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Abstract. An algorithm is presented for a common induction problem, the specialization of overly 
general concepts. A concept is too general when it matches a negative example. The particular case 
addressed here assumes that concepts are represented as conjunctions of positiye literals, that special- 
ization is performed by conjoining literals to the overly general concept, and that the resulting spe- 
cializations are to be as general as possible. Although the problem is NP-hard, there exists an algorithm, 
based on manipulation of bit vectors, .that has provided good performance in practice. 

In the process of including a concept from examples, it is sometimes necessary 
to make a concept less general because the concept matches a negative example. 
However, one usually wants to reduce the generality as little as possible. Thus, 
the so-called specialization problem is to find all specializations of a given concept 
that are maximally general and yet do not match the given negative example. This 
paper provides an algorithm for a restricted class of specialization problems. 

This particular specialization problem was uncovered during the development of 
Sierra, a program that learns procedures from examples (VanLehn, 1987). Part of 
Sierra's job included inducing concepts, expressed in a restricted version of the 
predicate calculus, from positive and negative examples. In this respect, it was 
much like Winston's (1975) famous arch learner. Sierra used Mitchell's (1982) 
version space technique. Although Mitchell's presentation of the candidate elim- 
ination algorithm used propositional representations, it was straight forward to 
adapt them to the first-order representation used by Sierra. Unfortunately, the 
algorithms were very slow. The slowest one was the specialization algorithm that 
was used in the course of updating the G set. With the help of Johan de Kleer, a 
much faster algorithm was found. It allowed Sierra to reduce its learning time from 
30 hours to a few minutes in some cases. This paper describes the particular 
specialization problem that the algorithm solves, then presents the algorithm itself, 
and finishes with a brief comment on the application of the algorithm to discimi- 
nation learners, such as ID3 (Quinlan, 1986) and Prism (Langley, 1987). 

Most of the speed in the algorithm is due to the particular representation of 
concepts it uses, so the problem will be defined in terms of it. A concept is rep- 
resented by a conjunction of positive literals, where all variables are interpreted 
existentially. An example of a concept is: 
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Exists (X, I1) such that color(X, red) & on(X, I1) & 

abuts(bottom(X), top(Y)) 

where variables are capaitalized and constants are not. This concept would be true 
of an example where there is a red block on top of a green block and a blue block 
on top of the table. Because the logical form is always the same--conjunctions of 
literals embedded in existential quantifiers--it is convenient to drop the logical 
symbols and represent concepts as sets of literals. The above concept would be 
represented as: 

{color(X, red), on(X, Y), abuts(bottom(X), top(Y))) 

Examples are represented in the same way as concepts except that variables are 
not allowed in examples (i.e., they are ground sentences of first-order logic). 

A concept g is said to match another concept or example s if there exists a 
substitution for the variables of g such that every literal in g is equal to some literal 
in s. To put it more succinctly, g matches s if and only if there exists a substitution 
that makes g a subset of s. A concept is said to be consistent with a set of positive 
and negative examples if it matches each of the positive examples and none of the 
negative examples. Given two concepts, g and s, if g matches s, then g is said to 
be a generalization of concept s, and s is said to be a specialization of g. 

In this version of the specialization problem, the only type of specialization 
allowed is the one just defined. Thus, the following concept would be a speciali- 
zation of the one above: 

{color(X, red), on(X, b17), abuts(bottom(X), top(bl7)), color(Z, blue)} 

because one positive literal (the last one) has been added and one of the variables 
has been turned into a constant. 

Lastly, and most importantly, variables are assumed to designate distinct objects. 
That is, there is an implicit inequality between each pair of variables so that 
{p(X, Y)} really means {p(X, Y), X ~ II}. This implies that {p(X, Y)} is not a 
generalization of {p(V, V)}. 

The assumption that distinct variables designate distinct objects implies that the 
set of all generalizations of a concept s corresponds to the set of all subsets of the 
literals of s. To see this, suppose that g is an arbitrary generalization of s. This 
means that g matches s, so there is some mapping of the variables of g into the 
variables of s such that the image of g under the mapping is a subset of s. This 
mapping must be a one-to-one mapping, because distinct variables must designate 
distinct objects. Thus, the mapping between g and its image in s is one-to-one and 
onto, which means that g is an alphabetic variant (i.e., the names of its variables 
have been systematically changed) of some subset of s. This shows that every 
generalization of s is isomorphic to some member of the power set of s. 
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This completes the definition of the representation language for concepts and 
examples. It is a rather ordinary representation language, similar in most important 
respects to the semantic net representations used by Winston and others. Given 
this representation language, the specialization problem can now be stated. 

In Mitchell's version space approach to concept formation, the set, V, of all 
concepts consistent with the examples given so far (i.e., the version space) is 
represented by two subsets of V, called G and S. The G set is the set of all maximally 
general elements of V (i.e., for each g ~ G, there does not exist any element of 
V more general than g). The S set is the set of all maximally specific elements of 
V (i.e., for each s E s, there is no element of V more specific than s). Moreover, 
Mitchell (1978) proves that G and S form the boundaries of an interval, so that 
for each g in G, there is some concept s in S such that g is a generalization of s, 
and for each concept s in S there is a concept g in G such that s is a specialization 
of g. 

The specialization problem to be discussed occurs when the G set must be 
modified in order to make its members consistent with a newly received negative 
example. Suppose a concept g E G matches the negative example. This means it 
is too general and must be specialized. Given the assumptions above, specializing 
it means finding literals from some s E S that can be added to g. This leads to the 
following specialization problem: 

Given: 
n, a negative example, 
g, a member of G that matches n, and 
s, a member of S that does not match n and is a specialization of g. 

Find a set of concepts C such that: 
no concept in C matches n, 
every concept in C is a specialization of g, 
every concept in C is a generalization of s, and 
no concept in C is a generalization of any other concept in C. 

The G and S set often have multiple members, so the above problem may have 
to be solved for more than one g/s pair and the resulting C sets must be merged 
to form the new G set. 1 

A direct, but inefficient way to solve the problem is to use a brute-force search 
that adds a single literal from s to the evolving g, then checks to see if the resulting 
concept matches n. If it still does, then the search continues. If the concept does 
not match n, then the search has found one candidate for C, so it backtracks to 
find more. The branching factor of the search is Isl - Igl where Ixl is the number 
of literals in x. At one time, Sierra used this technique for updating its version 
spaces. Since Isl - Igl ranged between 30 and 150, Sierra often took 30 hours or 
more just to handle a few negative examples. With the new algorithm, Sierra 
completes the same calculations in a minute or two. 
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The algorithm uses the same search as before, and thus has the same branching 
factor, but the search step is made significantly faster. The slowest step in the search 
is checking to see whether a newly built concept matches the negative example. 
However,  this check always occurs between n and a concept that is some subset 
of s. The algorithm takes advantage of this by precomputing a bit-vector repre- 
sentation that allows the fast parallel bit-vector computation provided by most 
machines to be used in place of the slow matching step. Thus, although the search 
still has the same exponential combinatorics as before, it is sped up by such a large 
constant factor that the overall speed becomes quite acceptable. Since the problem 
is NP-hard, it doubtful that a polynomial solution will be found.: 

There are two steps to the initialization that precede the search. The first step 
is to enumerate all substitutions of objects in n for variables in s. For example, if 
there are four variables in s and seven objects in n, then there are 7 × 6 × 5 × 
4 substitutions? Having enumerated the substitutions, each literal in s is assigned 
a bit vector. The bit vector has one bit position for each substitution. If the literal 
is in n under a given substitution, then the bit is zero. If the literal is not in n, then 
the bit is one. If any literal has a bit vector that is all ones, then it is not in n under 
any substitution, so it does not match n. The result of this step of the initialization 
is a set, call it s-pairs, that consists of the literals of s paired with their bit vectors. 

The second step in the initialization is to convert g into a subset of s by finding 
a substitution of its variables for variables in s. If there is more than one such 
substitution, then the search must be run once for each substitution. Let g' be a 
version of g with variables from s substituted for its original variable. Let g'-pairs 
be a set consisting of the literals of g' paired with their bit vectors. 

Attaching bit vectors to literals converts the matching problem into a well-known 
problem, the set covering problem: Given a target set and a collection of subsets 
of it, find a cover for the target set, where a cover is a set of subsets such that the 
union of those subsets equals the target set. In this case, the target set is represented 
by a bit vector that is all ones, and the collection of subsets is represented by the 
bit vectors of s-pairs. The goal is to find a set, call it c-pairs, which is a superset 
of g'-pairs and a subset of s-pairs, such that the logical Or of the bit vectors of 
c-pairs is all ones. When the logical Or (union) of the bit vectors of c-pairs is all 
ones, then the conjunction of literals of c-pairs does not match n because those 
literals are not a subset of the literals of n under any substitution. Hence,  this 
conjunction is almost the concept needed: it is a specialization of g because it is a 
superset of the literals of g' ;  it is a generalization of s because it is a subset of the 
literals of s; and it does not match n. The only criterion left to meet is that the 
concepts be maximally general with respect to each other. The criterion can be 
partially met by using an appropriate set covering algorithm, which is the topic we 
turn to next. 

There are several different versions of the set covering problem, depending on 
the kind of cover desired. An irredundant cover is a cover that is not properly 
included in any other cover (i.e., none of its subsets is redundant in that it can be 
removed from the cover without affecting the cover's equality to the target set). 
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Table 1. Well's algorithm for finding irredundant covers. 

(Defun FindCover (Cover Covered Duplicates Usable) 
(And Usable 
(Let 
( (Candidate (Car Usable) ) 
(NewCover (Cons Candidate Cover)) 
(NewCovered (LogicalOr Covered (BitVector Candidate) ) ) 
(NewDuplicates 

(LogicalOr Duplicates (LogicalAnd Covered (BitVector Candidate))) 
(NewUsable (Cdr Usable) ) 

(Cond 
((For X in NewCover thereis 

(AllOnes 
(LogicalOr 

(LogicalNot (BitVector X) ) 
NewDuplicates) ) ) ) 

(FindCover Cover Covered Duplicates NewUsable)) 
( (AllOnes NewCovered) 
(Cons NewCover 

(FindCover Cover Covered Duplicates NewUsable)) 
(T 
(Append 

(FindCover NewCover NewCovered NewDuplicates NewUsable) 
(FindCover Cover Covered Duplicates NewUsable) ) ) ) ) ) ) ) 

Let C' stand for all possible irredundant covers of the all-one bit vector using 
subsets of s-pairs and supersets of g'-pairs. Then the concepts represented by C' 
are maximally general. If it were otherwise, then there would be two elements of 
C', call them a and b, such that the literals of a are a proper subset of the literals 
of b. But then b would not be an irredundant cover, because some of its elements 
could be removed and yet the logical Or of the remaining bit vectors would still 
be all ones. So C' represents concepts that are maximally general with respect to 
themselves, are specializations of g' and generalizations of s, and do not match n.4 

As noted earlier, the G set and the S set might have multiple members, and 
each g might have multiple g'. In order to get a new G set, all the C' generated 
from specific s/g' pairs must be merged. 

In order to generate irredundant covers, Sierra uses an algorithm from Wells 
(1971, section 6.4.3), which is based on depth-first search (see table 1). The al- 
gorithm keeps the cover generated so far in the variable Cover and the possible 
cover elements that have not been used yet in the variable Usable. It also maintains 
in the variable Cover a bit vector representing the substitutions that have been 
covered so far. The trick to Well's algorithm is to prune the search whenever adding 
a new cover element to the cover would cause the cover to become redundant. In 
order to detect this, it maintains in the variable Duplicates a bit vector of the 
substitutions that have been covered by two or more cover elements. This piece 
of search pruning is achieved in the first cond clause of table 1. In order to calculate 
C', FindCover is called with the following argument values: 

Cover = g'-pairs 
Covered = the bit vector that is the logical Or of the bit vectors of g'-pairs 
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Table 2. Concepts and bit vectors used during FindCover 

I X=bl X=bl J X=b2 X=b2 X=t I yX=;t2 
Concept Y=b2 Y=t Y=bl Y---t Y=bl 

on(X,Y) 0 1 1 0 1 1 

table(Y) 1 0 1 0 1 1 

red(X) 0 0 1 1 1 1 

red(X),on(X,Y) 0 1 1 1 1 1 

red(X),on(X,Y),table(Y) 1 1 1 1 1 1 

red(X) ,table(Y) 1 0 1 1 1 1 

Duplicates = the bit vector that is the logical Or of the bit vectors of g'-pairs 
Usable = s-pairs with g'-pairs removed 

As an illustration of the algorithm's execution, consider the following problem: 

n = {block(bl), red(bl),  block(b2), green(b2), table(t), on(bl,b2), on (bt,t)} 
g' = {red(X)} 
s = {red(X), on(X,Y), table(Y)} 

The concept g' matches the negative example, and it is a specialization of s with 
the same variables as s. Table 2 shows several concepts with their associated bit 
vectors. The columns correspond to bits in the bit vectors. Each column is labeled 
with the substitu6on that its bit position represents. Since there are two variables 
in s, and three constants in n, there are 3 x 2 substitutions. The first three rows 
of the table correspond to the elements of s-pairs. Notice that a bit is one if the 
literal does not match n under the substitution corresponding to that bit position. 
The algorithm is initialized with Cover equal to g'-pairs, whose only element cor- 
responds to the third row in the table. This means that Covered is the bit vector 
shown in the third row. Because Covered is not all ones, the search takes the first 
element of Usable (which is initialized to the first two rows of the table), and 
conjoins it with Cover. This produces the concept shown in the fourth row of the 
table. This concept's vector is not all ones, so the algorithm again adds an element 
of Usable, resulting in the concept shown in the fifth row. This concept's bit vector 
is all ones, so it is saved for later output. The search continues, eventually producing 
the sixth row in the table. However, all these later search paths fail because Usable 
empties before the search finds any new covers. Thus, FindCover returns a singleton 
list consisting of the cover corresponding to the fifth row of the table. Although 
this example illustrates the bit-vector representation and the algorithm's flow of 
control, it does not exhibit the search pruning caused by Duplicates. 

As mentioned earlier, this algorithm was used with success as part of a version 
space maintenance module. It may also be useful in inductive concept learners that 
do discrimination learning, such as ID3 (Quinlan, 1986) and PRISM (Langley, 
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1987). These programs were initially developed with propositional concept rep- 
resentations, just as the version space algorithm was. The set covering technique 
could be adapted to let them use the first-order representations defined above. The 
following paragraphs sketch this application. 

Suppose for the sake of illustration that the original version of the discrimination 
learning problem is to build a concept that discriminates positive from negative 
examples (i.e., binary discrimination, rather than multi-ary) and that concepts are 
represented as feature sets. Then the main step in the search is to take a concept 
(e.g., tree node) that is not yet capable of discriminating the positive from the 
negative examples, find a single feature that discriminates as many positive from 
negative examples as possible, and extend the concept with that feature. 

Now suppose that concepts are represented in the first-order language defined 
above. The discrimination learner's search would now work with literals rather 
than features. However, adding a literal to a set of literals does not have the same 
easily calculated effect on a concept's extension as adding a feature to a set of 
features. Thus, the search would have to recalculate the extension of a concept 
after selecting a literal and adding it to the concept. It could do this by matching 
the new concept against everynegative and positive example in the data. Clearly, 
this would be quite expensive. 

However, the same bit-vector representation used above should help here as 
well. In this case, there are multiple negative examples to match, so each bit position 
stands for the result of matching to one example with one substitution. This will 
make the bit vectors longer in this case than in the candidate elimination algorithm, 
which processes one example at a time. However, the extension of a concept can 
still be calculated by taking the logical Or of the old concept's bit vector and the 
literal's bit vector. Presumably, this would still be faster than matching even if the 
bit vectors were long. Obviously, .specialized parallel hardware could increase the 
speed even more. 

Notes 

1. Merging the C set consists of more than a simple union, however. Although the definition of C 
specifies that the concepts in C are maximally general with respect to each other, when multiple C 
sets are unioned in order to get the new version of the G set, the result must be filtered one last 
time in order to remove concepts that are specialized by others in the set. (It would be interesting 
to see if leaving these "almost" maximally general concepts in the G set speeds up the candidate 
elimination algorithm.) 

2. As shown later, this problem can be converted to a set covering problem. In theorem 10.2.9 of Aho, 
Hopcroft and Ullman (1974), it is shown that set covering is NP-complete. 

3. Sierra's concept representation enforces additional constraints that reduces the number of substi- 
tutions still further. This reduction is crucial, because Sierra's concepts usually had between 10 and 
50 variables. In retrospect, the same reduction could be achieved more elegantly by assigning types 
to variables and objects, then enumerating only substitutions that paired objects and variables of 
the same type. 
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4. For version space maintenance, the definition of the G set implies the covering algorithm desired 
will be one that finds irredundant covers. For other applications of this technique, one might consider 
an algorithm for calculating minimal covers, which are covers with the fewest number of elements. 
This would cause the specialization algorithm to prefer maximally "simple" concepts instead of 
maximally general ones. 

References 

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer algorithms. 
Reading, MA: Addison-Wesley. 

Langley, P. (1987). A general theory of discrimination learning. In D. Klahr, P. Langley, & R. Neches 
(Eds.), Production system models of learning and development. Cambridge, MA: MIT Press. 

Mitchell, T. M. (1978). Version spaces: An approach to concept learnbzg (Tech. Rep. STAN-CS-78- 
711). Palo Alto, CA: Stanford University, Computer Science Department. 

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203-226. 
Quinlan, J. R. (1986). The effect of noise on concept learning. In R. S. Michalski, J. G. Carbonell, & 

T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. (Vol. 2). Los Altos, CA: 
Morgan Kaufmann. 

VanLehn, K. (1987). Learning one subprocedt~re per lesson. Artificial Intelligence, 31, 1-40. 
Wells, M. B. (1971). Elements of combinatorial computing. New York: Pergamon Press. 
Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston (Ed.), The 

psychology of computer vision. New York: McGraw-Hill. 


