most animals learn from experience, but we reserve the term discovery for 
the accomplishments of a select few. These boundaries are admittedly vague, but 
they exist nonetheless. 

Despite the natural distinction between these concepts, the field of machine 
learning has always viewed discovery as one of its concerns. Undoubtedly, one 
reason for this interest is that, like learning, discovery often involves induction - -  
the act of reasoning from specific facts or data to general rules or laws which 
provide a general characterization of those facts. Another reason (probably 
related to the first) is that, historically, researchers in machine discovery have also 
worked on learning problems and have applied related techniques to these tasks. 
Thus, contemporary machine learning researchers tend to view discovery as a 
difficult form of 'learning from observation' (Carbonell, Michalski, & Mitchell, 
1983). 

The historical role of discovery within machine learning, together with recent 
progress in automated discovery, suggested the need for a special treatment of 
that topic, and the current issue of Machine Learning is the result. The three 
papers in this issue are representative examples of current research in the area. 
Although they address different aspects of the discovery process, they also share 
some common underlying themes, which we consider below. 
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Laws and theories 

The history of science suggests a natural distinction between two processes. In 
empirical discovery, one goes from observational or experimental data to some 
general laws that summarize or describe those data. In theory formation, one 
formulates some structural or process model that goes beyond description to 
explain one or more facts or laws. This dichotomy is probably better characterized 
as a continuum, but the distinction seems a useful one, with the early stages of a 
science focusing on empirical discovery and later stages turning to theory formation. 

Most AI research has focused on the empirical side of discovery. This has 
included work on taxonomy formation and conceptual clustering (Michalski & 
Stepp, 1983), as well as research on the discovery of qualitative laws (Lenat,  
1977) and quantitative laws (Langley, 1981). The empirical discovery task lets 
one focus on simple, general methods for finding regularities in data, and this is 
one of its attractions. Research on theory formation has been less common and 
has focused on specific domains, such as automatic programming (Amarel,  1986). 

The papers in this issue represent a new stage of research on automated 
discovery, moving beyond the early efforts mentioned above. Both Kokar's 
COPER and Falkenhainer and Michalski's ABACUS employ knowledge of at- 
tributes" dimensions to constrain the search for laws, and this is an important forrri 
of theoretical bias. Rose and Langley's STAHLp moves from data stated as 
chemical reactions to componential models, which are themselves a simple form 
of theory. This suggests that we can expect two trends in future work - -  the use of  
theory-driven methods to constrain empirical discovery, and insights into the 
process of theory formation itself. 

The importance of replication 

Another  feature shared by the systems described in this issue is that they all build 
upon earlier work. ABACUS refines the approach taken by Langley's (1981) 
BACON system and adds new methods as well, such as the ability to determine 
the conditions under which a law holds. The COPER program also includes 
abilities above and beyond those of BACON; for instance, it can determine the 
relevance of a variable even when its values are held constant. Similarly, STAHLp ~ 
operates in the same domain as Zytkow and Simon's (1986) original STAHL 
model and uses many of the same heuristics. However,  STAHLp also incor- 
porates other heuristics that make it more robust than its precursor. 

Moreover,  the authors have tested their systems on many of the same tasks as 
used by their predecessors. Thus, Falkenhainer and Michalski show how ABACUS 
can rediscover the ideal gas law, conservation of momentum, and the law of 
falling bodies, all laws to which BACON had been applied. Kokar also tests his 
COPER system on the law of falling bodies, as well as a more complex example - -  
Bernoulli 's law of fluid flow. Finally, Rose and Langley have used their STAHLp 
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"system to replicate all the chemical discoveries reported for Zytkow and Simon's 
STAHL program. 

Replication is a central part of physics and chemistry, and we believe it also has 
an important role to play in the emerging science of machine learning. The papers 
in this issue constitute an important step in this direction, and we encourage other 
authors both to build upon the results of earlier research and to test their 
improved systems on the same tasks as their predecessors. In this way, we can 
ensure that our field is making progress, and we can measure the significance of 
that progress. 

The need for synthesis 

Another measure of progress involves the integration of previously separate ideas 
into a single coherent framework. One such approach would integrate methods 
for empirical discovery and methods for theory formation. A less obvious ap- 
proach - -  but the one taken in all three papers - -  incorporates methods from 
outside machine discovery to improve the discovery process. 

For example, Falkenhainer and Michalski employ a technique for learning from 
examples, another area of machine learning. Their ABACUS system applies the 
Aq algorithm (Michalski, 1983) to determine the conditions under which a given 
numeric law holds. Rose and Langley have borrowed a method from truth 
"maintenance, an entirely different branch of artificial intelligence. Their STAHLp 
system employs a variant of de Kleer's (1984) assumption-based method for 
belief revision to modify incorrect chemical reactions. Kokar goes even farther 
afield, incorporating techniques from dimensional analysis to determine the com- 
pleteness of a set of numeric terms and to identify the relevance of specific terms. 

Again, we feel the papers in this issue set good examples for future work in 
macbine discovery. Researchers should be willing to look beyond methods de- 
veloped for their particular domain, and even beyond the confines of artificial 
intelligence. Machine learning is a science of heuristics and algorithms, but it 
holds no patent on useful mechanisms. 

"Motivations for machine discovery 

As with machine learning in general, there are three basic motivations for studying 
• the mechanisms of discovery: one may be interested in applications that require 
automating the discovery process, one may be concerned with the general con- 
ditions under which discovery can occur, or one may hope to model the historical 
details of scientific discovery. 

The discovery papers in this issue represent all three of these goals. The 
ABACUS group is clearly concerned with general discovery techniques, but 
Falkenhainer and Michalski use their system as a nascent "scientist's aide" for 
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intelligent data analysis and discovery. Kokar ' s  work seems to be mot ivated  by 
the same dual concerns.  Rose  and Langley share the desire to unders tand the 
condit ions for discovery,  but they are more  interested in model ing the early 
history of  chemistry than in applications. 

Of  course,  these different motives are not exclusive, and there is no reason that 
ideas developed in pursuit  of  one goal cannot  be used to help achieve another .  In 
fact, this is one of  the strengths of  our  field - -  that  researchers  can draw on each 
others '  results to achieve convergent  methods  despite divergent  goals. We feel 
that  the papers in this issue provide good  examples  of  this synergy. 
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