
Machine Learning, 7, 109-138 (1991)
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Automata from Ordered Examples

SARA PORAT*
Department of Computer Science, University of Rochester

JEROME A. FELDMANt
Department of Computer Science, University of Rochester

Abstract. Connectionist learning models have had considerable empirical success, but it is hard to characterize
exactly what they learn. The learning of finite-state languages (FSL) from example strings is a domain which
has been extensively studied and might provide an opportunity to help understand connectionist learning. A major
problem is that traditional FSL learning assumes the storage of all examples and thus violates connectionist prin-
ciples. This paper presents a provably correct algorithm for inferring any minimum-state deterministic finite-
state automata (FSA) from a complete ordered sample using limited total storage and without storing example
strings. The algorithm is an iterafive strategy that uses at each stage a current encoding of the data considered
so far, and one single sample string. One of the crucial advantages of our algorithm is that the total amount of
space used in the course of learning for encoding any finite prefix of the sample is polynomial in the size of
the inferred minimum state deterministic FSA. The algorithm is also relatively efficient in time and has been
implemented. More importantly, there is a conneetionist version of the algorithm that preserves these properties.
The connectionist version requires much more structure than the usual models and has been implemented using
the Rochester Connectlonist Simulator. We also show that no machine with finite working storage can iteratively
identify the FSL from arbitrary presentations.

Keywords. Learning, finite automata, cormectionist

1. Introduction

The ability to adapt and learn has always been considered a hallmark of intelligence, but
machine learning has proved to be very difficult to study. There is currently a renewed
interest in learning in the theoretical computer science community (Valiant, 1984; Valiant,
1985; Kearns, et al., 1987; Natarajan, 1987; Rivest & Schapire, 1987; Rivest & Schapire,
1987) and a, largely separate, explosive growth in the study of learning in connectionist
networks (Hinton, 1987). One purpose of this paper is to establish some connections (sic)
between these two research programs.

The setting for this paper is the abstract problem of inferring Finite State Automata (FSA)
from sample input strings, labelled as + or - depending on whether they are to be ac-
cepted or rejected by the resulting FSA. This problem has a long history in theoretical
learning studies (Angluin, 1976; Angluin, 1981; Angluin, 1987) and can be easily mapped
to common connectionist situations. There are arguments (Brooks, 1987) that interacting
FSA constitute a natural substrate for intelligent systems, but that issue is beyond the scope
of this paper.

*Current Address: Science & Technology, IBM Israel Ltd., Technion City, Haifa, Israel.
tCurrent Address: International Computer Science Institute, Berkeley, CA.

110 S. PORAT AND J.A. FELDMAN

b

a

Figure 1. A parity FSA.

We will start with a very simple sample problem. Suppose we would like a learning
machine to compute an FSA that will accept those strings over the alphabet {a, b} that
contain an even number of a's. One minimal answer would be the following two-state FSA
shown in Figure 1.

We adopt the convention that states drawn with one circle are rejecting states and those
drawn with a double circle are accepting. The FSA always starts in state q0, which is accept-
ing iff the empty string k is to be accepted. We will present in Section 3 an algorithm
that will always learn the minimum state deterministic FSA for any finite state language
which is presented to the learning algorithm in strict lexicographic order. There are a number
of issues concerning this algorithm, its proof and its complexity analysis that are indepen-
dent of any relation to parallel and connectionist computation.

It turns out that the "even a 's" language is the same as the well-studied "parity problem"
in connectionist learning (Hinton, 1987). The goal there is to train a network of simple
units to accept exactly binary strings with an even number of l's. In the usual connectionist
situation, the entire string (of fixed length) is presented to a bottom layer of units and the
answer read from a pair of decision units that comprise the top layer. There are also inter-
mediate (hidden) units and it is the weights on connections among all the units which the
connectionist network modifies in learning.

The parity problem is very difficult for existing connectionist learning networks and it
is instructive to see why this is so. The basic reason is that the parity of a string is a strictly
global property and that standard connectionist learning techniques use only local weight-
change rules. Even when a network can be made to do a fairly good job on a fixed-length
parity problem, it totally fails to generalize to shorter strings. Of course, people are also
unable to compute the parity of a long binary string in parallel. What we do in this situa-
tion is much more like the FSA of Figure 1. So one question concerns the feasibility of
connectionist FSA systems.

There are many ways to make a connectionist version of an FSA like that of Figure 1.
One of the simplest assigns a connectionist unit to each state and to the answer units +
and - . It is convenient to add an explicit termination symbol ~ and to use conjunctive
connections (Feldman & Ballard, 1982) to capture transitions. The "current input letter"
is captured as the activity of exactly one of the top three units. Figure 2 is the equivalent
of Figure 1 under this transformation.

Thus unit 0 corresponds to the accepting State qo in Figure 1 because when it is active
and the input symbol is ~-, the answer + is activated. Similarly, activity in unit 1 and
in the unit for a leads to activity in unit 0 for the next time step. Note that activity is allowed
in only one of the units 0, 1, +, - for each step of the (synchronous) simulation. In Sec-
tion 5, we will show how the construction of Section 3 can be transformed into one which

6

LEARNING AUTOMATA FROM ORDERED EXAMPLES 111

Figure 2. A connectionist parity network.

has a connectionist system learn to produce subnets like that of Figure 2. There have been
some attempts (Williams, 1987) to extend conventional connectionist learning techniques
to sequences, but our approach is quite different. It would be interesting to compare the
various techniques.

More generally, we are interested in the range of applicability of various learning tech-
niques and on how theoretical results can contribute to the development of learning machines.
The starting point for the current investigation was the application of the theory of learning
FSA to connectionist systems. As always, the assumptions in the two cases were quite dif-
ferent and had to be reconciled. There is, as yet, no precise specification on what consti-
tutes a "connectionist" system, but there are a number of generally accepted criteria. The
truism that any machine can be built from linear threshold elements is massively irrelevant.
Connectionist architectures are characterized by highly parallel configurations of simple
processors exchanging very simple messages. Any system having a small number of control
streams, an interpreter or large amounts of passive storage is strongly anticonnectionist in
spirit. It is this last characteristic that eliminated almost all the existing formal learning
models as the basis for our study. Most work has assumed that the learning device can store
all of the samples it has seen, and base its next guess on all this data. There have been
a few studies on "iterative" learning where the guessing device can store only its last guess
and the current sample (Wiehagen, 1976; Jantke & Beick, 1981; Osherson, et al., 1986).
Some of the techniques from Jantke and Beick (1981) have been adapted to prove a negative
result in Section 4. We show that a learning device using any finite amount of auxiliary
memory cannot learn the Finite State Languages (FSL) from unordered presentations.

Another important requirement for a model to be connectionist is that it adapts. That
is, a connectionist system should reflect its learning directly in the structure of the network.
This is usually achieved by changing the weights on connections between processing ele-
ments. One also usually requires that the learning rule be local; a homunculus with a wire-
wrap gun is decidedly unconnectionist. All of these criteria are based on abstractions of
biological information processing and all were important in the development of this paper.
The algorithm and proof of Section 3 do not mention them explicitly, but the results arose
from these considerations. After a pedagogical transition in Section 5.1, Section 5.2 presents
the outline of an FSL learner that is close to the connectionist spirit. Error tolerance, another
connectionist canon, is only touched upon briefly but appears to present no fundamental
difficulties.

112 S. PORAT AND J.A. FELDMAN

In a general way, the current guess of any learning algorithm is an approximate encapsu-
lation of the data presented to it. Most connectionist paradigms and some others (Valiant,
1984; Horning, 1969) assume that the learner gets to see the same data repeatedly and
to refine its guesses. It is not surprising that this can often be shown to substitute, in the
long run, for storing the data. As mentioned above, we show in Section 4 that in general
an algorithm with limited storage will not be able to learn (even) FSA on a single pass
through the data. But there is a special case in which one pass does suffice and that is
the one we consider in Section 3.

The restriction that makes possible FSA learning in a single pass is that the learning
algorithm be presented with the data in strict lexicographic order, that is, -t-X, +a, _b,
+aa In this case the learner can construct an FSA, referred to also as the current
guess, that exactly captures the sample seen so far. The FSA is nondeterministic, but con-
sistent-every path through the FSA gives the same result for every sampled string con-
sidered so far. It turns out that this is a minimal state FSA consistent with the data and
can thus be viewed as best guess to date. The idea of looking at strict lexicographic orders
came to us in considering the algorithm of Rivest and Schapire (1987). Their procedure
is equivalent to receiving ± samples in strict order. One would rarely expect such benign
training in practical situations, but the general idea of starting with simpler examples is
common.

Since the sample is presented in lexicographic order, our learning algorithm will be able
to build up its guesses in a cumulative way. If the empty string is (is not) in the inferred
language L, then the first guess is a machine with one accepting (rejecting) state. Each
subsequent example is either consistent with the current guess, or leads to a new guess.
The details of this comprise the learning algorithm of Section 3. When a new state is added
to the current guess, a set of incoming and outgoing links to and from this new state are
added. Consider the "even a 's" language. With the sample + ?x, the initial accepting state
q0 has links to itself under every letter. These links are all mutable and may later be deleted.
When - a is presented, the self-looping link under a is deleted and replaced by a perma-
nent link to a new rejecting state q~. We further add a mutable link from q0 to q~ under
b, and the whole set of links from q~. Figure 3 shows the guess for the "even a 's" language
after the initial sample +)x and - a . The link from qo to q~ under b is pruned when +b
is presented. +aa will imply the deletion of the current self-link of ql under a, and - a b
will finally change the guess to that of Figure 1.

The remainder of the paper is divided into three major sections. Section 3 considers
the general problem of learning FSA from lexicographically ordered strings. An algorithm

b

a,b

a,b

Figure 3. An intermediate guess for the parity FSA.

LEARNING AUTOMATA FROM ORDERED EXAMPLES 113

is presented and its space and time complexity are analyzed. The proof of correctness for
this algorithm in Section 3.3 uses techniques from verification theory that have apparently
not been used in the learning literature. In Section 4 we show that the strong assumption
of lexicographic order is necessary--no machine with finite storage can learn the FSA from
arbitrary samples. Section 5 undertakes the translation to the connectionist framework.
This is done in two steps. First a distributed and modular, but still conventional version,
is described. Then a transformation of this system to a connectionist network is outlined.
Some general conclusions complete the paper.

2. Relation to previous work

The survey by Angluin and Smith (1983) is the best overall introduction to formal learning
theory; we just note some of the most relevant work. Our learning algorithm (to be presented
in the next section) identifies the minimum state deterministic FSA (DFSA) for any FSL
in the limit: Eventually the guess will be the minimum state DFSA, but the learner has
no way of knowing when this guess is found. The learner begins with no aprioH knowledge.
We can regard the sample data as coming from an unknown machine that identifies the
inferred FSL. As stated above, our algorithm is an iterative strategy that uses at each stage
a current encoding of the data considered so far, and the single current sample string. One
of the crucial advantages of our algorithm is that the total amount of space used in the
course of learning, for encoding any finite prefix of the sample, is polynomial in the size
of the inferred minimumm-state DFSA. Any encoding of a target grammar requires 0(n 2)
space, and our algorithm is 0(nZ).

Iterative learning strategies have been studied in Wiehagen (1976); Jantke and Beick (1981);
and Osherson, et al. (1986). Jantke and Beick (1981) prove that there is a set of functions
that can be identified in the limit by an iterative strategy, using the strict lexicographic
presentations of the functions, but this set cannot be identified in the limit by an iterative
strategy using arbitrary presentations. The proof can be slightly modified in order to prove
that there is no iterative algorithm that can identify the FSL in the limit, using arbitrary
representations for the languages. We generalize the definition of an iterative device to capture
the ability to use any finite auxiliary memory in the course of learning. Hence, our result
is stronger than that in Jantke and Beick (1981).

Gold (1967) gives algorithms for identifying FSA in the limit both for resettable and
nonresettable machines where resettable machines are defined by the ability or need to
"reset" the automation to some start state. These algorithms identify by means of enumera-
tion. Each experiment is performed in succession, and in each stage all the experiments
performed so far are used in order to construct the next guess. Consequently, the storage
needed until the correct guess is reached is exponential in the size of the minimum state
DFSA. The enumeration algorithm for resettable machines has the advantage (over our
algorithm) that it does not specify the experiments to be performed; it can use any data
that identifies the inferred FSL. This property is not preserved when the machines are
nonresettable.

Gold (1972) introduces another learning technique for identifying a minimum state DFSA
in the limit by experimenting with a resettable machine. This variation is called the state

9

114 S. PORAT AND J.A. FELDMAN

characterization method which is much simpler computationally. This technique specifies
the experiments to be performed, and again has the disadvantage of having to monitor an
infinitely increasing storage area.

Angluin 0987) bases her result upon the method of state characterization, and shows
how to infer the minimum state DFSA by experimenting with the unknown automata (ask-
ing membership queries), and using an oracle that provides counterexamples to incorrect
guesses. Using this additional information Angluin provides an algorithm that learns in
time polynomial in the maximum length of any counterexample provided by the oracle,
and the number of states in the minimum-state DFSA. Angluin's algorithm differs from
our approach mainly in the use of an oracle that answers equivalence queries in addition
to accepting or rejecting certain sample strings. The algorithm is comparable to ours in
the sense that it uses experiments that are chosen at will.

Recently Rivest and Schapire (1987) presented a new approach to the problem of learning
in the limit by experimenting with a nonresettable FSA. They introduce the notion of diver-
sity which is the number of equivalence classes of tests (basically, an experiment from any
possible state of the inferred machine). The learning algorithm uses a powerful oracle for
determining the equivalence between tests, and finds the correct DFSA in time polynomial
in the diversity. Since the lower bound on the diversity is log the number of states, and
it is the best possible, this algorithm is practically interesting. Again, the experiments in
this algorithm are chosen at will, and in fact they are a finite prefix of a lexicographically
ordered sample of the inferred language.

Another variation of automation identification is that from a given finite subset of the
input-output behavior. Bierman and Feldman (1972) discuss this approach. The learning
strategy there includes an adjusted parameter for inferring DFSAs with varying degrees
of accuracy, accomplished by algorithms with varying complexities. In general, Gold (1978)
and Angluin (1978) prove that finding a DFSA of n states or less that is compatible with
a given data is NP-complete. On the other hand, Trakhtenbrot and Barzdin (1973) and Angluin
(1976) show that if the sample is uniform-complete, i.e., consists of all strings not exceeding
a given length and no others, then there is a polynomial time algorithm (on the size of
the whole sample) that finds the minimum state DFSA that is compatible with it. Note
that the sample size is exponential in the size of the longest string in the sample. We can
regard our algorithm as an alternative method for identifying the minmum state DFSA from
a given uniform-complete sample. As stated above, our algorithm is much more efficient
in space, since it does not access the whole sample, but rather refers to it in succession,
and needs just a polynomial space in the number of states in the minimum state DFSA.
The time needed for our algorithm is still polynomial in the size of the whole sample,
though logarithmic in an amortized sense, as we show in Section 3.4.

Recently, Miri Sharon in her Master's thesis (Sharon, 1990) presented an algorithm for
inferring FSA in the FS-IT model. The algorithm is based on Ibarra and Jiang, Lemma 1
(Ibarra & Jiang, 1988), and on the fact that the union, intersection, complement and reduc-
tion operations on finite automata, all require time and space polynomial in the size of
the machine. Sharon's algorithm improves ours in that the time needed for each sample,
as well as the storage, is polynomial in n, the size of the minimum state DFSA. The size
of the inferred FSAs is not monotonically increasing; yet it is bounded by 6*n*n-3*n. The
design of the algorithm is inherently sequential and centralized.

10

LEARNING AUTOMATA FROM ORDERED EXAMPLES 115

3. S e q u e n t i a l v e r s i o n f o r l e a r n i n g F S A

3.L Notation and definitions

We use the following notation and definitions:

• A finite-state automata (FSA) M is a 5-tuple (Q, ~, 6, q0, F) where
- - Q is a finite nonempty set of states.
- - E is a finite nonempty set of letters.
- - 6 is a transition function that maps each pair (q, o) to a set of states, where q E Q

and a E E. This function can be represented by the set of links E so that (p a q) E E
iff q ~ 3(p, a). Each link is either mumble or permanent.

6 can be naturally extended to any string x E E* in the following way: 6(q,),) = {q}, and
for every string x E ~* and for every letter a E E, 6(q, x a) = {pl(a r E Q)(r E 6(q, x)
and p E 6(r, o))}.
- - qo is the initial state, qo E Q.
- - F is the set of accepting states, F c_ Q. (Q - F is called the set of rejecting states).
- - The parity f(q) of a state q E Q is + if q E F and is - if q E Q - E By extension,

assuming for some q E Q and a E Z that 6(q, a) = 0, we define the parity of this
state-symbol pair f(q, or) to be + if all successors of q under a are + and - if they
are all - . I f all r E 6(q, a) do not have the same parity, then f(q, a) is undefined.

• A deterministic FSA (DFSA) is an FSA where the transition function ~ is from Q x X;
into Q.

• The language L(M) accepted by a DFSA, M, is the set {x E E* [~(qo, x) E F}.
• Given a regular language L, we denote by ML the (up to isomorphism) minimum state

DFSA s.t. L(ML) = L. QL is the state set of M L.

The late lower case letters v, w, x, y, z will range over strings. Given a current FSA,
the new string to be considered is denoted by w (the wrecker that may break the machine).
Lower case letters p, q, r, s, t range over names of states. Whenever the current w wrecks
the current guess, a new state, denoted by s (supplemental state) is added, a, ~b, ~b will
range over letters, and i, j, k, m, n over the natural numbers.

e M x = (QX, z , hx, qo, FX) is the FSA, referred to also as the guess, after the finite prefix
+X _ x of the complete lexicographically ordered sequence. E x is the correspond-
ing set of links.

• For x E ~*, succ(x) stands for the string following x in the lexicographic order.
• The incremental construction of M x admits for every state q, a unique string minword(q)

that leads from q0 to q using permanent links only. The path for minword (q) is referred
to as the basic path to state q. These basic paths, which cover all the permanent links,
form a spanning tree on the set QX.

• The guessing procedure also establishes for any M x and any string y, unless y =
minword(q) for some q, the existence of a unique state p, a letter qb and a string z E ~*,
such that y = minword(p)4~z, and all the links from p under ~b are mutable links. We

11

116 S. PORAT AND J.A. FELDMAN

Figure 4. Tested state, tested letter and tested tail.

refer to these state, letter and string as the tested state, tested letter and tested tail (respec-
tively) for y in M x. Figure 4 shows the tree of all the paths for some string in some
FSA, indicating the tested state p, tested letter ~b and tested tail z.

We use the convention of representing a permanent link by = and a mutable link by --*.

• For a given M x and a word y, a path for y in M x is right if it ends with an accepting
state and y E L, or it ends with a rejecting state and y ~ L. Otherwise, this path is called
wrong.

• For two strings x, y E r.*, and a language L, x =L Y if both strings are in L, or both
are not in L.

3.2. The learning algorithm

Let L be the regular language to be incrementally learned. Initially M x is constructed ac-
cording to the first example +X. QX = {qo}; E x = {q0 o q0 I o E r.} and each link is
mutable. If)~ E L, then qo is an accepting state, otherwise it is a rejecting one. minword(qo)
is set to)~.

Given M x, the value minword(q) for every q E QX, and a new string ___w, w = succ(x),
the learning algorithm for constructing the new M w is given in Figure 5. The algorithm
is annotated with some important assertions (invariants in some control points) written be-
tween set brackets { . . . }.

The subroutine delete-bad-paths (M, y, accept) is a procedure that constructs a new FSA
out of the given M, in which every path for y leads to an accepting state iff accept = true.
In the case y = w, delete-bad-paths breaks all wrong paths (if any) for w in M. In the
case y < w, the paths in M are checked against the behavior of the old machine old-M.
In any case, each bad path for y in M is broken by deleting its first mutable link. Note
that all the first mutable links along bad paths are from the same tested state p for y in
M. Furthermore, if all the paths for y in M are bad (and we will show that this can happen
only if y = w), then after the execution of delete-bad-paths there will be no link from
p under the tested letter for y in M. Such an execution will be followed by an execution
of insert-state.

The procedure insert-state constructs a new FSA by extending the given spanning tree
defined by the permanent links in old-M. A new state s is added. Let p and q~ be the tested
state and tested letter for w in old-M. Note again that all the mutable links from p under ~b

12

LEARNING AUTOMATA FROM ORDERED EXAMPLES 117

begin
old-M ~ MX;
if w E L then accept-w ,-- true else accept-w *-- false;
new-M '-- delete-bad-paths (old-M, w, accept-w); /* Drop mutable links */

{all the paths for w in new-M are right}
if there is no path for w in new-M
then {all the paths for w in M x are wrong}

{old-M is consistent with all strings up through x}
repeat

new-M ~ insert-state; /* Insert new state, a new permanent link, and */
/* new mutable links */

{new-M may be inconsistent with previous strings}
y ~ x ;

while succ(y) < w / * check against all previous strings */
begin

y ,-- succ(y);
if all the paths for y in old-M lead to accepting states
then accept *-- true
else accept *-- false;
{accept is true if and only if y E L}
{there exists a right path for y in new-M}
new-M ~ delete-bad-paths (new-M, y, accept) /* Drop mutable links */
{new-M is now correct with respect to the strings)x , y}

end;
old-M '-- new-M;
{old-M is consistent with all strings up through x}
new-M ~ delete-bad-paths (new-M, w, accept-w) /* Drop mutable links */

until there exists a path for w in new-M;
output new-M {M w will be the new FSA new-M}

end

Figure 5. The learning algorithm for constructing M w.

had been deleted in the last execution of delete-bad-paths. A new permanent link (p ~b s)
is added, minword(s) is set to minword(p)4~. The parity of s is set under the following
rule: If minword(s) = w, then s is an accepting state iff accept = true. In other words,
in that case the parity of s is opposite to those states at the ends of the paths for w in old-M.
If minword(s) < w then s is an accepting state iff all the paths for minword(s) in old-M
end with accepting states. Next, mutable links to and from the new state s are added accord-
ing to the following rule: For any existing state q, and for any letter tr, if minword(s)o >
minword(q), then add the mutable link (s ~ q). Also, in the other direction, if the current
links from q under o are all mutable, and minword(q)a > minword(s), add the mutable
link (q tr s). Note that this rule adds (for q = s) all possible self links for the new state s.
In other words, for every letter tr, the mutable link (s tr s) exists after insert-state.

Given M x and w = succ(x), if all the paths for w in M x are wrong, then the repeat loop
takes place. This loop defines the extension process, which is a repetition of one or more
applications of the insert-state procedure. It is easy to see that there will be at most I wl -
]minword(p)] insertions (application of insert-state), where p is the tested state for w in
M x. Suppose there are i insertions between M x and M w, each adding a new state. We can

13

118 S. PORAT AND J.A. FELDMAN

refer to a sequence of length i of machines: M~, M~V, . . ., Mi_lw, each of which is the
old-M at the beginning of the repeat loop. M~ is the old-M as set to M x at the beginning,
the others are iteratively set in the body of the repeat loop. For every j, 0 _< j _< i - 1,
the execution of insert-state defines a new machine out of M~ v, referred to as My(X).
Thereafter, for every j, 0 _< j < i - 1, and for every y, succ(X) < y < w, the execution
of delete-bad-paths within the while loop defines a new machine (possibly the same as
the preceding one), referred to as Mj(y) , indicating that this machine is ensured to be con-
sistent with those strings up through y.

The algorithm was successfully implemented as a student course project by Lori Cohn,
using C.

Before going on to the correctness proof ot his algorithm, we will discuss an example
over the alphabet E = {a, b}. Suppose that the unknown language L is "number of a ' s
is at most 1, and the number of b's is at least 1" or bb*(X + ab*) + abb* as given by
a regular expression. Figure 6 below shows some of the guesses.

Initially, since the first input example is - h , qo is a rejecting state, having both (a, b)
self-loop mutable links. For the next example - a , delete-bad-paths does not change the
machine, hence M a is the same as M x. When +b is encountered, the mutable link (q0 b qo)
is deleted, and the repeat loop takes place (Mo b = Ma) . A new state s = ql is added,
and a new permanent link (qo b ql) is added, minword(q,) is set to b. Since minword(q~)
is the current example, ql gets the opposite parity from that of qo. Hence, q~ is an accept-
ing state. The new mutable links are (q~ a ql), (qt b ql), (ql a qo) and (q~ b qo). Note
that (qo a ql) is not added, since a = minword(qo)a is less than b = minword(ql). The
new machine is Mbo(x). Since all the paths (there is only one) for a in MOO(h) are right
with respect to the old machine M b, we get that Mbo(X) = Mbo(a). The only path for b is
right, hence M b is Mb(a). The examples - a a and +ab do not change the current guess.
When +ba is encountered, there exists a right path (qo b q~, ql a q l) and there exists
a wrong path (qo b ql, ql a qo). The first (and only) mutable link (ql a qo) along the
wrong path is deleted. A similar treatment is involved for the example +bb. Note that at
this stage M ob is a DFSA, but obviously L(M oh) ~ L.

The next string -aaa does not change the current guess, but -aab causes a new appli-
cation of insert-state. A new state q2 is added, with minword(qz) being a. The string aa
is the first string that changes the machine while testing Moab(b) against the old machine
Mo aab. The new mutable link (q2 a q0 is deleted. Other new mutable links are deleted while
retesting ab, ba and bb. The execution of delete-bad-paths on Moab(aaa) (= Moab(bb))
deletes the two mutable links (q2 a qz) and (qz a qo), hence causing the nonexistence of
a path for aab in the new machine. Thus, a new insertion is applied, replacing the two
mutable links (q2 a q2) and (q2 a qo) by a new permanent link from qz to a new state q3
under a. The retesting of the strings a, b, and aa against M~ab(= Maoab(aaa)) cause no
change (no deletion) on Mlaab(x). Some of the new mutable links are deleted while retesting
ab, ba, bb and aaa . In Mlaab(aaa) there exist three right paths for aab, and one wrong
path, causing the deletion of (q3 b ql), yielding M aab. Given this guess, M aa°, the only
path for aba is wrong. Note that this path has two mutable links and the first one is now
replaced by a permanent link to the new accepting state q4. The retesting deletes some
of the new mutable links just recently added within the insertion of q4.

14

L E A R N I N G A U T O M A T A F R O M O R D E R E D E X A M P L E S 119

When -baa is checked, given M abb, there are three right paths and two wrong paths.
The tested state is ql, the tested letter is a, and the tested tail is a. The first mutable link
along the wrong paths is (q~ a q0. Hence, this link is deleted leaving (q~ a q4) as the only
mutable link from q~ under a. This link is the first mumble link along the three right paths.
When -aaab is checked, given M aaaa, there are again three right paths and two wrong
paths. This time, two mutable links (q3 a qo) and (q3 a q2) are deleted, each breaking a
different wrong path. Note that this deletion leaves only one right path for aaab, as the
two deleted links served as second mumble links along two of the original right paths for
aaab in M a~aa. The correctness proff will show that after the deletion process, there exists
at least one right path for the current sample. Finally, M abba accepts the langauge L.

3.3. The correctness proof

Next we prove that the guessing procedure is correct. We first show that each M x satisfies
a set of invariants. Consider the following constraints ~br a FSA M = (Q, ~,/~, qo, F)
and a given string x E E*:

(1) Consistency:
Yy _< x, all the paths for y are right.

(2) Completeness:
(¥ q E Q) (v t r E E)
((3 r E Q)(~(q, a) = {r} and (q tr r) is a permanent link)
o r

(3 Q ' ~ Q)(/~(q, a) = Q ' and Q ' ~ 0 and (¥r E Q')((q a r) is a mutable link)))
(3) Separability:

(vq, r E Q [q ;a r)(3 y E r.*)(minword(q)y ~L minword(r)y and minword(q)y <_ x
and minword(r)y <_ x)

(4) Minimality:
((¥q E Q)(¥y E ~*) I q E ~ (qo, Y))(Y > minword(q))

(5) Minword-property:
(¥q E Q)(x _ minword(q) and there is a unique string, namely minword(q), that has
a path f rom qo to q using permanent links only)

Note that some properties refer to a designated sample string x. We say that M y-satisfies
a set of properties if whenever some property in this set relates to x, and y is substituted,
then M satisfies the corresponding conjunct of properties.

The consistency constraint is the obvious invariant we would expect the learning algorithm
to maintain. The completeness constraint means that for every state and for every letter
there is either a permanent link that exits this state under this letter, or else there is a non-
empty set of links leaving the state under this letter, all of which are mumble. The separability
constraint together with Myhill-Nerode theorem (Hopcroft & Ullman, 1979) will lead to
the claim that for each sample x, the number of states in M x is at most the number of
states in the minimum-state DFSA for the inferred language L. This can be established

15

120 S. P O R A T A N D J . A . F E L D M A N

M a = MO b :

Mob(h) = MO b (a) = M b = M aa = Mab :

Mbb :- Maaa ~ Moaab :

Moaab(~) = Moaab (a) ~ Moaab(b):

a,b

a f"N a,b

a,b

a (~ a,b

a,b

a,b

Mlaab(h) = M l a a b (a) = Mlaab(b) = Mlaab(aa): ~ a , b

a

Figure 6. Learning bb* (k + ab*) + abb*.

16

LEARNING AUTOMATA FROM ORDERED EXAMPLES 121

Ty~aab : Z'C1oaba :

Moaba(~) = Moaba(bb) :

1y[abb :

•abba :

a~b

a

b b

a)

Figure 6 continued

17

122 s. PORAT AND J.A. FELDMAN

by continually preserving the minimality constraint. The minword-property together with
the completeness constraint implies the existence of the spanning tree formed by the per-
manent links.

Following are simple facts that are implied by the above properties. We will refer to these
facts frequently in the sequel.

Fact 1. Vq E Q, vy E ~*, there is a path in M for y from the state q. (Implied by the
completeness constraint.)

Fact 2. Vy E ~*, if Vq E Q, y ¢ minword(q), then there exists a unique tested state,
tested letter and tested tail for y in M. (Implied by the completeness constraint.)

Fact 3. vy E ~*, if y < x, then all the paths for y from qo lead either to accepting states,
or they all lead to rejecting states. (Implied by the consistency constraint.)

Fact 4. Yq E Q, minword(q) has a unique right path from q0 to q through permanent
links only. (Implied by the consistency, completeness and minword-property constraints.)

Fact 5. Yq E Q, vy E ~*, Yz E ~*, if there exists a path for y from q0 to q that uses
at least one mutable link, then yz > minword(q)z. (Implied by Fact 4 and the minimality
constraint.)

The correctness of the algorithm of Figure 5 will be established by showing that after
each completion of the algorithm, yielding a new guess M w by using the current sample
_+w, the five constraints are w-satisfied.

Clearly, M x X-satisfies the constraints. Suppose (inductively) that M x x-satisfies these
constraints, and let w = succ(x).

If all the paths for w in M x are right, then M w = M x, and if M x x-satisfies the invariants,
then M w w-satisfies them.

By the minword-property constraint, w > minword(q) for each q. By Fact 2, let p, th
and z be the tested state, tested letter and tested tail (respectively) for w in M x. Consider
any of the states r, such that (p ~b r) E E x. By the definition of the tested elements, (p ~b r)
is a mutable link. By Fact 5, minword(r)z _< w. Therefore, minword(r)z has already been
checked. Hence, by Fact 3, all the paths for z from r behave the same, i.e., ~X(r, z) _ F x
or ~X(r, z) ~ QX _ F x. Thus, either all the paths for w that use the mutable link (p ~b r)
are wrong paths, or all of them are right paths.

If there exist a wrong path and a right path for w in M x, then by breaking each possible
wrong path for w by delete-bad-paths, the consistency constraint is w-satisfied in M w. To
establish the completeness constraint in this case, note that all the deleted mutable links
are of the form (p ~b r), where p is the tested state, ~b is the tested letter, and r is some
state in M x. Because there exists a right path for w in M x, there must be a mutable link
(p ~b r') in M x that is not deleted, and so M w satisfies the completeness constraint. The
other three constraints, separability, minimality and minword-property are obviously
w-satisfied.

If all the paths for w in M x are wrong, the expansion process takes place. Suppose there
are i insertions in between M x and M w. We will show that the intermediate FSAs M~,
M~ MiW_l all x-satisfy the consistency, the completeness, the minimality and the
minword-property constraints. Moreover, all the paths for w in M~V(O < j < i - 1) are
wrong, causing the re-application of insert-state.

M~, being the same as M x, obviously x-satisfies the consistency, the completeness, the
minimality and the minword-property constraints, and all the paths for w in M o are wrong.

18

LEARNING AUTOMATA FROM ORDERED EXAMPLES 123

Suppose for the moment that M~ v, 0 _< j _< i - 1, x-satisfies these four constraints.
By the minword-property constraint, w > minword(q) for each q. By Fact 2, let p, ~b and
z be the tested state, tested letter and tested tail (respectively) for w in M~j. Let s be the
new state in My(X). In constructing MjW(h), the whole set of mutable links from p under
q~ in M~ v are deleted but they are replaced by the new permanent link, (p q~ s). This, plus
the fact that we add all possible self-looping links for the new state s, establishes the part
of the completeness constraint that ensures a nonempty set of links for each state and each
letter. The other part--indicating that this set is either a singleton of a permanent link,
or a set of mutable links--is easily implied by the construction. By the definition of insert-
state, and the fact that permanent links are never deleted in delete-bad-paths, MjW(k) obvi-
ously w-satisfies the minword-property. As for the minimality constraint, suppose by way
of contradiction that there exists a state q, such that the minimal string y that leads from
q0 to q is smaller than minword(q). By the minword-property, this path uses at least one
mutable link. By the minimality constraint of M~ v, at least one of those mutable links is
a new one just added while constructing M~V(k). Consider one of them, (r a t). (Note that
it is either the case that r = s or t -- s.) From the way new links are added we immediately
get a contradiction to the minimality assumption of y. Hence we conclude that M~V(k)
w-satisfies the completeness, the minword-property and the minimality constraints.

The retesting process (within the while loop) checks the current machine M~V(y) against
the old machine M; v, that is assumed to be consistent up through x. The whole retesting
process involves defining a sequence of FSAs: M~(k), M~'(succ(h)), M~V(succ(succ(k))),

• . . , MT(x). We will show that each Mj(y) is consistent up through y, and that it w-satisfies
the completeness, the minword-property and the minimality constraints. For this we need
to refer to another inductive hypothesis, that will indicate, for each y > X, the similarity
between M~V(y) and M~V(k). Let E' be the set of mutable links that were added while con-
structing Mj~(X) from M~. We will claim that each execution of delete-bad-paths along
the construction of M~V(y) out of Mj(X) deletes (if at all) only links from E'. Moreover,
in the next paragraph we define a subset of E ' that will definitely remain in Mj(x). A
link in this subset will be called a necessary link. Intuitively, these links will establish
the existence of right paths on My(k) that reconstruct paths in My that use one of the
mutable links in M; v from p under ~b.

A rink (s a t) in M~V(X) is necessary l i f t ~ s, w > minword(s)a, and there is a path for
minword(s)a from qo to t in Mj . Figure 7 below shows how M; ~ and My(k) relate to each
other with respect to p, s and t. The mutable link (s a t) will definitely be added while
constructing Mj(k), because by Fact 5 applied on My, minword(s)a = minword(p)(~a >
minword (t).

l ~ j w :

MZ(x)-:

Figure 7. A necessary link (s a 0.

19

124 S. PORAT AND J.A. FELDMAN

In order to prove that M~+ t x-satisfies the consistency, the completeness, the minword-
property and the minimality constraints (given that M~ v satisfies these conditions), we refer
to another property, namely the similarity constraint: For each j, 0 _< j < i - 1, and
each y, h < y < x, M~'(y) is the same as M~(~) except for the removal of some of the
new mutable links that were added while constructing M~v(x) out of M; ¢. Moreover, all
the necessary links still exist in M;'(y).

For every j, 0 ___ j __ i - 1, and for every y, 0 _< y < x, we will prove the following
intermediate invariant: Mr(y) satisfies the completeness, the minimality and the similarity
constraints, it y-satisfies the consistency constraint, and w-satisfies the minword-property
constraint.

We have already shown that M~v(X) preserves the completeness and the minimality con-
straints, and that it w-satisfies the minword-property constraint. Obviously, it satisfies the
consistency up through h, and the similarity (to itself). Thus, assuming inductively that
MY(y), h < y < x, satisfies the intermediate invariant, we need to show that so does j
Mj(succ(y)).

Recall that in the current execution of delete-bad-paths, the paths for succ(y) are checked
against the behavior of succ(y) in M~ v. If the current execution of delete-bad-paths causes
no deletions (all the paths for succ(y) are right) then M~(succ(y)) trivially maintains the
intermediate invariant.

Otherwise, we show that it cannot be the case that all the paths for succ(y) in Mj~(y)
are wrong. Moreover, if there exists a wrong path for succ(y) it will be broken by deleting
one of the non-necessary new mutable links.

Assuming succ(y) has a wrong path in M~V(y), we get by Fact 4 that succ(y) ;~ min-
word(q) for each state q in Mj(y). By Fact 2, let r, ~b and v be the tested state, the tested
letter and the tested tail for succ(y) on M;'(y). (As before, r is the last state reached by
permanent links.) We distinguish between two possible cases:

1) r = s, i.e., succ(y) = minword(s)¢v.
Therefore, in M j , the tested state and the tested letter for succ(y) were p and ~b. Fig-

ure 8 shows the relation between M~ v and Mj(y) with respect to p and s. Let q, t be
states such that (p ¢ q) and (q ¢ t) are links in Mj. By the similarity constraint of
M~V(y), there must be some paths for succ(y) on Mj(y) that use the existing necessary

Mj~(y) : ~ @ ,

Figure 8. Proving the intermediate invariant: Case 1.

a necessary l ink

20

LEARNING AUTOMATA FROM ORDERED EXAMPLES 125

:

Figure 9. Proving the intermediate invariant: Case 2.

link (s ff t). By Fact 5 applied to Mj(y), minword(t)v < minword(s)~v = succ(y).
Finally, by the consistency constraint of M~(y), all the paths for minword(t)v in M~(y)
are right. Clearly, by Fact 3 applied to M j , minword(t)v =L SUCC(y), which implies
in turn that all these paths for succ(y) in M~(y) that use the existing necessary link
(s ~k t) must be right• Hence, this necessary link (s ff t) will not be deleted. Other non-
necessary mutable links from s that establish wrong paths for succ(y) (and there exists
such a wrong one) will be deleted by the current execution of delete-bad-paths.

2) r ~ s. Hence, r, ~b and v serve as the tested state, tested letter and tested tail for succ(y)
on M~ v also, and succ(y) = minword(r)~v. Figure 9 below indicates the relation be-
tween M~ and M~V(y) in this case. Let t be a state in M~ such that some paths for
succ(y) in Mf use the mutable link (r ff t) (right after the permanent prefix). By the
similarity constraint of Mj(y) , some paths for succ(y) on M~(y) use this existing mut-
able link. Again, by the consistency constraint, Fact 3 and Fact 5 applied to M~V(y),
all the paths in M~(y) for minword(t)v behave the same and are right. By Fact 3 applied
to M~ v, minword(t)v =L SUCC(y). Hence, all the paths for succ(y) in MT(y) that use
(r ff t) are right, implying in turn that this (old) mutable link will not be deleted. By
the assumption, there exists a wrong path for succ(y) in Mj(y). Hence, there exists
a new mutable link in Mj(y), (r ~b s), that will be now deleted in order to break a bad
path. This new mutable link is clearly a non-necessary one.

This terminates the discussion on the relation between M~V(y) and M~(succ(y)), and
based on this we can easily conclude that the intermediate invariant is satisfied by
M~V(succ(y)). Consequently, M~(x) satisfies this intermediate invariant, and in particular
it is consistent up through x. For 0 _ j < i - 1, M~+ 1 = M~(x). We get the desired
hypothesis that this M~+ 1 x-satisfies the consistency, the completeness and the minimality
constraints, and that all the paths for w in this new machine are wrong Since MW(x) • j

w-satisfies the minword-property constraint, and there exists a wrong path for w in M~V(x),
we get by Fact 4 applied to M~(x) (=M~+I) that M~+ 1 x-satisfies the minword-property con-
straint. For j = i - 1, we break all the wrong paths for w on MiW_l(X) by deleting the
first mutable links along them. By similar arguments as above, we get that the new M w
w-satisfies the consistency, the completeness, the minword-property and the minimality
constraints.

21

126 S. PORAT AND J.A. FELDMAN

The last thing to be shown is that M w (obtained after the extension process) w-satisfies
the separability constraint.

Suppose that in executing the repeat loop we have inserted i new states. For 0 < j < i - 1,
let Sj+l be the new state added while constructing M~(X) from M~ v. Obviously QW = QX to
{ s , , . . . s i } .

We say that two states q, r are w-separable if 3y E ~* such that minword(q)y ;~L
minword(r)y, where minword(q)y _< w and minword(r)y <_ w.

We prove by induction on j, 0 < j < i, that each pair of states in QX tO {Sk] k -- j}
is w-separable. The basic assumption, for j = 0, is directly implied from the fact that M x
w-satisfies the separability constraint.

Assuming that each pair of states in QX tO {sk I k <__ j and j < i} is w-separable, we
have to show that each state in this set is w-separable from sj+l. Formally, let Q be the
state set of M~, we need to show that (vq E Q) (3y E r,*) (minword(q)y ~L minword(sj+l)y
and minword(q)y _< w and minword(sj+l)y <_ w).

Let p, th and z be the tested state, tested letter and tested tail for w in M~, and w =
minword(Sj+l)Z. Let q be an arbitrary state of M~. We distinguish between the case where
q was connected to p in M~ v through the mutable link (p th q), versus the case where they
were not connected like this.

1) M~ has the mutable link (p th q). By the corresponding execution of delete-bad-paths,
this link will be deleted and replaced in M~(X) by the new permanent link (p 4~ Sj+l).
(p ~b q) was deleted since all the paths for w = minword(Sj+l)Z on M~were wrong. By
Fact 5 applied on M~, minword(q)z < minword(p)cbz = w. By the consistency con-
straint of M~, all the paths for minword(q)z in M~ v are right. Hence, minword(Sj+l)Z
;~L minword(q)z, rninword(Sj+l)Z = w and minword(q)z < w.

2) The link (p th q) does not exist in M j . There can be two different sub-cases under this
condition. The first one is that (p 4~ q) had never been added while constructing one
of the previous FSAs. The second sub-case is that (p ~b q) has once been deleted. Note
that in each of the previous FSAs, the links that leave p under th are always mutable
links, and M~(X) will be the first FSA having a permanent link from p under 4~. Hence,
if (p ~b q) has been once added, and thereafter deleted, the deletion was due to an execu-
tion of delete-bad-paths.
2.1) (p 4~ q) had never been added. Since it is not the case that there exists a permanent

link from p under 4~ (establishing a possible reason for not adding (p ~b q)), it must
be that minword(p)dp < rninword(q).

Now clearly there exists a mutable link in M~ from p under th. Let t be a state
such that (p th t) exists in M~. By the induction hypothesis, q and t (being two
distinct states in M~ v) are w-separable, hence 3y E r.*, such that minword(q)y <_ w,
minword(t)y -< w and minword(q)y 7~L minword(t)y. Figure 10 shows the rela-
tion between M j and M~V(~,) with respect to p, q and t.

By the initial assumption for this subcase, minword(p)4~ < minword(q). Thus,
since minword(q)y _< w and minword(t)y _< w, we get that both minword(t)y and
minword(p)chy are less than w. By the consistency constraint of M~, all the paths
for minword(p)chy, and all the paths for minword(t)y are right, and clearly
minword(p)cky =L minword(t)y. Since y is separating between t and q, and

22

LEARNING AUTOMATA FROM ORDERED EXAMPLES 127

Mjw: ~ (~ . . .

Mjw(X) : : .

Figure 10. The case in which (p ~b q) had never been added.

2.2)

minword(p)~p = minword(Sj+l), we can conclude that y is a sufficiently small tail
separating between Sj+l and q.
The next subcase deals with the mutable link (p ~ q) being deleted due to some
string v, v _ x. (p ~b q) has been the first mutable link along a wrong path for v on
some previous FSA. Thus, there exists y E E*, such that v = minword(p)~y. The
automata in which the decision to delete (p 4~ q) has been taken was obviously consis-
tent with respect to minword(q)y, as minword(q)y < v by the minimality constraint
which is continually satisfied. This establishes the claim that minword(p)dpy ~L
minword(q)y. As minword(q)y < minword(p)dp y = minword(Sj+l)y _ x, we get
a perfect separating string for q and sj+ 1.

This finishes the proof of the claim on the separability constraint.
Let RL be the equivalence relation (Myhill-Nerode relation) associated with L, such that

for x, y E ~*, x RL y iff (¥z E ~*)(xz =L yz). By Myhill-Nerode theorem, (Hopcroft &
Ullman, 1979), IQLI = number of equivalence classes of RL.

By the separability constraint, Vx E ~*, IQXl _ IQLI. Thus, there exists x* E E*, such
that vy >_ x* IQY] = IQX*l (after reaching M x* the extension process would never be ap-
plied again). Consider such an FSA, M y where y > x*. Suppose there is a state q E QY
for which there are at least two distinct mutable links (q a r) and (q a t). By the separability
constraint, 3z E ~* such that minword(r)z ~ L minword(t)z. I f both links still exist while
considering the string minword(q)az (by the consistency constraint, minword(q)az > y)
then, at this stage, one of them will definitely be deleted. Hence, eventually we will get
a DFSA. Moreover, i f M x is a DFSA where IQxl < IQLI, then 3y > x such that the path
for y in M x is wrong. Therefore, we finally conclude that eventually we will get a
minimum-state DFSA isomorphic to ML. This completes the correctness proof.

Having proven the correctness of the learning algorithm, we now consider some proper-
ties of this process, mainly with respect to time and space complexity.

3.4. Complexity analysis

Given a current guess M x, the value minword(q) for every q E QX and the successor sample
string +w, we analyze first the time complexity. Let [QXl = n, Iwl = m , a n d -- a.

23

128 S. PORAT AND J.A. FELDMAN

Obviously, the size of the whole sample considered so far k succ(X), succ(succ(X)) w
is exponential in m (greater than am-l).

First we note that executing delete-bad-paths on M x and w requires only polynomial
time with respect to the size of M x and w. Notice that the algorithm does not need to check
every path of w in M x, but rather to consider one path for each first mutable link along
paths for w in M x. This is due to the observation we have already made that if (p th q)
is some first mutable link for w in M x, then all the continuing paths from q behave the
same. Each path for w can be checked in polynomial time, and there can be at most n
different paths to be checked. Moreover, note that within this process, that must be applied
for each string, the tested state and tested letter can be recorded, and this might later be used.

If insert-state is activated, then it can be done in polynomial time, gaining some effi-
ciency by using the recorded tested state and tested letter. The dominating step is the addi-
tion of all possible new mutable links. This obviously involves considering such existing
state q (and its minword), and each letter o. Since, the length of w is m, insert-state can
be repeatedly activated at most m times.

The retesting while loop is repeated for each string y, succ(X) _< y _< x. For each such
y, the condition that determines the value of the boolean variable accept can again be checked
in polynomial time. Note that, due to the consistency constraint, only one path for y in
the current old-M has to be checked to determine the behavior of the old machine with
respect to y. The total retesfing process (reaching the case for which succ(y) = w) can
take exponential time in the size of the current example w, since all previous strings are
checked, but it is still polynomial in the size of the whole sample considered so far. Such
retesting happens very infrequently; in fact it is invoked once per state insertion. Therefore,
taking into account the whole sample considered so far, the amortized cost of the retesting
process is polynomial in the size of the current input. Finally, we conclude that the whole
amount of time needed for the learning algorithm is polynomial in n in an amortized sense.

Furthermore, the extension process can be somewhat improved. First, in insert-state,
we change the rule that adds a new mutable link from an old state q to the new state s
under some letter a. The new rule states that we add (q a s) only when two conditions
are met. The first condition is the original one, namely that the current links from q under
a are all mutable, and minword(q)a > minword(s). The second condition is that either
minword(q)o > w or minword(q)a < w (so that the current parity of the pair (q, a) is
defined) and s is of the correct parity, i.e., f(s) = f(q, a) in the current Mj . This rule
is obviously correct, since if all the current links from q under a are mutable, and min-
word(s) < minword(q)a (so that (q a s) would have been added under the previous rule),
and moreover minword(q)a < w and f(s) ¢ f(q, a) (so that (q a s) would not have been
added under the new rule), then the retesting process will definitely prune this new mutable
link while considering y = minword(q)a. Hence, omitting those links immediately in insert-
state might achieve some efficiency in the inspection of all possible paths for some y within
the while loop.

A more significant improvement is due to the fact that within the retest process (the while
loop) only new mutable links (to and from the new state) might be deleted as being first
muable links along wrong paths for some y. Consequently, we need only check the follow-
ing subset of the sample. For each state q and symbol a, such that a new mutable link
from q under a has just been added within the last execution of insert-state, test the strings

24

LEARNING AUTOMATA FROM ORDERED EXAMPLES 129

minword(q)oz that are smaller than w. Note that the new rule for adding new mutable links
has now a more considerable impact on the performance, by omitting a whole set of strings
from being checked. There are still n * a Izl such strings, but]zl will usually be small and
there even might be states for which no string will need to be tested.

As stated in the introduction, one of the major goals that motivated this work was to
design an algorithm for learning an FSA that will require only a modest amount of memory,
much less than the sample size which is exponential in m. Clearly, the storage needed
for the current guess is proportional to n z * a, and the storage needed for all the values
minword(q), for each state q, is proportional to n. The easiest way to envision the learning
algorithm is to imagine that it uses two separate representations--one for new-M, and the
other for old-M. Taken literally, this would double the size of the storage needed for the
current guess. A more efficient solution is to indicate some links on the current guess as
old ones, and thus analyze both machines on "one" representation. Another improvement
might be gained (with respect to the amount of storage needed for the algorithm) by modi-
fying the insertion process so as to avoid the need for storing minword(q) for each q. These
values might as well be computed for every new state by linearly traversing the prefix-
coded tree of the permanent links.

Let IQLI -- nu. As shown above, the current size n of the machine is at most hE. Any
tWO distinct states in ME are obviously separable. Moreover, it can be shown that the short-
est string that distinguishes between such pairs of states is at most of length hE. Since each
minword(q) is at most of length ne, we can conclude that the maximum string after which
the current guess is isomorphic to ME is of length linear in nL. In order to prove this,
consider a guess M x for which IQX[= nL and Ixl > 2 * nL + 1, and suppose (by way
of contradiction) that M x is not isomorphic to ME. In other words M x is non-deterministic,
hence there exists a state p, such that there are at least two distinct mutable links from p
under some letter 4~. Let t and r be those states having incoming mutable links from p under
4~. As indicated above,]minword(p)] <_ ne, and there is a string of length at most nL that
separates between t and r. Hence, M x admits two different paths for a word of length at
most 2 * n L + 1, one that leads to an accepting state, and the other to a rejecting one.
This obviously contradicts the consistency assumption of M x. In summary, our algorithm
could get by with space proportional to a * n~ to store its guess plus m for the current
string. This corresponds to the abstract notion of iterative learning of Wiehagen (1976).

4. Iterative learning using finite working storage

In this section we will formally characterize some "practical" properties of the learning
algorithm introduced in Section 3. Taking into account the limitation of space in all realistic
computations, the most important property of our algorithm is that for every sample, given
in a lexicographic order, the algorithm uses a finite amount of space. The restriction on
the strict order of the sample may seem to be too severe. We will show in this section
that this restriction is necessary for learning with finite memory.

Our first definition follows the approach of Wiehagen (1976); Jantke & Beick (1981); and
Osherson (1986):

25

130 S. PORAT AND J.A. F E L D M A N

Definition: An algorithm IT (iteratively) identifies a set of languages S iff for every L E S,
given the complete lexicographic sample (___ X, +succ(~), __+succ(succ(h)) . . .), the algo-
ri thm defines a sequence of finite machines (M0, M1, M2, • •.) , such that vi > 1 M i
is obtained from the pair (Mi_l, ___xi), where xi is the i-th string in the sample, and 3j
such that v k >_ j M k = Mj and L(Mj) (the language accepted by the machine Mj) is L.

It is easy to see that the algorithm of Section 3 meets the requirements of the IT defini-
tion. In other words, we exhibit an algorithm that IT identifies the FSL. Moreover, it finds
a minimum-state DFSA for the inferred language L.

We now define a weaker characterization of a learning algorithm. We allow finite work-
ing storage in addition to that required for defining the current guess and sample string.
The ultimate goal will be to show that the restriction on the order of the sample is necessary
even for this kind of algorithm.

Definition: An algorithm FS-IT (iterative algorithm that uses finite storage) identifies a set
of languages S iff for every L E S, given the complete lexicographic sample (+__ X, +__succ(X),
+succ(succ(~))) , there exists afinite set of states Q, such that the algorithm defines
a sequence of configurations ((Mo, qo), (M 1 , q l) , (M 2 , q2) , - • •) that satisfies the follow-
ing: Vi, qj E Q, vi > 1, (M i, qi) is obtained from the triple (Mi_l, qi-l , ---xi), where xi
is the i-th string in the sample, and 3j such that Yk >_ j Mk = Mj and L(Mj) = L. Such
a j (in the course of learning) is referred to as a "semi-stabilization" point. Note that the
states within the configurations after the semi-stabilization point can still change.

Obviously, if an algorithm IT identifies S, then it also FS-IT identifies this set.
A (non-repetitive) complete sample for a language L is a sequence of its strings (+x~,

__+x2, +x3) such that Vi, xi E L , Vi ;~ j, xi = xj, and Vx E L 3i such that x = xi.
The ability to learn languages by presenting an arbitrary complete sample, rather than the
strict lexicographic one, obviously strengthens the characterization of the learner. We denote
the above situations by IT arb and FS-IT ~rb if we do not require the sample to be in lexico-
graphic order.

For a complete sample (+Xl, _x2, ___x3) , an algorithm that FS-IT arb identifies a
set of language S uses a finite set of states Q, and defines a sequence ((Mo, qo), (M1, q0,
• . .). M i and qi E Q are referred to as the current guess and the current state after the
finite prefix (+x~ , +x i) , v i _ 0.

Theorem. There is no algorithm that FS-IT ~rb identifies the finite state languages.

Proof. Suppose, to the contrary, that an algorithm A FS-IT a~b identifies the FSLs. We will
look for some FSLs that will lead to a contradiction.

Let Lo be ~*, for some alphabet E.
For the lexicographically ordered sample for Lo, A defines the sequence ((M °, qo°),

(M o, q0)) . By the definition of FS-IT arb and in particular due to the finiteness of the
working storage, there exists some semi-stabilization point, i, that corresponds to some
word x, such that the following two conditions are satisfied:

26

LEARNING AUTOMATA FROM ORDERED EXAMPLES 131

1) The current guess M ° , vm > i, is the same as M ° and characterizes Lo. Call this guess

ML o.
2) There are infinitely many re's, m >--- i, such that q~ = of (i.e., the state qO occurs infi-

nitely often).

Le tL1 = {w fi X;* I w < x}.
For the lexicographically ordered sample for L~ (+X +x , - succ(x) , - . . .) , A

defines the sequence ((Ml, lql) , (M~, q11) (M~, q~), (M~+ 1, q~+l) , - - -). Obviously,
Vm, 0 _< m < i, M ° = M m and qm = qlm" In particular M~ = MLo and q~ = qi °. By the
infinitely repeating property o f q °, and by the finiteness condition on the set {ql m [m _> 0},
qO must coincide with some ql m infinitely often. In other words, there exists a j that cor-
responds to some word z, j > i, such that the following three conditions are satisfied:

1) q~' = o f .
2) vm > j M~ = M] and characterizes LI. Call this guess MLc
3) There are infinitely many m's, m > j, such that q~ = qO and q~ = q] (the pair of

states of, q] appears infinitely many times at the same points for the strict ordered
samples for Lo and L1).

Pick a place k, k > j, such that q~ = of and q~ = qj~. The existence of such a place
is established by the properties of the chosen j. Let y be the string at place k in the lexico-
graphically ordered sample of any language over ~. Note that y > z.

L e t L 2 = Lt O {w ~ E* I z < w ~ y}.
For the following ordered sample (+X, . . . , +x , +succ(z), . . . , +y, - succ(x) , . . . ,

- z , - succ(y) , -succ(succ(y)) ) , A defines the sequence ((M~, q~), (ME, q Z)).
From the above we get (see Figure 11):

1) After the finite prefix (+ k + x) the current guess is ML0 and the state is q0.
2) By the definition o f z and y, after the finite prefix (+ k , . . . , +x , +succ(z), . . . + y)

the current guess is still ML0, and the state is again of.
3) By the definition of z with respect to its occurrence in the strict ordered sample for

L1, after the finite prefix (+ X , +x , + s u c c (z) , . . . , +y, - succ(x) , - z) t h e
current guess M~, is ML1, and q~ = qjl.

4) By the property of q], Vm > k, M~ = ML,, and q~ = q~.

Hence A cannot FS-IT arb identify L2.

Thus we have shown formally that the FSL can be IT-identified (from lexicographically
ordered samples) but cannot be ITarb-identified. The theorems provide end-case results,
but there is a wide range of possible presentation disciplines between IT and IT arb. Obvi-
ously enough, our algorithm will still identify the FSL from presntations in which redun-
dant strings happen to be missing. That is, any w such that w = succ(x) and M w = M x
could be missing from the sample without effect. As stated above, for any FSL for which
IQLI = n, namely an n-FSL, all the strings longer than 2 * n + 1 will be redundant.
Moreover, most strings of length at most 2 * n + 1 could be missing from the sample.

27

132 S. PORAT AND J.A. FELDMAN

Lo : + h + x +z , +succ(z) + y
ML o , qi ° ML o, qi 0 ML o , qi °

L I : + h + x, -succ(x) -z, -succ(z) - y ,
MLo ' qi 0 ML1, qjl ML~, qjl

-suce(y) , -suec(suce(y))
ML1, qk+ I 1 ML 1, qk+21

L2 : + h + x , + succ(z) + y , -suce(x) -z ,
ML 0' qi 0 MI.~, qi 0

-succ(y) , -suee(suce(y))
ML 1, qk + 11 ML1, qk+21

ML~, qjl

Figure 11. Proving that A cannot FS-IT arb identify L2.

This follows because there are only a * n 2 links to be added or deleted and more than
a 2.n+1 strings of length < 2 * n + 1. Therefore a teacher could, in principle, get by with
a greatly reduced presentation if she knew what to present. The same reduction could also
be used in the retest phase of our algorithm.

We conjectured that perhaps for an ordered presentation of some particular subset, fol-
lowed by an arbitrary sequence of the remaining strings, our algorithm would be still
applicable.

Let S L be the set {minword(q)] q E QL}, and let y be the maximal string in this set.
We easily found a counterexample that shows that the subset {x fi ~* I x _ y} does not
suffice, and it is not even the case that QY-the set of states in the last guess MYiis the
same as QL. We then examined a larger set. Let SL, be the set {x I (3p, q E QL) (X ---

minword(p)z and x ~ L minword(q)z and (vz ' E Z*) (minword(p)z' ~L minword(q)z'
x <_ minword(p)z '))}. The intuition behind this set is to include all the least strings that
can distinguish between two distinct states in M E. First we observe that SL ~-- SL'. Con-
sider some state p in QL. There must be some q in QL the parity of which differs from
that of p, hence minword(p) ;~ L minword(q). Obviously, for every z ' E Z*, minword(p)
<_ minword(p)z'. Hence, minword(p) E SL,. Now, let y ' be the maximal word in SL,. The
following counterexample shows that even the subset {x E r~* I x _< y '} does not suffice.
Let L be the language (given as an example in Section 3): "the number of a's is at most
1, and number of b's is at least 1." SL, = {~, a, b, aa, ab, ba, aab, aba}. After the finite
prefix (k, - a , +b, . . . , - aba) , M aba is as shown in Figure 12.

Obviously, M aba ~ M E. Moreover, let -bbaba be the next sample string. The rule for
breaking all wrong paths by deleting thefirst mutable links along them cannot be applied
in this case. The first mutable link along the bad path (qo b ql, ql b ql, ql a ql, ql b ql,
q~ a q~) is the link (q~ b q l) that should remain in M L. I n f ac t , every other possible rule

28

Maba ; b

LEARNING AUTOMATA FROM ORDERED EXAMPLES 133

Figure 12. Applying the algorithm on an ordered subset.

that determines the mutable link to be deleted, according to its place in the bad path, would
not work here. For every i = 1, 2, 3, 4, there is a bad path whose i-th mutable link exists
in ML.

It is an open question whether any characterization of the minimum training set exists.
It is also easy to see intuitively why finite storage learners will fail on arbitrary presenta-

tions. An arbitrary presentation can, for example, have only very long strings for a very
long time and the learner has no idea what to make of them. This is the basic cause of
the NP-completeness results of Gold (1978) and Angluin (1978) for minimal DFSA learning.
On the other hand, if the learning device knew in advance the size, n, of the n-FSL, it
might be able to collapse the long sample strings into equivalence classes. This is another
open question. The realistic version of this is for the learner, which has finite storage,
bounded by some polynomial in n, to limit its guesses to M with no more than n states.

There do seem to be some general consequences of the outcome of these open questions.
If, as we surmise, knowing a bound on n for the target n-FSL does not permit FS-IT arb

with the finite storage being bounded by a polynomial in n, then learning simple examples
first has inherent major advantages. I f there are optimal training presentations, it will be
interesting to understand their nature. As we will show in the next section, the algorithm
of Section 3.1 works in a way that is compatible with connectionist and thus (at least for
some people) with neural computation.

5. Distributed and connectionist vers ions

5.1. Distributed realization

As we discussed in the introduction, there is no generally accepted formalization of what
precisely constitutes a connectionist model. In this section we show how the algorithm
of Section 3.2 can be translated into a network of simple computing units that falls within

29

134 S. PORAT AND J.A. FELDMAN

the range of connectionist models. In particular, the network involves only simple units
that broadcast very simple outputs on all their outgoing links. Learning is realized by local
weight change that restructures the network. There is, of course, no interpreter, but there
is some central control. There are several places in the construction where system-wide
parallelism holds, but there are also sequential aspects that seem to be inherent. For any
finite system to recognize unbounded inputs, it will have to look at pieces of the input
sequentially. Also in the retest phase of our algorithm, it is necessary to test individual
samples sequentially.

The conceptual distance from the algorithms and analysis above to the sketched connec-
tionist version is considerable and we will traverse it in two steps. We will start with a
realization in terms of module-message model, like PLITS or CSP. Each state of the target
FSA will be represented by a module and there will be a control module and several other
fixed modules.

Each state-module, q, will have data structures for its activation state, its parity, its minimal
string minword(q), and its outgoing links to other states and other modules. We suppose
that the system is synchronous and that the control module broadcasts each letter of the
input string, w, at the start of a major cycle. The first benefit of the parallel implementation
is that all paths for the target string can be checked in parallel. Initially, qo is active. Each
active module looks at the next symbol, a, and sends an "activation" message along each
of its outgoing links that correspond to a. When these signals have been sent, any state
that has not received new activation inactivates itself, and the states that have received such
signals are active for the next cycle. There are three kinds of activation messages that are
sent by states along paths of w. Recall the notation p and th for the tested state and tested
letter of w on the current machine. The first kind of an activation message is sent by those
states along the basic path for minword(p). This message indicates that no mutable link
has yet occurred. Let p be the first state to use mutable outgoing link, p sends a message
that encodes its identity, p, and that of the tested letter, th. Each active module q that receives
a message of the second kind, encoding the pair (p, ¢), looks at the next symbol a, and
sends an activation message of the third kind along each of its outgoing links that corre-
spond to a. This message encodes the triple (p ¢ q), indicating a specific first mutable
link along a path for w. All successor states that receive this kind of message send that
same message. Note that each path is represented by its first mutable link, encoded within
the message that passes through the corresponding suffix.

At the end of the string, marked by a terminator ~- or by a control signal, the states
that are active report their corresponding first mutable links plus their parity _+. This could
be reported directly to the controller or (more connecfionist) by sending activation to global
variables (or modules) that represent good and bad strings. The control now compares the
provided answer and if all reports are right, it goes on to the next string, as before.

If some parses are right and some are wrong, a deletion process corresponding to the
subroutine delete-bad-paths must be executed. As mentioned and proved in Section 3, each
of the first mutable links along paths for w corresponds either to a set of right paths, or
to a set of wrong paths. The controller can obviously identify all paths by their first mutable
links, and knows which ones were right or wrong from the reported parity. It then com-
poses a message to all the "bad" mutable links, and sends this information. Each module
that is the origin of a bad mutable link will then delete the corresponding outgoing link,
thus breaking a bad path for w.

30

LEARNING AUTOMATA FROM ORDERED EXAMPLES 135

Finally, we need to model the state-addition and retest procedures. Clearly the control
can easily discover if all paths are wrong. A new state is "recruited" by generating a new
module, s, and initializing it with its parity, its path, minword(s) and with its permanent
link. All this information can be easily generated using the data structure within the module
that corresponds to the tested state p, namely the one that identifies itself as the source
of all the bad mutable links to be deleted at that stage. With this information the new state/
module can establish links with old states following the strictures of insert-state. Again,
this can be done in parallel except for the serialization within module s itself. The retest
procedure is sequential, the controller cycles through the required strings and tests them
against the old machine. The difference between the links of the old and new machines
are also part of the data structures of the appropriate modules. Of course, within each string
test, the parallel checking and deletion above still apply. Much of this will carry over to
the connectionist version, but there are also several differences.

5.2. Connectionist realization

Connectionist models in the literature vary somewhat (Rumelhart & McClelland, 1986;
Waltz & Feldman, 1986) but all are restricted to simple units that pass only numerical mes-
sages and always send the same number on each outgoing link. The links may have weights
that modify the value being received and many models also allow conjunctive connections
like we used in Figure 2. Rochester practice allows for a unit to have a small amount of
internal data and to be in one of a small number of different "states" which we will denote
here as "modes" to reduce confusion. The limited repertoire of connectionist systems forces
the use of more elaborate structures than the previous version. We will present an outline
of one such model.

The connectionist version of the FSA learner will have a control subnetwork that will
sequence and modulate the basic learning net. There will be "registers" banks of units
whose activation pattern represents a letter or a string of letters, like the top row of Figure
2. The basic process of testing a string against the current guess works as outlined in Figure
2. Each letter of the input string serves in turn as the gate on the conjunctive connections
from state-unit to state-unit. The conjunction of activation of the prior state and the appro-
priate letter-unit leads to activation of the next state-units along appropriate links. One way
to have the state-units turn off when they should is to have a just-sent mode. A unit in
just-sent mode will inactivate itself (set its activation flag to zero) if it receives only a con-
trol signal for the next cycle.

A somewhat similar mechanism can be used to mark the first mutable link along each
path. Suppose that permanent links have weight 1 and mutable links weight ½. Let the
activation rule for a unit be as follows: The initial state q0 always sends activation value
10 to start each string. I f a subsequent state-unit sees an input value of 5, it knows that
it is at the far end of the first mutable link in a path, and will record which input link
was active. It will also send out a lower value, say 4. Units that receive either 2 or 4 will
also send out 4 as a value. This effectively marks the receiving end of the first mutable
link in every path, with a tagged input in the unit for that state marking the path.

31

136 S. PORAT AND J.A. FELDMAN

Upon termination of the testing for some string, w, the global + and - units are com-
pared by control with the answer provided (as activation of another Winner-Take-All pair).
If all paths are right, then the next string is tried. I f there are both right and wrong paths,
the deletion process must occur. There is no obvious way to do this in parallel, but the
following sequential scheme works. Assume that the mechanism includes a "buffer" that
can record the input string w and another buffer that can be made to cycle through strings.
Control recycles the input string (in delete mode) until the unit having the first mutable
links is encountered. That is, a state-unit that is activated in delete mode and has its tag
set sends a different signal which is detected by the control net. Then each such state is
tested sequentially and the ones leading to wrong answers delete their corresponding in-
coming mutable link. Deletion can be just setting the weight to zero. There needs to be
some mechanism for sequencing these states, e.g., enabling each state in sequential order.

The insertion process for the connectionist version involves even more technical details.
It is reasonable to assume that the learning net has unused state-units that are connected
to all the ones used thus far, one of these is "recruited" to be the new state s. It is not
hard to determine which link to s should be permanent, it is the one from the state p with
the first mutable links in the (wrong) parses of w = minword(p)d~z. The string w could
be reparsed and the output of 5 from the states that receive conjoined signals from p and
th could inform the new state, s, that it should set the weight of its active input link to
be 1 (permanent). It is also reasonable to assume that the state-units can mark the current
links from p under ~b as "old," and thus to be used only in retest mode.

What we cannot assume is that state-units, q, can store the minimal string minword(q)
and compare it with minword(s) to determine which (q a s) and (s a q) links should be
added. Again, the apparent answer is to go sequential. We can assume that the control
net has buffers for minword(s) and minword(q), minword(s) is fixed for the addition process,
but minword(q) cycles through all the other existing states. The control net finds minword(q)
by testing strings, and with this in the buffer, the tests minword(q)a > minword(s) and
minword(s)a > minword(q) can be carried out by the control net. The signal to break
the appropriate links can be transmitted to the state-units involved. This leaves just the
retesting process. The obvious way to handle this is to have the control net cycle through
every string y < w and test and correct the current guess. The basic process of testing
a string and the deletion process work as before. Each unit needs to have an "old machine"
and "new machine" mode and to know which links go with each. Each string less than
w is tested in old machine mode and the answer is stored. Then the same string is tested
in new machine mode and the deletion process is invoked for all wrong paths.

In this design, each unit would need internal data for recording its number, whether it
is active, has an active first mutable link and is performing as the old or new machine.
It would need "modes" for just-sent, for normal testing, for deletion, for recruiting and
for pruning links. I f we restrict ourselves to just state-less linear threshold elements, the
complexity expands by an order of magnitude.

Yifat Weissberg's thesis project (Weissberg, 1990) describes an implementation of the
learning algorithm in a connectionist network, using the Rochester Connectionist Simulator.
Learning is achieved by weight changes. The rules by which the links change their weight
are simple and local. Nevertheless, the whole implementation is quite complex, basically due
to the net representation. The network consists of two parts, one represents an automaton,

32

LEARNING AUTOMATA FROM ORDERED EXAMPLES 137

the other represents an example string. A special control unit connects these two parts.
Every unit has a considerable number of sites (at which the incoming links arrive), so
as to distinguish between different stages of the learning process. The basic algorithm has
been slightly modified, to fit the connectionist style. The major changes are in the process
of adding a new state to the current automaton. The thesis includes proofs for the correct-
ness of the modified algorithm.

Since the details of each parse play an important part in the learning procedure, there
are at least indirect connections with explanation-based learning. But the case of learning
from a perfect, lexicographically ordered sample is a very special one. It is well worth
exploring how the algorithms of this paper could be modified to deal with less controlled
examples. An obvious approach is to change the delete process (of mutable links) to one
that reduces weights to some non-zero value, perhaps halving them each time. The ques-
tion of how to revise the rest of the network's operation to properly treat conflicting evidence
is another topic worthy of further effort.

Acknowledgments

We thank John Case for providing useful comments on the manuscript.
This work was supported in part by ONR/DARPA Research contract No. N00014-82-K-

0193 and in part by ONR Research contract no. N00014-84-K-0655.

References

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation, 75,
87-106.

Angluin, D. (1981). A note on the number of queries needed to identify regular languages. Information and Con-
trol, 51, 76-87.

Angluin, D. (1978). On the complexity of minimum inference of regular sets. Information and Control, 39, 337-350.
Angluin, D. (1976). An application of the theory of computational complexity to the study of inductive inference.

Ph.D. dissertation, Department of Electrical Engineering & Computer Science, Univ. California, Berkeley.
Angluin, D., & Smith, C.H. (1983). Inductive inference: Theory and methods. Computing Surveys, 15, 237-269.
Biermann, A.W., & Feldman, J.A. (1978). On the synthesis of finite-state machines from samples of their behavior.

1EEE Trans. on Computers, C-21, 592-597.
Brooks, R.A. (1987). Intelligence without representation. Proceedings of the Conf. on Foundations of Al. Cam-

bridge, MA: MIT.
Feldman, J.A., & Ballard, D.H. (1982). Connectiortist models and their pmperties. Cognitive Science, 6, 205-254.
Gold, E.M. (1978). Complexity of automaton identification from given data. Information and Control, 37, 302-320.
Gold, E.M. (1972). System identification via state characterization. Automatica, 8, 621-636.
Gold, E.M. (1967). Language identification in the limit. Information and Control, 10, 447-474.
Hinton, G.E. (1987). Connectionist learning procedures (TR CMU-CS-87-115). Pittsburgh, PA: Carnegie Mellon

University, Computer Science Department.
Hopcroft, J.E., & Ullman, J.D. (1979). Introduction to automata andforrruTl languages. Reading, MA: Addison-

Wesley.
Homing, J.K. (1969). A study of grammatical inference. Ph.D. thesis, Stanford University.
Ibarra, O.H., & Jiang, T. (1988). Learning regular languages from counterexamples. Proceedings of the 1988

Workshop on Computational Learning Theory (pp. 371-385). Boston, MA.
Jantke, K.P., & Beick, H-R. (1981). Combining postulates of naturalness in inductive inference. Journal oflnfor-

mation Processing and Cybernetics, 17, 465-484.

33

138 S. PORAT AND J.A. FELDMAN

Kearns, M., Li, J., Pitt, L., & Valiant, L. (1987). On the learnability of boolean formulae. Proceedings of the
9th Annual ACM Symp. on Theory of Computing (pp. 284-295). New York, NY.

Natarajan, B.K. (1987). On learning boolean functions. Proceedings of the 9th Annual ACM Syrup. on Theory
of Computing (pp. 296-394). New York, NY.

Osherson, D.N., Stob, M., & Weinstein, S. (1986). Systems that learn: An introduction to learning theory for
conginitive and computer scientists. Cambridge, MA: MIT Press.

Rivest, R.L., & Schapire, R.E. (1987). A new approach to unsupervised learning in deterministic environments.
Proceedings o f the 4th International Workshop on Machine Learning. Irvine, CA.

Rivest, R i . , & Schapire, R.E. (1987). Diversity-based inference of finite automata. Proceedings of the 28th
Annual Syrup. on Foundations of Computer Science. Los Angeles, CA.

Rumelhart, D.E., & McClelland, J.L. (Eds.). (1986). Parallel distributed processing, explorations in the microstruc-
ture of cognition. Cambridge, MA: Bradford Books/MIT Press.

Sharon, M. (1990). Learning automata. M.Sc. Thesis in Computer Science, Technion, Haifa, Israel, (in Hebrew).
Trakhtenbrot, B.A., & Barzdin, Ya.M. (1973). Finite automata. Amsterdam: North-Holland.
Valiant, L.G. (1985). Learning disjunctions of conjunctions. Proceedings of the 9th IJCAI (pp. 560-566). Los

Angeles, CA.
Valiant, L.G. (1984). A theory of the learnable. CACM, 27, 1134-1142.
Waltz, D., & Feldman, J.A. (Eds.). (1987). Connectionist models and their implications. Ablex Publishing Corp.
Weisberg, Y. (1990). lterative learning finite automatu--Applicution by neural net. M.Sc. thesis in Electrical Engi-

neering, Technion, Haifa, Israel, (in Hebrew).
Wiehagen, R. (1976). Limeserkennung rekursiver funktionen durch spezielle strategien. Elektronische lnforma-

tionsverarbeitung und Kybernefik, 12, 93-99.
Williams, R.J. (1987). Reinforcement-learning connectionist systems (TR NU-CCS-87-3).

34

