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Abstract. Consider a robot wandering around an unfamiliar environment, performing actions and sensing the 
resulting environmental states. The robot's task is to construct an internal model of its environment, a model 
that will allow it to predict the consequences of its actions and to determine what sequences of actions to take 
to reach particular goal states. Rivest and Schapire (1987a, 1987b; Schapire, 1988) have studied this problem and 
have designed a symbolic algorithm to strategically explore and infer the structure of "finite state" environments. 
The heart of this algorithm is a clever representation of the environment called an update graph. We have developed 
a connectionist implementation of the update graph using a highly-specialized network architecture. With back 
propagation learning and a trivial exploration strategy--choosing random actions--the network can outperform 
the Rivest and Schapire algorithm on simple problems. Perhaps the most interesting consequence of the cormec- 
tionist approach is that, by relaxing the constraints imposed by a symbolic description, it suggests a more general 
representation of the update graph, thus allowing for greater flexibility in expressing potential solutions. 
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Consider a robot placed in an unfamiliar environment. The robot is allowed to explore 
the environment by performing actions and sensing the resulting environmental state. The 
robot's task is to construct an internal model of the environment, a model that will allow 
it to predict the consequences of its actions and to determine what sequences of actions 
to take to reach particular goal states. This scenario is extremely general; it applies not 
only to physical environments, but also to abstract and artificial environments such as elec- 
tronic devices (e.g., a VCR), computer programs (e.g., a text editor), and classical AI 
problem-solving domains (e.g., blocks world). Any agent--human or computer--that aims 
to manipulate its environment toward some desired end requires an internal representation 
of the environment. This is because, in any reasonably complex situation, the agent can 
directly perceive only a small fraction of the global environmental state at any time; the 
rest must be stored internally if the agent is to act effectively. 

In this paper, we describe a connectionist network that learns the structure of its environ- 
ment. The network architecture is based on a representation of finite-state automata developed 
by Rivest and Schapire (1987a, 1987b; Schapire, 1988). We begin by first describing several 
environments. 
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1. Sample environments 

In each environment, the robot has a set of discrete actions it can execute to move from 

one environmental state to another. At  each environmental state, a set of  binary-valued sen- 
sations can be  detected by the robot. Descriptions of five sample environments follow, the 
first three of  which come from Rivest and Schapire. 

L1. The n-room world 

The n-room world consists of n rooms arranged in a circular chain (Figure 1). Each room 
is connected to the two adjacent  rooms. In each room is a light bulb and a light switch. 
The robot can sense whether the light in the room where it currently stands is on or off. 

The robot has three possible actions: move to the next room down the chain, move to the 
next room up the chain, and toggle the light switch in the current room. 

L2. The little prince world 

The robot resides on the surface of a 2D planet. There are four distinct locations on the 
planet: north, south, east, and west. To the west, there is a rose; to the east, a volcano. 
The robot has two sensations, one indicating the presence of  a rose at the current location, 
the other a volcano. The robot has available three actions: move to the next location in 
the direction it is currently facing, move to the next location away from the direction it 

is facing, and turn its head around to face in the opposite direction. 

Figure 1. A three-room world. 
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L3. The car radio world 

The robot manipulates a car radio that can receive three stations, each of which plays a 
different type of music: top 40, classical, and jazz. The radio has two "preset" buttons 
labeled X and Y, as well as "forward seek" and "backward seek" buttons. There are three 
sensations, indicating the type of music played by the current station. The robot has six 
actions available: recall the station in preset X or Y, store the current station in preset X 
or Y, and search forward or backward to the next station from the current station. 

1.4. The grid worm 

The grid world consists of an n xn grid of cells. Half of the cells possess distinct markings. 
The robot stands in one cell and can sense the marking in that cell, if any. There are thus 
nZ/2 sensations. The robot can take four actions: move to the next cell to the left, to the 
right, up, or down. Movement off one edge of the grid wraps around to the other side. 

L5. You figure it out 

The above environments appear fairly simple partially because we have a wealth of world 
knowledge about light switches, radios, etc. For instance, we know that toggling a light 
switch undoes the effect of a previous toggle. The robot operates without the benefit of 
this background knowledge. To illustrate the abstract task that the robot faces, consider 
an environment with two actions, A and B, and one binary-valued sensation, Try to predict 
the sensations that will be obtained given the following sequence of actions. 

Action: A A B B A B A B B B B A B A A A B A B B A A B A B B  

Resulting Sensation: 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 1 ? ? ? ? ? ? 

If  you give up, this is a simplified version of the n-room problem with only two rooms. 
Action A toggles the light switch, B moves from one room to the other, and the sensation 
indicates the state of the light in the current room. Initially, both lights are assumed to 
be off. People generally find this problem extremely challenging, if not insurmountably 
abstract, even when allowed to select actions and observe the consequences. 

2. Modeling the environment with a finite-state automaton 

The environments we wish to consider can be modeled by a finite-state automaton (FSA). 
Nodes of the FSA correspond to states of an environment. Labeled links connect each node 
of the automaton to other nodes and correspond to the actions that the robot can execute 
to move between environmental states. Associated with each node is a set of binary values: 
the sensations that can be detected by the robot in the corresponding environmental state. 
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Figure 2. An FSA for the three-room world. 

Figure 2 illustrates the FSA for a three-room world. Each node is labeled by the correspond- 
ing environmental state, coded in the form r-s~s2s3, where r is the current room-- l ,  2, 
or 3--and si is the status of the light in room i - -0  for off and 1 for on. The sensation asso- 
ciated with each node is written in parentheses. Links between nodes are labeled with one 
of  the three actions: toggle (T), move up (U), or move down (D). 

The FSA represents the underlying structure of  the environment. If  the FSA is known, 
one can predict the sensory consequences of any sequence of  actions. Further, the FSA 
can be used to determine a sequence of  actions required to obtain a certain goal state. For 
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example, if the robot wishes to avoid light, it should follow a link or sequence of links 
for which the resulting sensation is 0. 

Although one might try developing an algorithm to learn the FSA directly, there are several 
arguments against doing so (Schapire, 1988): (1) because many FSAs yield the same input/ 
output behavior, there is no unique FSA; (2) knowing the structure of the FSA is unnecessary 
because we are only concerned with its input/output behavior; and, most importantly, (3) the 
FSA often does not capture redundancy inherent in the environment. As an example of 
this final point, in the n-room world, the 1- action has the same behavior independent of 
the current room number and the state of the lights in the other rooms, yet in the FSA 
of Figure 2, knowledge about "toggle" must be encoded for each room and in the context 
of the particular states of the other rooms. Thus, the simple semantics of an action like 
7- are encoded repeatedly for each of the n2 n distinct states. 

3. Modeling the environment with an update graph 

Rather than trying to learn the FSA, Rivest and Schapire suggest learning another represen- 
tation of the environment called an update graph. The advantage of the update graph rep- 
resentation is that in environments with many regularities, the number of nodes in the update 
graph can be much smaller than in the FSA (e.g., 2n versus n2 n for the n-room world)? 

The Appendix summarizes Rivest and Schapire's formal definition of the update graph. 
Their definition is based on the notion of tests that can be performed on the environment, 
and the equivalence of different tests. In this section, we present an alternative, more intui- 
tive view of the update graph that facilitates a connectionist interpretation of the graph. 

Consider again the three-room world. To model this environment, the essential knowledge 
required is the status of the lights in the current room (CUR), the next room up from the 
current room (up), and the next room down from the current room (DOWN). Assume the 
update graph has a node for each of these environmental variables. Further assume that each 
node has an associated value indicating whether the light in the particular room is on or off. 

I f  we know the value of the variables in the current environmental state, what will their 
new values be after taking some action, say I J? The new value of CUR becomes the previous 
value of uP; the new value of DOWN becomes the previous value of CUR; and in the three- 
room world, the new value of uP becomes the previous value of DOWn. As depicted in 
Figure 3a, this action thus results in shifting values around in the three nodes. This makes 
sense because moving up does not affect the status of any light, but it does alter the robot's 
position with respect to the three rooms. Figure 3b shows the analogous flow of informa- 
tion for the action O. Finally the action -r should cause the status of the current room's 
light to be complemented while the other two rooms remain unaffected (Figure 3c). In 
Figure 3d, the three sets of links from Figure 3a-c have been superimposed and have been 
labeled with the associated action. 

One final detail: The Rivest and Schapire update graph formalism does not make use 
of the "complementation" link. To avoid it, one may split each node into two values, one 
representing the status of a room and the other its complement (Figure 3e). Toggling thus 
involves exchanging the values of c u r  and c--~. Just as the values of CUR, UP, and OOWN 
must be shifted for the actions 0 and D, so must their complements. 
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Figure 3. (a) Links between nodes indicating the desired information flow on performing the action 0. CUR rep- 
resents the status of the lights in the current room, uP the status of the lights in the next room up, and DOWN 
the status of the lights in the next room down. (b) Links between nodes indicating the desired information flow 
on performing the action o. (c) Links between nodes indicating the desired information on performing the action 
T. The " - - "  on the link from CUR to itself indicates that the value must be complemented. (d) Links from the 
three separate actions superimposed and labeled by the action. (e) The complementation link can be avoided 
by adding a set of nodes that represent the complements of the original set. This is the update graph for a three- 
room world. 

Given the update graph in Figure 3e and the value of each node for the current environmen- 
tal state, the result of any sequence of actions can be predicted simply by shifting values 
around in the graph. Thus, as far as predicting the input/output behavior of the environ- 
ment is concerned, the update graph serves the same purpose as the FSA. 

For every FSA, there exists a corresponding update graph. In fact, the update graph in 
Figure 3e might even be viewed as a distributed representation of the FSA in Figure 2. 
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In the FSA, each environmental state is represented by o n e  "active" node. In the update 
graph, each environmental state is represented by a pattern of activity across the nodes. 

One defining and nonobvious (from the current description) property of an update graph 
is that each node has exactly one incoming link for each action. For example, CUR gets 
input from CUR for the action T, from uP for 0, and from DOWN for D. Table 1, which 
represents the update graph in a slightly different manner, provides another way of describing 
the unique-input property. The table shows node connectivity in the update graph, with 
a 'T '  indicating that two nodes are connected for a particular action, and "0" for no con- 
nection. The unique-input property specifies that there must be exactly one non-zero value 
in each row of each matrix. 

Table 1. Alternative representation of update graph. 

Update Graph Connectivity for Move Up 

From Node 

To Node CUR UP DOWN CUR UP DOWN 

CUR 0 1 0 0 0 0 

UP 0 0 1 0 0 0 

DOWN 1 0 0 0 0 0 
CUR 0 0 0 0 1 0 

UP 0 0 0 0 0 1 

DOWN 0 0 0 1 0 0 

Update Graph Connectivity for Move Down 

From Node 

To Node CUR UP DOWN CUR UP DOWN 

CUR 0 0 1 0 0 0 

uP 1 0 0 0 0 0 

DOWN 0 1 0 0 0 0 
CUR 0 0 0 0 0 1 

up 0 0 0 1 0 0 

DOWN 0 0 0 0 1 0 

Update Graph Connectivity for Toggle 

From Node 

To Node CUR UP DOWN CUR UP DOWN 

CUR 0 0 0 1 0 0 

UP 0 1 0 0 0 0 
DOWN 0 0 1 0 0 0 

CUR 1 0 0 0 0 0 

up 0 0 0 0 1 0 
DOWN 0 0 0 0 0 1 
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3.1. The Rivest and Schapire algorithm 

Rivest and Schapire have developed a symbolic algorithm (hereafter, the RS algorithm) 
to strategically explore an environment and learn its update graph representation. They 
break the learning problem into two steps: (a) inferring the structure of the update graph, 
and (b) maneuvering the robot into an environmental state where the value of each node 
is known. Step (b) is relatively straightforward. Step (a) involves a method of experimenta- 
tion to determine whether pairs of action sequences are equivalent in terms of their sensory 
outcomes. For a special class of environments, permutation environments, in which each 
action sequence has an inverse, the RS algorithm can infer the environmental structure-- 
within an acceptable margin of error--by performing a number of actions polynomial in 
the number of update graph nodes and the number of alternative actions. 

This polynomial bound is impressive, but in practice, Schapire (personal communication) 
achieves reasonable performance only by including heuristics that attempt to make better 
use of the information provided by the environment. To elaborate, the RS algorithm formu- 
lates explicit hypotheses about regularities in the environment and tests these hypotheses 
one or a relatively small number at a time. As a result, the algorithm may not make full 
use of the environmental feedback obtained. It thus seems worthwhile to consider alterna- 
tive approaches that allow more efficient use of the environmental feedback, and hence, 
more efficient learning of the update graph. We have pursued a connectionist approach, 
which has shown quite promising results in preliminary experiments as well as a number 
of other powerful advantages. We detail these advantages below, but must first describe 
the basic approach. 

4. Viewing the update graph as a connectionist network 

SLUG is a connectionist network that performs subsymbolic learning of update _graphs. 
Before the learning process itself can be described, however, we must first consider the 
desired outcome of learning. That is, what should SLUG look like following training if 
it is to behave as an update graph? Start by assuming one unit in SLUG for each node 
in the update graph. The activity level of the unit represents the boolean value associated 
with the update graph node. Some of these units serve as "outputs" of SLUG. For exam- 
ple, in the three-room world, the output of SLUG is the unit that represents the status of 
the current room. In other environments, there may be several sensations (e.g., the little 
prince world), in which case several output units are required. 

What is the analog of the labeled links in the update graph? The labels indicate that values 
are to be sent down a link when a particular action occurs. In connectionist terms, the 
links should be gated by the action. To elaborate, we might include a set of units that represent 
the possible actions; these units act to multiplicatively gate the flow of activity between 
units in the update graph. Thus, when a particular action is to be performed, the correspond- 
ing action unit is activated, and the connections that are gated by this action become enabled. 

I f  the action units form a local representation, i.e., only one is active at a time, exactly 
one set of connections is enabled at a time. Consequently, the gated connections can be 
replaced by a set of weight matrices, one per action (like those shown in Table 1). To predict 

42 



SLUG: A CONNECTIONIST ARCHITECTURE 147 

the consequences of a particular action, say T, the weight matrix for T is simply plugged 
into the network and activity is allowed to propagate through the connections. Thus, SLUG 
is dynamically rewired contingent on the current action. 

The effect of activity propagation should be that the new activity of a unit is the previous 
activity of some other unit. A linear activation function is sufficient to achieve this: 

X(t) = W a ( t ) X ( t  - -  1), (1) 

where a(t) is the action selected at time t, Wo( n is the weight matrix associated with this 
action, and x(t) is the activity vector that results from taking action a(t). Assuming weight 
matrices like those shown in Table 1, which have zeroes in each row except for one con- 
nection of strength 1, the activiation rule will cause activity values to be copied around 
the network. Although linear activation functions are generally not appropriate for back 
propagation applications (Rumelhart, Hinton, & Williams, 1986), the architecture here per- 
mits such a simple function. SLUG is thus a linear system, which is extremely useful because 
it allows us to use the tools and methods of linear algebra for analyzing network behavior, 
as we show below. 

5. Training SLUG 

We have described how SLUG could be hand-wired to behave as an update graph, and 
now turn to the procedure used to learn the appropriate connection strengths. For expository 
purposes, assume that the number of units in the update graph is known in advance (this 
is not necessary, as we show below). A weight matrix is required for each action, with 
a potential non-zero connection between every pair of units. As in most connectionist learn- 
ing procedures, the weight matrices are initialized to random values; the outcome of learn- 
ing will be a set of matrices like those in Table 1. 

I f  the network is to behave as an update graph, the critical constraint on the connectivity 
matrices is that each row of each weight matrix should have connection strengths of zero 
except for one value which is 1 (assuming Equation 1). To achieve this property, additional 
constraints are placed on the weights. We have explored a combination of three constraints: 

(1) ~ 2 Wai j -~- l ,  
J 

(2) ~ Wai j = 1, and 
J 

(3) WaLi >-- O, 

where Wai j is the connection strength to i from j for action a. I f  all three of these con- 
straints are satisfied, the incoming weights to a unit are guaranteed to be all zeros except 
for one value which is 1. This can be intuited from Figure 4, which shows the constraints 
in a two-dimensional weight space. Constraint 1 requires that vectors lie on the unit circle, 
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Figure 4. A two-dimensional space representing the weights, Wl and w2, feeding into a 2-input unit. The circle 
and line indicate the subregions specified by constraints 1 and 2, respectively. The two points of intersection 
are (1, 0) and (0, 1). 

constraint 2 requires that vectors lie along the line w 1 --~ w 2 = 1, and constraint 3 requires 
that vectors lie in the first quadrant. Constraint 3 is redundant in a two-dimensional weight 
space but becomes necessary in higher dimensions. 

Constraint 1 is satisfied by introducing a secondary error term, 

Esec : Z  (1 - IIw~,[I) 2, 
a,i 

where Wai is the incoming weight vector to unit i for action a. The learning procedure 
attempts to minimize this error along with the primary error asociated with predicting envi- 
ronmental sensations. Constraints 2 and 3 are rigidly enforced by renormalizing the wai 
following each weight update. The normalization procedure finds the shortest distance pro- 
jection from the updated weight vector to the hyperplane specified by constraint 2 that 
also satisfies constraint 3. 

5.1. Details of the training procedure 

Initially, a random weight matrix is generated for each action. Weights are selected from 
a uniform distribution in the range [0, 1] and are normalized to satisfy constraint 2. At 
each time step t, the following sequence of events transpires: 

1. An action, a(t), is selected at random. 
2. The weight matrix for that action, Wa(~), is used to compute the activities at t, x(t), 

from the previous activities x(t - 1). 
3. The selected action is performed on the environment and the resulting sensations are 

observed. 
4. The observed sensations are compared with the sensations predicted by SLUG (i.e., 

the activities of units chosen to represent the sensations) to compute a measure of error. 
To this error is added the contribution of constraint 1. 
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5. The back propagation "unfolding-in-time" procedure (Rumelhart, Hinton, & Williams, 
1986) is used to compute the derivative of the error with respect to weights at the current 
and earlier time steps, W a ( t _ i )  , for i = 0 . . .  ~- - 1. 

6. The weight matrices for each action are updated using the overall error gradient and 
then are renormalized to enforce constraints 2 and 3. 

7. The temporal record of unit activities, x(t - i) for i = 0 . . .  r, which is maintained 
to permit back propagation in time, is updated to reflect the new weights. (See further 
explanation below.) 

8. The activities of the output units at time t, which represent the predicted sensations, 
are replaced by the observed sensations, z 

Steps 5-7 require further elaboration. The error measured at step t may be due to incor- 
rect propagation of activities from step t - 1, which would call for modification of the 
weight matrix Wa~t). But the error may also be attributed to incorrect propagation of activ- 
ities at earlier times. Thus, back propagation is used to assign blame to the weights at earlier 
times. One critical parameter of training is the amount of temporal history, r, to consider. 
We have found that, for a particular problem, error propagation beyond a certain critical 
number of steps does not improve learning performance, although any fewer does indeed 
harm performance. In the results described below, we generally set r for a particular prob- 
lem to what appeared to be a safe limit: one less than the number of nodes in the update 
graph solution of the problem. 

To back propagate error in time, a temporal record of unit activities is maintained. How- 
ever, a problem arises with these activities following a weight update: the activities are 
no longer consistent with the weights--i.e., Equation 1 is violated. Because the error deriv- 
atives computed by back propagation are exact only when Equation 1 is satisfied, future 
weight updates based on the inconsistent activities are not assured of being correct. Empiri- 
cally, we have found the algorithm extremely unstable if we do not address this problem. 

In most situations where back propagation is applied to temporally-extended sequences, 
the sequences are of finite length. Consequently, it is possible to wait until the end of the 
sequence to update the weights, at which point consistency between activities and weights 
no longer matters because the system starts fresh at the beginning of the next sequence. 
In the present situation, however, the sequence of actions does not terminate. We thus were 
forced to consider alternative means of ensuring consistency. One approach we tried involved 
updating the weights only after every, say, 25 steps. Immediately following the update, the 
weights and activities are inconsistent, but after z steps (when the inconsistent activities 
drop off the activity history record), consistency is once again achieved. A more successful 
approach involved updating the activities after each weight change to force consistency 
(step 7 of the list above), To do this, we propagated the earliest activities in the temporal 
record, x(t - ~-), forward again to time t, using the updated weight matrices? 

The issue of consistency arises because at no point in time is SLUG instructed as to 
the state of the environment. That is, instead of being given an activity vector as input, 
part of SLUG's learning task is to discover the appropriate activity vector. This might sug- 
gest a strategy of explicitly learning the activity vector, that is, performing gradient descent 
in both the weight space and activity space. However, our experiments indicate that this 
strategy does not improve SLUG's performance. One plausible explanation is the following. 
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If we perform gradient descent in weight space based on the error from a single trial, and 
then force activity-weight consistency, the updated output unit activities are guaranteed to 
be closer to the target values (assuming a sufficiently small learning rate and that the weight 
constraints have minor influence). Thus, the effect of this procedure is to reduce the error 
in the observable components of the activity vector, which is similar to performing gradient 
descent in activity space directly. 

A final comment regarding the training procedure: In our simulations, learning perform- 
ance was better with target activity levels of -1 and +1 (for light is offand on, respectively) 
rather than 0 and 1. One explanation for this is that random activations and random (non- 
negative) connection strengths tend to cancel out in the -1/+1 case, but not in the 0/1 case. 

6. Results 

SLUG's architecture, dynamics, and training procedure are certainly nonstandard and nonln- 
tuitive. Our original experiments in this domain involved more standard recurrent connec- 
tionist architectures (e.g., Elman, 1988; Mozer, 1989) and were spectacularly unsuccessful. 
Many simple environments could not be learned, predictions were often inaccurate, and 
a great deal of training was required. Rivest and Schapire's update graph representation 
has thus proven beneficial in the development of SLUG. It provides strong constraints on 
network architecture, dynamics, and training procedure. 

Figure 5 shows the weights in SLUG for the three-room world at three stages of learning. 
The "step" refers to how many actions the robot has taken, or equivalently, how many 
times the weights have been updated. The bottom diagram in the figure depicts a connec- 
tivity pattern identical to that presented in Table 1, and corresponds to the update graph 
of Figure 3e. To explain the correspondence, think of the diagram as being in the shape 
of a person who has a head, left and right arms, left and right legs, and a heart. For the 
action U, the head--the output unit--receives input from the left leg, the left leg from the 
heart, and the heart from the head, thereby forming a three-unit loop. The other three units-- 
the left arm, right arm, and right leg--form a similar loop. For the action D, the same 
two loops are present but in the reverse direction. These two loops also appear in Figure 
3e. For the action T, the left and right arms, heart, and left leg each keep their current 
value, while the head and the right leg exchange values. This corresponds to the exchange 
of values between the c u r  and ~ nodes of the Figure 3e. 

In addition to learning the update graph connectivity, SLUG has simultaneously learned 
the correct activity values associated with each node for the current state of the environ- 
ment. Armed with this information, SLUG can predict the outcome of any sequence of 
actions. Indeed, the prediction error drops to zero, causing learning to cease and SLUG 
to become completely stable. Because the ultimate weights and activities are boolean, SLUG 
can predict infinitely far into the future with no degradation in performance (cf., Servan- 
Schreiber, Cleeremans, & McClelland, 1988). 

Now for the bad news: SLUG does not converge for every set of random initial weights, 
and when it does, it requires on the order of 6,000 steps, much greater than the RS algorithm. 4 
However, when the weight constraints are removed, SLUG converges without fail and in 
about 300 steps. It appears that only in extremely small environments do the weight 
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Figure 5. The three-room world. Weights learned by SLUG with six units at three stages of learning: step 0 reflects 
the initial random weights, step 3000 reflects the weights midway through learning, and step 6000 reflects the 
weights upon completion of learning. Each large diagram represents the weights corresponding to one of the 
three actions. Each small diagram contained within a large diagram represents the connection strengths feeding 
into a particular unit for a particular action, There are six units, hence six small diagrams. The output unit, which 
indicates the state of the light in the current room, is the protruding "head" of the large diagram. A white square 
in a particular position of a small diagram represents the strength of connection from the unit in the homologous 
position in the large diagram to the unit represented by the small diagram. The area of the square is proportional 
to the connection strength. 
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constraints help SLUG discover a solution. We consider below why the weight constraints 
are harmful and possible remedies. 

Without weight constraints, there are two problems. First, the system has difficulty con- 
verging onto an exact solution. One purpose that the weight constraints serve is to lock 
in on a set of weights when the system comes sufficiently close; without the constraints, 
we found it necessary to scale the learning rate in proportion to the mean-squared predic- 
tion error to avoid overstepping solutions. Second the resulting weight matrix, which con- 
tains a collection of positive and negative weights of varying magnitudes, is not readily 
interpreted (see Figure 6). In the case of the three-room world, one reason why the final 
weights are difficult to interpret is because the net has discovered a solution that does not 
satisfy the update graph formalism; it has discovered the notion of complementation links 
of the sort shown in Figure 3d. With the use of complementation links, only three units 
are required, not six. Consequently, the three unnecessary units are either cut out of the 
solution or encode information redundantly. SLUG's solutions are much easier to under- 
stand when the network consists of only three units. Figure 7 depicts one such solution, 
which corresponds to the graph in Figure 3d. SLUG also discovers other solutions in which 
two of the three connections in the three-unit loop are negative, one negation cancelling 
out the effect of the other. Allowing complementation links can halve the number of update 

U D T 

Figure 6 The three-room world. Weights learned by SLUG with six units without weight constraints. Black squares 
indicate negative weights, white positive. 

U D T 

Figure 7. The three-room world. Weights learned by SLUG with three units without weight constraints. (The 
weights have been cleaned up slightly to make the result clearer.) 
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Table 2. Number of steps required to learn update 
graph. 

Environment RS Algorithm SLUG 

Little Prince World 200 91 
Three-Room World not available 298 
Four-Room World 1,388 1,509 
6:,<6 Grid World not available 8,142 
Car Radio World 27,695 8,167 
32-Room World 52,436 fails 

graph nodes required for many environments. This is one fairly direct extension of Rivest 
and Schapire's update graph formalism that SLUG suggests. 

Table 2 compares the performance of the RS algorithm against that of SLUG without 
weight constraints for a sampling of environments? Performance is measured in terms of 
the number of actions the robot must take before it is able to predict the outcome of subse- 
quent actions, that is, the number of actions required to learn the update graph structure 
and the truth value associated with each node. The performance data reported for SLUG 
was the median over 25 replications of each simulation. SLUG was considered to have 
learned the task on a given trial if the correct predictions were made for at least the next 
2,500 steps. 

The learning rates used in our simulations were adjusted dynamically every 100 steps 
by averaging the current learning rate with a rate proportional to the mean squared error 
obtained on the last 100 steps. Several runs were made to determine what initial learning 
rate and constant of proportionality yielded the best performance. It turned out that per- 
formance was relatively invariant under a wide range of these parameters. Momentum did 
not appear to help. 6 

In simple environments, the cormectionist update graph can outperform the RS algorithm. 
These results are quite surprising when considering that the action sequence used to train 
SLUG is generated at random, in contrast to the RS algorithm, which involves a strategy 
for exploring the environment. We conjecture that SLUG does as well as it does because it 
considers and updates many hypotheses in parallel at each time step. That is, after the out- 
come of a single action is observed, nearly all weights in SLUG are adjusted simultaneously. 

In complex environments--ones in which the number of nodes in the update graph is 
quite large and the number of distinguishing environmental sensations is relatively small-- 
SLUG does poorly. As an example of such, a 32-room world cannot be learned by SLUG 
whereas the RS algorithm succeeds. An intelligent exploration strategy seems necessary 
in complex environments: with a random exploration strategy, the time required to move 
from one state to a distant state becomes so large that links between the states cannot be 
established. 

The 32-room world is extreme; all rooms are identical and the available sensory informa- 
tion is meager. Such an environment is quite unlike natural environments, which provide 
a relative abundance of sensory information to distinguish among environmental states. 
SLUG performs much better when more information about the environment can be sensed 
directly. For example, learning the 32-room world is trivial if SLUG is able to sense the 
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states of all 32 rooms at once (the median number of steps to learn is only 1,209). The 
6×6 grid world is another environment as large as the 32-room world in terms of the num- 
ber of nodes SLUG requires, but it is much easier to learn because of the rich sensory 
information. 

6.1. Noisy environments 

The RS algorithm is not designed to handle environments with stochastic sensations. In 
contrast, SLUG's performance degrades gracefully in the presence of noise. For example, 
SLUG is able to learn the update graph for the little-prince world even when sensations 
are unreliable, say, when sensations are registered incorrectly 10% of the time. To train 
SLUG properly in noisy environments, however, the training procedure must be altered. 
If the observed sensation replaces SLUG's predicted sensation and the observed sensation 
is incorrectly registered, the values of nodes in the graph are disrupted and SLUG requires 
several noise-free steps to recover. Thus, a procedure might be used in which the predicted 
sensation is not completely replaced by the observed sensation, but rather some average 
of the two is computed; additionally, the average should be weighted towards the prediction 
as SLUG's performance improves. 

6.2. Prior specification of update graph size 

The RS algorithm requires an upper bound on the number of nodes in the update graph. 
The results presented in Table 2 are obtained when the RS algorithm knows exactly how 
many nodes are required in advance. The algorithm fails if it is given an upper bound less 
than the required number of nodes, and performance degrades as the upper bound increases 
above the required number. SLUG will also fail if  it is given fewer units than are necessary 
for the task. However, performance does not appear to degrade as the number of units 
increases beyond the minimal number. Table 3 presents the median number of steps required 

Table 3, Median number of steps to learn 
four-room world. 

Number of Steps to 

Units in SLUG Learn Update Graph 

4 2,028 
6 1,380 
8 1,509 

10 1,496 
12 1,484 
14 1,630 
16 1,522 
18 1,515 
20 1,565 
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to learn the four-room world as the number of units in SLUG is varied. Although perform- 
ance is independent of the number of units here, extraneous units greatly improve perform- 
ance when the weight constraints are applied. Only 3 of 25 replications of the four-room 
world simulation with 8 units and weight constraints successfully learned the update graph 
(the simulation was terminated after 100,000 steps), whereas 21 of 25 replications succeeded 
when 16 units were used. 

6.3. Generalizing the update graph formalism 

Having described the overall performance of SLUG, we return to the issue of why weight 
constraints appear to harm performance. One straightforward explanation is that there are 
many possible solutions, only a small number of which correspond to update graphs. With 
weight constraints, SLUG is prevented from finding alternative solutions. One example 
of an alternative solution is the network with complementation links presented in Figure 7. 
Allowing complementation links can halve the number of update graph nodes required for 
many environments. 

An even more radical generalization of the update graph formalism arises from the fact 
that SLUG is a linear system. Consider a set of weight matrices, {Wa}, that correspond 
to a particular update graph, i.e., each row of each matrix satisfies the constraint that all 
entries are zero except for one entry that is one (as in Table 1). Further, assume the vector 
x indicates the current values of each node. Given the previously-stated activation rule, 

x ( t )  = w , ~ < o x ( t  - 1 ) ,  

one can construct an equivalent system, 

x'(t) = W'(t)x'(t  - 1) 

by substituting 

x'(t) --- Qx(t) 

and 

Wa/o - QWa~t)Q*. 

Here, the W a have dimensions n×n, the W a have dimensions m×m, Q is any matrix of 
dimensions m×n and rank n, and Q* is the left inverse of Q. The transformed system con- 
sisting of x '  and the Wa is isomorphic to the original system; one can determine a unique 
x for each x', and hence one can predict sensations in the same manner as before. However, 
the transformed system is different in one important respect: The Wa do not satisfy the 
one-nonzero-weight-per-row constraint. 

Because the set of matrices Q that meet our requirements is infinite, so is the number 
of {W,~} for each {Wa}. A network being trained without weight constraints is free to 
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discover virtually any of these {WE} (the only restriction being that the mapping from 
x '  to x is the identity for the output units, because error is computed from x '  directly, 
not x). Thus, each solution {Wa} that meets the formal definition of an update graph is 
only a special case--with Q being the identity matrix--of the more general {WE}. Requir- 
ing SLUG to discover this particular solution can complicate learning, as we observed when 
training SLUG with weight constraints. 

If the connectivity restrictions on W that define an update graph could be generalized 
to W', these generalized restrictions could be applied to discover a large set of solutions 
that nonetheless correspond to an update graph. Unfortunately, it does not appear that the 
restrictions can be mapped in any straightforward way. 

An alternative approach we have considered is to train SLUG to discover a solution 
{W'} which can then be decomposed into an update graph {Wa} and a transformation 
matrix Q. The decomposition could be attempted post hoc, but our experiments thus far 
have consisted of explicitly defining W '  in terms of Q and W. That is, an error gradient 
is computed with respect to W', which is then translated to gradients with respect to Q 
and W. 7 In addition, the previously-described constraints on W are applied. Although SLUG 
must still discover the update graph {Wa}, we hoped that introducing Q would allow alter- 
native paths to the solution. This method did help somewhat, but unfortunately, perform- 
ance did not reach the same levels as training with no weight constraints whatsoever. Fig- 
ure 8 shows one solution obtained by SLUG under this training regimen. 

@ @ 

@@ @@ 
U D T 

W' 

U D T 

W 0 

Figure 8. The three-room world. The {Wa} are weight matrices learned by SLUG with six units (along with 
an activity vector, x ') .  Although the weights do not appear to correspond to an update graph, they in fact can 
be decomposed into matrices Q and {Wa} according to W a = QWaQ*. 

52 



SLUG: A CONNECTIONIST ARCHITECTURE 157 

7. Conclusion 

The connectionist approach to the problem of inferring the structure of a finite-state envi- 
ronment has two fundamental problems that must be overcome if it is to be considered 
seriously as an alternative to the symbolic approach. First, using a random exploration 
strategy, SLUG has no hope of scaling to complex environments. An intelligent exploration 
strategy could potentially be incorporated to force the robot into states where SLUG's predic- 
tive abilities are poor. (For a related approach, see Cohn et al., 1990). Second, our greatest 
successes have occurred when we allowed SLUG to discover solutions that are not necessarily 
isomorphic to an update graph. One virtue of the update graph formalism is that it is rela- 
tively easy to interpret; the same cannot generally be said of the continuous-valued weight 
matrices discovered by SLUG. However, as we discussed, there is promise of developing 
methods for transforming the large class of formally equivalent solutions available to SLUG 
into the more localist update graph formalism to facilitate interpretation. 

On a positive note, the connectionist approach has shown several benefits. 

• Connectionist learning algorithms provide the potential of parallelism. After the outcome 
of a single action is observed, nearly all weights in the network are adjusted simultaneously. 
In contrast, the RS algorithm performs actions in order to test one or a small number 
of hypotheses, say, whether two particular nodes should be connected. A further exam- 
ple of SLUG's parallelism is that it learns the update graph structure at the same time 
as the appropriate unit activations, whereas the RS algorithm approaches the two tasks 
sequentially. 

* Performance of the learning algorithm appears insensitive to prior knowledge of the num- 
ber of nodes in the update graph being learned. As long as SLUG is given at least as 
many units as required, the presence of additional units does not impede learning. SLUG 
either disconnects the unnecessary units from the graph or uses multiple units to encode 
information redundantly. In constast, the RS algorithm requires an upper bound on the 
update graph complexity, and performance degrades significantly if the upper bound isn't 
tight. 

• During learning, SLUG continually makes predictions about what sensations will result 
from a particular action. These predictions gradually improve with experience, and even 
before learning is complete, the predictions can be substantially correct. The RS algorithm 
cannot make predictions based on its partially constructed update graph. Although the 
algorithm could perhaps be modified to do so, there would be an associated cost. 

• Connectionist learning algorithms are able to accommodate environments in which the 
sensations are somewhat unreliable. The original RS algorithm was designed for deter- 
ministic environments. 

• Treating the update graph as matrices of connection strengths has suggested generaliza- 
tions of the update graph formalism that don't arise from a more traditional analysis. 
We presented two generalizations. First, there is the fairly direct extension of allowing 
complementation links. Second, because SLUG is a linear system, any rank-preserving 
linear transform of the weight matrices will produce an equivalent system, but one that 
does not have the local connectivity of the update graph. Thus, one can view the Rivest 
and Schapire update graph formalism as one example of a much larger class of equivalent 
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solutions that can be embodied in a connectionist network. While many of these solu- 
tions do not obey constraints imposed by a symbolic description (e.g., all-or-none links 
between nodes), they do yield equivalent behavior. By relaxing the symbolic constraints, 
the connectionist representation allows for greater flexibility in expressing potential 
solutions. 

We emphatically do not claim that the connectionist approach supercedes the impressive 
work of Rivest and Schapire. However, it offers complementary strengths and an alternative 
conceptualization of the learning problem. 

Appendix 

In explaining the update graph, we informally characterized the nodes of the graph as rep- 
resenting sensations in the environment relative to the observer's current position. However, 
the nodes have a formal semantics in Rivest and Schapire's derivation of the update graph, 
which we present in this Appendix after first introducing a bit more terminology. 

A test on the environment can be defined as a sequence of zero or more actions followed 
by a sensation. A test is performed by executing the sequence of actions from the current 
environmental state and then detecting the resulting sensation. For example, in the n-room 
world, some tests include: UU? (move up twice and sense the state of the light), OTD? (move 
up, toggle the light, move down, and then sense the state of the light), ? (sense the state 
of the light in the current room). The value of a test is the value of the resulting sensation.S 

Certain tests are equivalent. For example, in the three-room world uu ? and D? will always 
yield the same outcome, independent of the current environmental state. This is because 
moving up twice will land the robot in the same room as moving down once, so the resulting 
sensation will be the same. The tests UOOOU?, TUU?, DUTDDDD? are also equivalent to UU? 
and 07. The set of equivalent tests defines an equivalence class. Rivest and Schapire call 
the number of equivalence classes the diversity of the environment. The n-room world has 
a diversity of 2n, arising from there being n lights that can be sensed, either in their current 
state or toggled. Each node in the update graph corresponds to one test equivalence class. 

The directed, labeled links of the update graph arise from relations among equivalence 
classes: There is a link from node a to node/3 labeled with action if the test represented 
by c~ is equivalent to (i.e., will always yield the same result as) executing action followed 
by test/3. For instance, there is a link from the node representing the class containing T? 
(which we have indicated as CUR in Figure 3e) to the node representing the class containing 
UT? (which we have indicated as ~ in Figure 3e), and this link is labeled D because exe- 
cuting the action D followed by the test UT? is equivalent to executing the test T? (the U 
and D actions cancel). 

The boolean variable associated with each node represents the truth value of the corre- 
sponding test given the current global state of the environment. If  the value of each node 
is known prior to performing an action, the value of each node following the action is easily 
determined by propagating values along the links. Consider again the two nodes a and/3 
with a directed link from a to/3 labeled by action. Because test ~ is equivalent to action 
followed by test/3, the value of/3 after performing action is simply the value of o~ prior 
to the action. 
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Based on the semantics of nodes and links, it is clear why each node has exactly one 
incoming link for each action. If a node/3 received projections from two nodes, oq and 
az for some action, this would imply that the equivalence classes cq and or2 both contained 
the test consisting of action followed by test/3. If the two equivalence classes contain the 
same test, they must represent the same equivalence class, and hence will be collapsed 
together. 
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Notes 

1. The disadvantage of the update graph is that in degenerate, completely unstructured environments, the size 
of the update graph can be exponentially larger than the size of the FSA. 

2. A consequence of this substitution is that error should not be back propagated from time t to output units 
at times t - 1, t - 2, etc. It is not sensible to adjust the response properties of output units at time, say, 

t - 1 to achieve the correct response at time t because their appropriate activation levels have already been 
established by the sensations at time t - 1. 

3. Keeping the original value of x(t - r) is a somewhat arbitrary choice. Consistency can be achieved by propa- 
gating any value ofx(t - z) forward in time, and there is no strong reason for believing x(t - r) is the appro- 
priate value. We thus suggest two alternative schemes, but have not yet tested them. First, we might select 
x(t - r) such that the new x(t - i), i = 0 . .. r - 1, are as close as possible to the old values. Second, 
we might select x(t - r) such that the output units produce as close to the correct values as possible. Both 
these schemes require the computation-intensive operation of finding a least squares solution to a set of linear 
equations. 

4. The definitive connectionist light bulb joke (courtesy of Thomas Mastaglio): 

Q: How man), connectionist networks does it take to change a light bulb? 
A: Only one, but it needs about 6,000 trials. 

5. We thank Rob Schapire for providing us with the latest results from his work. 
6. Just as connectionist simulations require a bit of voodoo in setting learning rates, the RS algorithm has its 

own set of adjustable parameters that influence performance. One of us (JB) experimented with the RS algorithm, 
and without expertise in parameter tweaking, was unable to obtain performance in the same range as the measures 
reported in Table 2. 

7. This is not a simple matter due to the fact that W '  is composed of Q* as well as Q, and the Q* gradient must 
be transformed into a Q gradient. Consequently, we constrained Q to be an orthogonal matrix. For orthogonal 
matrices, Q-1 = QT, which trivializes the mapping from Q* gradients to Q gradients. 

8. In the n-room world, there is only one sensation--the state of the light; thus, each test ends by evaluating 
this sensation. In environments having multiple sensations, tests can end with different sensations. 
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