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Abstract. This paper presents a theory of learning called nested generalized exemplar (NGE) theory, in which 
learning is accomplished by storing objects in Euclidean n-space, E n, as hyperrectangles. The hyperrectangles 
may be nested inside one another to arbitrary depth. In contrast to generalization processes that replace symbolic 
formulae by more general formulae, the NGE algorithm modifies hyperrectangles by growing and reshaping them 
in a well-defined fashion. The axes of these hyperrectangles are defined by the variables measured for each exam- 
ple. Each variable can have any range on the real line; thus the theory is not restricted to symbolic or binary values. 

This paper describes some advantages and disadvantages of NGE theory, positions it as a form of exemplar- 
based learning, and compares it to other inductive learning theories. An implementation has been tested in three 
different domains, for which results are presented below: prediction of breast cancer, classification of iris flowers, 
and prediction of survival times for heart attack patients. The results in these domains support the claim that 
NGE theory can be used to create compact representations with excellent predictive accuracy. 
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1. Introduction 

This paper presents a theory of learning from examples called Nested Generalized Exemplar 
(NGE) theory. NGE theory is derived from a learning model called exemplar-based learn- 
ing that was proposed originally as a model of human learning by Medin and Schaffer 

(1978). In the Medin and Schaffer theory, examples are stored in memory verbatim, with 
no change of representation. The set of examples that accumulate over time form category 
definitions; for example, the set of all chairs that a person has seen forms that person's 
definition of "chair"  (see also (Osherson & Smith, 1981; Medin, 1983; Smith & Osherson, 
1984; Barr & Caplan, 1987)). An example is defined within the NGE model as a vector 
of features values plus a label that represents the category of  the example. 

NGE theory makes several significant modifications to the exemplar-based learning model. 

1. It retains the notion that examples should be stored verbatim in memory, but once it 
stores them, it allows examples to be generalized. In NGE theory, generalizations take 

the form of hyperrectangles in a Euclidean n-space, where the space is defined by the 
variables measured for each example. The hyperrectangles may be nested one inside 
another to arbitrary depth, and inner rectangles serve as exceptions to surrounding rec- 
tangles. (See Thornton (1987) for a hypercuboid learning model.)  

2. Another significant change that NGE makes to exemplar-based learning is that of attaching 
weights to each hyperrectangle. These weights, which are modified extensively during 
the learning process, are used by the algorithm as described below. With respect to other 
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machine learning theories, these nested, weighted, generalized exemplars are a novel 
way to represent concepts. 

3. NGE dynamically adjusts its distance function, which gives it a greater tolerance for 
noise in some situations. (Some algorithms use a similarity function, which is basically 
the opposite of a distance function.) The distance function determines the distance be- 
tween a new example and all exemplars stored in memory. 

4. NGE combines the uses of hyperrectangles (generalizations) with specific instances, 
in contrast to other models that use either one or the other form of representation. 

The test of this theory, as with all empirical learning theories, is its performance on 
real data. Until we can develop provably correct learning algorithms, all machine learning 
algorithms must be subject to empirical verification. In particular, a learning theory should 
be compared to other theories by testing it on the same data sets. This paper presents results 
of the NGE algorithm using three different data sets, each of which was previously used 
in experiments with other learning theories. The application domains of the three data sets 
are (1) predicting the recurrence of breast cancer, (2) classifying iris flowers, and (3) predict- 
ing survival times for heart attack patients. 

The program that implements NGE theory in this paper is called EACH, for Exemplar- 
Aided Constructor of Hyperrectangles. EACH makes predictions and classifications based 
on the examples it has seen in the past. The precise details of the EACH algorithm will 
be explained further below, but briefly: the learner compares new examples to those it has 
seen before, and finds the closest example in memory. To determine what is closest, a dis- 
tance measure is used. This distance measure is modified by the program during the learn- 
ing process. Once an example has been stored, it is termed an exemplar; this term is used 
henceforth specifically to refer to objects stored in computer memory. Over time, exemplars 
may be changed from points to hyperrectangles, as explained later. Stored with each ex- 
emplar is the value of the variable that the system is trying to predict. In the simplest case, 
the system predicts that the dependent variable for a new example will have the same value 
as that stored on the closest exemplar. Exemplars have properties such as weights, shapes, 
and sizes--all of which can be adjusted based on the results of the prediction. The learning 
itself takes place only after EACH receives feedback on its prediction. If the prediction was 
correct, EACH strengthens the exemplar used to make it. Strengthening can occur by increas- 
ing weight or size. If the prediction was incorrect, EACH weakens the exemplar. These 
processes, too, will be explained in detail later. 

The experimental comparisons given below support the following claims: 

1. The classification accuracy of the NGE model compares favorably to that of other machine 
learning algorithms. 

2. EACH is superior to a "greedy" version of the program (described below) in memory 
requirements and the two versions are equivalent in terms of classification accuracy. 

3. Feature weights are an important component of EACH'S success. 
4. EACH achieves substantial compression of the data sets. 

These claims will be considered again in the experimental results section. 
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2. NGE theory as a kind of exemplar-based learning 

Exemplar-based learning is a recent addition to the A1 literature. However, based on the 
existing work, one can construct a hierarchy of different exemplar-based learning models. 
The position of Nested Generalized Exemplar theory in that hierarchy is shown in Figure 1. 

Every theory in the family shown in Figure 1 shares the property that it uses verbatim 
examples as the basis of learning; in other words, these theories store examples in memory 
without any change in representation. From this initial theoretical position, however, several 
divergent models have already appeared. A model called "instance-based learning" retains 
examples in memory as points, and never changes them. The only decisions to be made 
are what points to store, where to put them, and how to measure distance. Kibler and Aha 
(1987, 1989) have created several variants of this model, and they are experimenting with 
how far they can go with strict point-storage models. All of their models use some kind 
of nearest neighbor technique to classify new inputs. Nearest neighbor algorithms, though 
a recent addition to the arsenal of machine learning techniques, have been explored in many 
forms in the pattern recognition literature, going back as far as the early work of Cover 
and Hart (1967). 

Once a theory moves from a symbolic space to a Euclidean space, it becomes possible 
to nest generalizations one inside the other. The capability to do this nesting is a unique 
contribution of Nested Generalized Exemplar theory. Its generalizations, which take the 
form of hyperrectangles in Euclidean n-space E", can be nested to an arbitrary depth, 
where inner rectangles act as exceptions to outer ones. NGE theory is intended to encom- 
pass more than just hyperrectangles: it includes all theories that create nested generaliza- 
tions of any shape from exemplars. Other shapes that might be the subject of future research 
are spheres, ellipses, and convex hulls. However, the nested hyperrectangles created by 
EACH are the only current implementation of NGE. 

Another research track that fits into the exemplar-based learning paradigm is case-based 
reasoning. One of the first such systems was CYRUS (Kolodner, 1980; Kolodner & Simpson, 
1984), a system that learned by reading (short) stories about Cyrus Vance, the former U.S. 
Secretary of State. It used stories as examples that it stored in an abstraction hierarchy. 
CYRUS generalized symbolic slot values, as did the later case-based Protos system (Bareiss0 
1988). Learning in CYRUS was measured by improvements in its ability to read stories. 

Exemplar-based Learni~ 

Ir~tance-ba~ed Lea rn~  Exemplar-ba3ed Oenemlizalion 

Nes~d Generalized Exemplars Ca3e-based Rea3oni~ 

Figure 1. NGE as a type of exemplar-based learning. 
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Although the task was very different, the basic idea of saving examples for use in later 
processing is the same as that used by NGE. Exceptions are implicitly handled in CYRUS 
(and in other systems, such as Protos, that modify abstraction hierarchies) by the use of 
defaults in the abstraction hierarchy: when a default is overidden on a specific node in 
the hierarchy, that node can be considered an exception to more abstract nodes. 

Case-based reasoning methods, and any other methods that use symbolic abstraction hier- 
archies (Ashley & Rissland, 1987; Rissland & Ashley, 1987; Bareiss, 1988), might reasonably 
be called abstraction-based methods. EACH clearly shares some features with these methods, 
especially in the basic approach that stores an example verbatim and later generalizes it. 
On the other hand, the strategy of using a distance metric to find the nearest points (or 
rectangles) in feature space clearly resembles other exemplar-based methods such as those 
of Aha and Kibler. These similarities illustrate that the boundary between abstraction-based 
and exemplar-based systems is not so clear, and EACH falls quite near this boundary. Fisher 
(1989) illustrates the similarities well by pointing out that case-based reasoning "is most 
productive when few training observations are available and noise is not present" (p. 829), 
but that abstractions will be required as more cases are observed. The alternative to abstrac- 
tion is what Fisher calls "selective retention'--storing selected examples verbatim--which 
is just the strategy employed by Aha and Kibler (1989). Selective retention improves effi- 
ciency and accuracy, but presents new problems when dealing with irrelevant attributes. 
The general point is that although the learning techniques are quite different, case-based 
and exemplar-based learning share some fundamental principles and goals. 

2.1. Generalizations with exceptions 

Perhaps the most important distinguishing feature of NGE learning is its ability to capture 
generalizations with exceptions. The importance of such an ability has been remarked upon 
before: 

Programs that can only discover conjunctive characteristic descriptions have limited 
practical application. In particular, they are inadequate in situations involving noisy data 
or in which no single conjunctive description can describe the phenomena of interest. 
Consequently, as one of the evaluation criteria [of the systems under review], we con- 
sider the ease with which each method could be extended to . . .  discover exceptions. 
(Dietterich & Michalski, 1983, p. 50) 

Exemplar-based learning models do not, in general, create any generalizations, although 
virtually all other learning programs do. Among those programs that create generalizations, 
none represent generalizations with exceptions in the same way as NGE theory. Helmbold, 
Sloan, and Warmuth (1989) have developed an algorithm that uses a similar representation, 
but this algorithm is currently a theoretical model, not yet applicable to real world prob- 
lems. Probably the best example of a learning model that explicitly handles exceptions is 
Vere's (1980) system for constructing multilevel counterfactuals. His system learned general- 
izations in the blocks world, in which the only legal relations were binary predicates such 
as (on a b) and (behind b c) and unary predicates such as (green a) and (pyramid c). The 
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program produced a single description, disjunctive if necessary, that covered all positive 
examples and no negative examples. For example, it might produce a description such as: 
(on X1 table)A--1 ((on X2 X3)A(on X3 X4)), where the negated clauses are exceptions. 
According to Vere, a typical expression contained counterfactuals (negated terms) nested 
several layers deep. 

Vere's system differs from EACH in several significant ways: it only allowed symbolic 
features, it only handled noise-free data, its results applied only to two-category problems, 
and it was not incremental. An important result that it demonstrated was that by using negated 
terms (counterfactuals), one could create much more concise concept descriptions. These 
negated terms are conceptually similar to the exceptions created by EACH. 

The generalizations created by any program that learns from examples are associated 
with a prediction or category. The fact that naturally occuring categories are not always 
easily characterized--in particular, the fact that natural categories have exceptions--has 
been a major problem for generalization algorithms. The NGE model, as implemented 
in EACH, explicitly creates exceptions by creating "holes" in its hyperrectangles. These 
"holes" are also hyperrectangles, and they can have additional exceptions inside them, nested 
as deep as the data require. 

2.2. Problem domain characteristics 

In addition to describing the advantages that NGE offers over other methods, it is also 
worthwhile to consider the kinds of problem domains it may not handle well. Although 
NGE (along with other exemplar-based learning models) is domain independent, there are 
some domains in which the target concepts are very difficult for NGE, and other learning 
techniques may perform better. In particular, exemplar-based learning is best suited for 
domains in which the exemplars are clusters (ideally, convex solids) in feature space, and 
where the behavior of the exemplars in a cluster is relatively constant (i.e., they all fall 
into the same category). Nested Generalized Exemplar learning works equally well when 
exemplars in a cluster have different behavior, because it can store clusters within clusters. 
On the other hand, if the exemplars are strung out along an infinite curve (for example), 
then the best description of the domain is the equation of that curve (which can be estimated 
using multiple regression analysis), rather than a set of exemplar objects. Although exemplar- 
based learning can handle such a domain, it will not create nearly as concise a description 
as a curve-fitting method will. Figure 2 illustrates this point. In the figure, we see that 
the exemplars listed in the "bad" plot for category a are scattered along a curve which 
could probably be approximated by a cubic function. 

2.3. Related theoretical work 

Very recent results in computational complexity dovetail nicely with the hyperrectangle 
memory model constructed by EACH. In particular, Helmbold, Sloan, and Warmuth (1989) 
have devised an algorithm that learns by constructing nested, axis-parallel hyperrectangles. 
Given an admittedly restrictive set of assumptions, Helmbold et al. prove some very strong 
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Figure 2. Good and bad structures for exemplar-based learning. 

optimality results for their algorithm. In particular, they consider four optimality criteria: 
(1) the number of examples required to make accurate predictions with high confidence, 
(2) the probability of making a mistake on the nth instance, (3) the expected number of 
errors for the first m instances (using an incremental algorithm), and (4) the worst case 
number of errors for the first m instances. Their algorithm is asymptotically optimal with 
respect to all these measures. 

Their learning algorithm applies to any intersection-closed concept class. Rectangles are 
intersection-closed, since the intersection of any two rectangles is also a rectangle. Mono- 
mials and subspaces of E n are also intersection-closed. This constraint on their algorithm 
means that the "true" concepts in the class must be, for example, rectangular (this con- 
straint does not apply to EAch). However, the representation constructed by the algorithm--a 
set of nested rectangles--is not constrained to be intersection-closed. 

3. The NGE learning algorithm 

This section describes the details of the nested generalized exemplar learning algorithm 
used by EACH. For the sake of brevity, descriptions of the data structures and minor sub- 
routines have been omitted. A pseudo-code summary of the algorithm appears as an appen- 
dix. Following the description of the algorithm is an analysis of how the NGE algorithm 
partitions feature space. 

3.1. Initialization 

In order to make predictions, EACH must have a history of examples on which to base its 
predictions. Memory is initialized by "seeding" it with a small set of examples (the minimum 
size of,this set is one). The seeding process simply stores each example in memory without 
attempting to make any predictions. These examples are chosen at random from the training 
set (as long as the examples are presented in random order, the system can use the first 
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N instances from the training stream as seeds). The number of seeds was determined by 
trial and error on a simulated data set (where an unlimited number of examples were avail- 
able), and performance was not found to be sensitive to the size of the seed set. 

An example is a vector of features, where each feature may have any number of values, 
ranging from 2 (for binary features) to infinity (for real-valued features). For example, 
the echocardiogram examples were patients who had recently suffered acute heart attacks, 
each patient being described by a vector of six variables. One of those six variables was 
binary, one was an integer ranging from 1 to 90, and the others were real-valued. In addi- 
tion, each exemplar has a slot containing the category associated with that example. This 
category variable may be binary, discrete, or continuous, and the system will try to predict 
it accordingly. 

When predicting continuous variables, the system uses an error tolerance parameter that 
indicates how close two values must be in order to be considered equivalent. This parameter 
is necessary because for real-valued variables, it is usually the case that no two values ever 
match exactly, and yet the system needs to know if its prediction was close enough to be 
considered correct. For example, if the user sets the error tolerance to 1%, and an exemplar 
e makes the prediction 5.0, then any value in the range [4.95, 5.05] will be considered a 
match. If  a new example has the value 5.03 for its prediction variable, and this example 
matches e, EAcI~ will not store a new point in memory. The result is that continuous predic- 
tions are approximated by a discrete set of values. 

3.2. Match and classify 

After initialization, the algorithm operates incrementally, processing one example at a time. 
Every new example is matched to memory using the matching process described below. 
Because memory has remained small in all the tests run so far, it has been acceptable to 
require the system to compare the new example to every object in memory. (For example, 
the echocardiogram data never required a memory for more than about 20 objects.) The 
best match is used for classification in the obvious way: the system predicts that the new 
example will fall into the same category as the best matched exemplar. 

The matching process is one of the central features of the algorithm, and it is also a 
process that allows some customization, if desired. This process computes the distance 
between a new data point (an example) and an exemplar memory object (a hyperrectangle 
in E"). For the remainder of this section, I will refer to the new example as E and the 
hyperrectangle as H. 

The system computes a match score between E and H by measuring the Euclidean distance 
between the two objects. The simplest equation for this measurement assumes that H is 
a point. The distance is determined by the usual distance function computed over every 
dimension in feature space, with a few additions that are explained below. Specifically, 
the distance DEH from E to H is calculated as: 

-)2 
w i  

m a x  i - m i n  i J 
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where w H is the weight of the exemplar H, wi is the weight of the feature i, Ef. is the value 
of the ith feature on example E, Hf~ is the value of the ith feature on exemplar H, min i, 

max i are the minimum and maximum values of that feature, and m is the number of fea- 
tures recognizable on E. 

The best match is the one with the smallest distance. A few special characteristics of 
the computation, which are not evident in the formula above, deserve mention here. First, 
let us suppose we measure the distance between E and H along the dimension f. Assume 
for simplicity tha t f i s  a real-valued feature. In order to normalize all distances so that one 
dimension will not overwhelm the others (every feature may have a different unit from 
every other, e.g., meters, seconds, years), the maximum distance between E and H along 
any dimension is 1. To maintain this property, the system uses its statistics on the maximum 
and minimum values of every feature. Suppose that for E, the value of f is 10, and for 
H, the value o f f  is 30. The unnormalized distance is therefore 20. Suppose further that 
the minimum value o f f  for all exemplars is 3, and the maximum value is 53. Then the 
total range of f is only 50, and the normalized distance from E to H along this dimension 
is 20/50, or 0.4. (Note: another way to normalize values is to use the standard deviation 
as one unit, and to measure distances in terms of that. However, if values for a dimension 
do not follow a normal distribution, the standard deviation is not an appropriate unit.) 

Because the maximum and minimum values of a feature are not given a priori ,  the distance 
calculation will vary over time as these values change. This variation is a direct consequence 
of the incremental nature of the algorithm. If the maximum and minimum values are known 
ahead of time, then the distance calculation will not suffer this variation. 

Now consider what happens when the exemplar, H, is not a point but a hyperrectangle, 
as is usually the case. In this case, the system finds the distance from E to the nearest 
face or edge of H. There are obvious alternatives to this, such as using the center of H 
(as with the centroid method in cluster analysis (Everitt, 1980)), but these lead to compli- 
cations because the algorithm allows the nesting of exemplars inside one another. The formula 
used above changes because Hf., the value of the ith feature on H, is now a range instead 
of a point value. If  we let Blowe r be the lower end of the range, and Huppe r be the upper 
end, then our equation becomes: 

DEH = W H Wi - -  
i = 1 m a x i  mini 

where 

~ (  Efi - nuppe  r when Efi ?> nuppe  r 

" ow r 
otherwise 

/ 
The distance measured by this formula is equivalent to the length of a line dropped perpen- 
dicularly from the point E~ to the nearest surface, edge, or corner of H. This length is 
modified by the weighting factors, as described below. Note that points internal to a hyperrec- 
tangle have distance 0 to that rectangle. Furthermore, a point belongs only to the innermost  
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Figure 3. Matching of points to rectangles. 

rectangle if it is internal to several nested rectangles. In the case of overlapping rectangles, 
a point falling in the area of overlap belongs to the smaller rectangle (this preference is 
merely a heuristic, based on the assumption that larger exemplars may have been over- 
generalized). Figure 3 illustrates how the matching algorithm matches new points to rec- 
tangles. In the figure, point A is mapped to rectangle 1, B to rectangle 2, C to rectangle 
4, D to rectangle 4, and E to rectangle 3. 

For binary features, the distance computation is much simpler: if the features are equal, 
the distance is zero, else it is one. The same computation applies to any discrete, non- 
numeric features. 

Notice that there are two weights on the distance metric, w14 is a simple measure of how 
frequently the exemplar, H, has been used to make a correct prediction. In fact, the use 
of this weight means that the distance metric measures more than just distance, w/4 is a 
measure of the reliability, or the probability of making a correct prediction, of each exem- 
plar. (In fact, Wn is an inverse measure, since the larger it is, the less reliable the exemplar 
is.) This weight measure says, in effect, "in this region of feature space, the reliability 
of  my prediction is n," and of course EACH should prefer more reliable exemplars. The 
distance measure accomplishes this as follows. Suppose, in the above example, that H had 
been used for 15 previous predictions and that it had been correct on 12 of those occasions. 
The system will multiply the weight of the total match score between E and H by 15/12, 
or 1.25. Thus weight is a non-decreasing function of the number of times an exemplar 
has been used. If  the exemplar always makes the correct prediction, then the weight will 
remain at 1. (Note that the seed exemplars do not get a weight of zero, because they are 
treated as if they had predicted themselves correctly; i.e., they are marked as having been 
used once and having been correct once.) More generally, if the weight of an exemplar 
is n/c, then when it is used to make an incorrect prediction, its weight increases from n/c 
to (n + 1)/c. I f  it is used to make a correct prediction, its weight will decrease to n + 1/c + 1. 
Note that if n = c, the weight will remain at 1 after a correct use of the exemplar H. 

Also, as the number of correct uses of H increases, the effect of an incorrect use decreases: 
if H has been correct 100 times, and its weight is n/100, then an incorrect use makes the 
weight (n + 1)/100. This is an increase of 0.01 in absolute terms. If  H has only been correct 
10 times, its weight will increase from n/10 to (n + 1)/10, an increase of 0.1. In the former 
case the effect of an incorrect use is much smaller. This effect is desirable because as we 
know more about H, we do not want a single new example to change significantly our 
confidence in it. 
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Furthermore, noisy exemplars will gradually "disappear" as their weight w n increases. 
If a point represents noise, then its prediction will rarely be correct for other points nearby. 
If such an exemplar is used 10 times, for example, but is only correct once, then its distance 
to new points will be multiplied by 10. New points will be much more likely to match 
some other point in memory than a noisy one. Very recently, Aha and Kibler (1989) have 
used a similar measure to create an instance-based learning system that tolerates noise. 
Their program saves statistics on the number of correct and incorrect classifications made 
by an exemplar, and only uses exemplars with a good record of classifications. 

The other weight measure, wi, is the weight of the ith feature. These weights are adjusted 
over time, as described below. Since the features do not normally have equal predictive 
power, they need to be weighted differently. In practice, the system performed best if these 
weights were adjusted for a fixed number of examples, and then locked in. When feature 
weight adjustment was allowed to continue indefinitely (on experiments not included here), 
the algorithm tended to oscillate, since adjustments in these weights can wipe out previous 
learning by negating the effects of previous adjustments. On the other hand, if EACH were 
applied to a domain that was gradually changing over time, weights should not be fixed. 

A problem with these attribute weights is that they measure the relative importance of 
each attribute over the entire domain. If it turns out that an attribute is highly relevant 
over a small range of values but irrelevant for other values, the weight adjustment in the 
current algorithm cannot reflect this property. The utility of exemplar-specific attribute 
weights remains an open issue. 

3.3. Feedback and learning 

Learning only occurs when EACH gets feedback about its classification. The main feedback 
is simply whether or not the classification or prediction was correct. 

Correct prediction. If EACH makes the correct prediction, it records some statistics about 
its performance and then makes a generalization. Two objects, E and H (using the same 
notation as above), are used to form the generalization. H is replaced in memory by a larger 
object (i.e., an abstraction) that is a generalization of E and H. H may have been a single 
point, or it may have been a hyperrectangle (after a single generalization, an exemplar 
becomes a hyperrectangle). If H was a hyperrectangle, then for every feature of E that 
did not lie within H, H is extended just far enough so that its boundary contains E. If 
H and E were both points, H is replaced by a new object that has, for each feature of E 
and H, a range of values defined by E and H. For example, in a simple case with just 
the two features f~ and f2, if E was at (2, 5) and H was a point at (3, 16), then the new 
object would be a rectangle extending from 2 to 3 in the f~ dimension and from 5 to 16 
in the f2 dimension. 

One consequence of this generalization procedure is that all hyperrectangles created by 
EACH are axis -paral le l  hyperrectangles, because they are not rotated by the algorithm. An- 
other consequence is that growing an exemplar H1 may cause it to overlap an existing exem- 
plar H2. As mentioned above, a point within the overlapping area belongs to the smaller 
exemplar. 

Incorrect prediction. If the system makes the wrong prediction, it has one more chance 
to make the right one. This "second chance" heuristic (which is intended to be nothing 
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more than a heuristic) is used by EACH in order to avoid creating more memory objects 
than necessary. The idea is to try very hard to make a generalization and thus keep down 
the size of memory. So, before creating a new exemplar, EACH first looks at the second 

best match in memory. Assume here that H, was the closest exemplar to E and/-/2 was 
second closest; i.e.,//2 would be the closest if lit were removed. I f H z  will give the correct 
prediction, then the system tries to adjust hyperrectangle shapes to make the second closest 
exemplar into the closest exemplar. It does this by creating a generalization (using the proc- 
ess outlined in the previous section) from//2 and E. The goal of this process is to improve 
the predictive accuracy of the system without increasing the number of exemplars stored 
in memory. 

An interesting side note here is that the problem of creating an optimal number of (possibly 
overlapping) rectangles to classify a set of points is NP-hard. This proof of this result is 
via a reduction to a graph searching problem, achieved by laying a grid over all the points 
(Kasif, 1989). 

A very important consequence of this "second chance" heuristic is that it allows the 
formation of hyperrectangles within other hyperrectangles. If a new point p l  lies within 
an existing rectangle, its distance to that rectangle will be zero. Its distance to another point 
p2  (a previously stored exception) within the rectangle will be small but positive. Thus 
EACH will first assume that the new point belongs to the same category as the rectangle. 
I f p l  is the same category as p2,  then the second chance heuristic will discover this fact, 
and form a rectangle from these two points. 

If the second best match also makes the wrong prediction, then the system simply stores 
the new example, E, as a point in memory. Thus E is made into an exemplar that can im- 
mediately be used to predict future examples, and can be generalized and specialized if 
necessary. This new exemplar may be inside an existing exemplar H, in which case it acts 
as an exception to, or "hole" in H. 

EACH adjusts the weights wi on the featuresf after discovering that it has made the wrong 
prediction. Weight adjustment occurs in a very simple loop: for each f ,  if Eji matches Hfi, 
the weight w i is increased by setting w i := wi(1 + Ay), where Af is the global feature 
adjustment  rate. A typical value used for Af is 0.2. An increase in weight causes the two 
objects to seem farther apart, and the idea here is that since EACH made a mistake matching 
E and H, it should push them apart in space. If Ef does not match/-/Ji, then w i is decreased 
by setting w i := wi(1 - Af) .  If EACH makes a correct prediction, feature weights are ad- 
justed in exactly the opposite manner; i.e., weights are decreased for features that matched, 
which decreases distance, and increased for those that did not. Recall that each weight 
w i applies uniformly to the entire feature dimension f ,  so adjusting w i will move around 
exemplars everywhere in feature space. Thus this weight must be adjusted gradually, in 
order to avoid oscillation that would result from cancelling the effects of earlier learning. 

3.4. Part i t ioning fea ture  space 

Using a Euclidean distance formula to determine distance essentially partitions the feature 
space between the hyperrectangles. Some analysis of how rectangular exemplars divide 
feature space is presented below (for a more detailed analysis, see (Salzberg, 1989)). With 
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many dimensions and many rectangles (as in the experimental domains used for testing 
EACH), the partitioning is too complex to illustrate here; consequently, the discussion here 
is restricted to two dimensions and two rectangles. It should become clear that the NGE 
representation is equivalent to partitioning a space with many hypersurfaces, where the 
surfaces are not, in general, parallel to the axes--despite the fact that the rectangles them- 
selves are always axis-parallel. 

Figure 4 illustrates how two particular rectangles partition an unweighted feature space. 
The surface S that undulates between the two rectangles is simply the set of all points equidis- 
tant to the two rectangles, where distance is measured to the nearest edge or corner of 
a rectangle. In the center of the figure, for example, the surface is a vertical line segment 
equidistant from two edges of the rectangles. As we trace out the surface, we find it alter- 
nates between straight line segments and parabolic segments (parabolic segments are sets 
of points equidistant to a corner of one rectangle and an edge of the other). The surface 
in the figure has a total of nine segments, alternating straight lines and parabolas, with 
eight junction points where straight segments meet parabolic ones. Every junction is smooth, 
so S has a continuous derivative. Note, however, that the infinite straight line extensions 

Figure 4. The separating surface. 
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at either end of the surface are neither collinear nor parallel. This partitioning of the plane 
is considerably more complex than the partitioning induced by a pair of points or circles. 

EAch also attaches weights to each rectangle, which further complicates the shape of 
the surface. When hyperrectangles are nested, the inner rectangle is simply a sharp-edged 
hole in the outer one, so the distance measure does not come into play. In a domain for 
which EACH creates very closely packed hyperrectangles, it is possible that all new examples 
will fall inside existing hyperrectangles, and the partitioning of feature space will not be 
so important. (The iris flower domain, for example, was structured in this way.) This illus- 
tration should make it easier to compare EACH tO learning algorithms that form different 
types of clusters (e.g., ellipsoids) or that explicitly partition space with hyperplanes. 

3.5. Greedy variant  o f  a lgori thm 

A modification of the basic algorithm was developed in order to maximize the pos t  hoc 

success rate on the training data. (Post hoc success refers to the success rate of the algorithm 
on examples it has already seen.) The idea behind this variant was that by storing more 
exemplars, the program would not only match the training data more closely, but would 
also exhibit superior classification performance on unseen test examples. One of the inter- 
esting results reported below is that storing more examples does not, in general, improve 
performance. This result corresponds to observations of Breiman et al. (1984), Quinlan 
(1986), and many others that overfitting a data set generally hurts performance on new 
data. The modified algorithm differs from EACH in that it always creates a new exemplar 
after making a mistake, as opposed to checking the second closest match and adjusting 
the boundaries of existing exemplars. Because it tends to create more exemplars than the 
original algorithm, and thus to be "greedy" in its use of memory, this version is called 
Greedy EACH. 

The Greedy EAch algorithm was intended to be a compromise between the goal of creating 
a perfect pos t  hoc model and that of creating useful generalizations. The Greedy EACH 
algorithm only creates (or increases the size of) a hyperrectangle when it makes a correct 
prediction. When it makes an incorrect prediction, it automatically stores a new point in 
feature space, without checking the second closest match. A significant implication of this 
rule is that Greedy EACH cannot  create nested hyperrectangles: recall that a rectangle is 
created when two points match and make the same prediction. However, a new example 
ei that falls inside an existing rectangle R will always be measured closer to R than to any 
exception point ej inside the rectangle, even if it is very close to ej. The distance measure 
will find a small positive distance between any two points e i and ej, but a zero distance 
between R and a point e i within R. (It might be possible to modify the measure to allow 
the Greedy algorithm to find a match between g i and ej, but such modifications were not 
tested.) So, although the Greedy algorithm can create exceptions--by storing points within 
a rectangle--it cannot create nested rectangles. 

4. Experimental results with EACH 

The EACH program has tested using real data from three different problem domains: (1) pre- 
dicting the recurrence of breast cancer, (2) classifying iris flowers, and (3) predicting survival 
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for heart attack victims. The use of real data in these tests provided a measure of the system's 
accuracy on noisy and incomplete data sets, and, most importantly, allowed comparisons 
between EACH and other systems. 

Below, each data set is described briefly, followed by a presentation of the experimental 
results. The main results are (1) summaries of EACn's performance rates and (2) summaries 
of the memory requirements. Performance rate is the performance level of the system dur- 
ing a test run, measured as the percentage of correct predictions or classifications. EAch 
is also compared to other learning models that were run on the same data. Different measures 
of performance and experimental designs were necessary on different experiments in order 
to compare EACIJ to previously published results in those cases. 

For all the experiments, EACH was run with the feature adjustment rate ny at 0.0 and 
0.2. ~ Earlier trials using simulated data (Salzberg, 1988) indicate that 0.2 was a good value 
of Af for small data sets (on the order of a few hundred examples), so that value is used 
throughout. The results below also include success rates for Greedy EAch. These different 
results are included to allow comparisons between EAch and Greedy EACH and to test the 
usefulness of feature weights. 

4.1. Breast cancer data 

The first problem domain for EACH is predicting the recurrence of breast cancer. The exam- 
ples consisted of 273 patients who underwent surgery to remove tumors, all of whom were 
followed up five years later. The task for EACH was to predict whether or not breast cancer 
would recur during that five year period. The data set contains nine variables that were 
measured, including both numeric and binary values. The dependent variable was a binary 
prediction: either the patient did suffer a recurrence of cancer, or she did not. 

This data is identical to that used by Michalski, Mozetic, Hong, and Lavrac (1986) in 
a study of the incremental learning algorithm AQIS. EAcn's results are compared with AQ15's 
results in the discussion below. AQ15 is a concept learning program which uses a logic- 
based language to represent the rules it learns. Thus the representations learned by these 
two programs are quite different. (See Buchanan and Mitchell (1978) for a discussion of 
rule-learning algorithms, and Bundy, Silver, and Plummer (1985) for a comparative study.) 
This data set has also been used in a more recent study by Weiss and Kapouleas (1989) 
that compared a large number of different learning and classification algorithms. 

To allow for proper comparisons, the experimental design used was the same as that 
used by Michalski et al. For each trial, the examples were divided into a training set and 
a test set. 70 % of the examples were randomly chosen for each trial to be in the training 
set. Four different trials were run, and the final results are an average of those trials. Weiss 
and Kapouleas (1989) also use this methodology, so the methodology here is consistent 
with both studies. 

In order to make a comparison to human performance, Michalski et al. tested five human 
experts on the same examples. The human prognoses were correct in 64% of the cases. 
Michalski et al. report that random guessing would produce 50 % correct. However, it would 
be unfair not to note that approximately 70% of the patients fell into the non-recurrence 
category. Hence a strategy or predicting the more likely category for every example would 
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give a 70% success rate, although it would be incorrect for all of the cases in which the 
other category was the right response. One must assume that Michalski used a strategy 
of tossing a fair coin to choose a category in order to produce the 50% figure. 

4.1.1. Success rates and comparisons 

The best performance of EACH occurred when feature adjustment was in effect (@ = 0.2 
for this and all subsequent experiments), where the success rate was 77.6%. Table 1 gives 
a summary of EACH'S performance on this data set with different values of Af. AQ15 had 
success rates of 66 %, 66 %, and 68 %, using three different configurations of that program. 
If we take 68 % as the performance rate of AQ15, a t test on EACH'S success rate finds that 
EACH is significantly better, p < .01, than AQ15. The improvement over human experts 
is even more marked. Without using the feature adjustment rate; i.e., setting Af = 0, 
EACH'S Success rate on the test sets was 71.5%, still slightly better than AQ15. Table 1 also 
includes success rates for the decision tree program CART (Breiman et al., 1984), the PVM 
rule (Weiss & Kapouleas, 1989), and a back-propagation neural net model. These three 
results were reported in Weiss and Kapouleas (1989). 

4.1.2. Memory requirements 

The average size of memory after processing the entire data set of 278 patients was just 
22 exemplars. When weight adjustment was not used, the final size of memory was 19 
exemplars, although performance was not quite as good. As expected, Greedy EACH required 
far more memory. These results are summarized in Table 2. 

Table 1. Success rates for breast cancer data. 

Algorithm Success Rate (%) 

EACH, Af = 0.2 77.6 
EACH, Af = 0 71.5 
Greedy EACH 72.9 
AQI5 68 
CART 77.1 
PVM rule 77.1 
Neural net 71.5 
Doctors 64 

Table 2. Memory requirements for breast 
cancer data. 

Algorithm Size of Memory 

EACH, Af = 0.2 22 
EACH, Af = 0 19 
Greedy EACH 68 
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4.1.3. Varying the feature adjustment rate 

Some interesting properties of the algorithm were observed in other tests using the same 
data. In partciular, the effect of the feature adjustment rate, Af, on the success rate was 
very good as long as Af was kept small. With Af = 0.05, for example, the success rate 
was 75 %, still a very good result. If  Af grew too large, though, the weight adjustments 
evidently got out of hand, cancelling the effects of earlier weight adjustments and biasing 
the overall model in the wrong direction. With Af = 0.3, the over-adjustment effect was 
small, but beginning to be noticeable--the system performed at a 72% success rate, better 
than with Af = 0, but not as well as with Af = 0.2. With higher values of Af, success 
rates were lower. 

4.2. Iris classification 

The next task given to EACH was that of classifying a set of 150 iris flowers, using a data 
set from Fisher (1936). Each of the examples consists of four integer-valued variables-- 
making it the smallest vector used in the tests of EACH--plus a known assignment of the 
example to a particular species of iris. The data covered three different species: I. virginica, 
L setosa, and I. versicolor. The four variables measured were sepal length, sepal width, 
petal length, and petal width. 

The methodology used here was the leaving-one-out cross-validation technique. Cross- 
validation involves removing mutually exclusive test sets of examples from the data. For 
each test set, the remaining examples serve as a training set, and classification accuracy 
is measured as the accuracy on all the test sets. The leaving-one-out method involves remov- 
ing exactly one example from the data and training on the remaining examples. The tech- 
nique is repeated for every example in the data set, and the accuracy is measured across 
all examples. For the iris data set, this involved 150 runs through the data. On each run, 
149 examples were used as training, and one example was tested. This methodology was 
the same one used for the identical data set by Weiss and Kapouleas (1989) in their study 
comparing several different learning techniques. 

4. 2.1. Success rates 

With no feature adjustment, EACH made 139 correct classifications, for a success rate of 
92.6%. With feature adjustment set to 0.2, EACH somewhat better, getting 143 classifica- 
tions correct, for a success rate of 95.3 %. These success rates are summarized in Table 3. 
As in the previous section, the PVM rule and a neural net algorithm (back propagation) 
from the Weiss and Kapouleas study (1989) have been included for comparisons. The suc- 
cess rate for CART comes from a study by Crawford (1989). 

The smaller memory size used by EACH with Af = 0 was due in part to the use of a 
smaller seed set (five seeds instead of ten) for that test. Smaller seed sets produced less 
accurate results in the other tests on this data. 
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Table 3. Success rates for iris flowers. 

Algorithm Success Rate (%) Average Memory  Size 

EACH, Af = 0.2 95.3 18.3 

EACH, Af = 0 92.6 6.3 
Greedy EACH 94.6 14.4 

CART 93 - -  

PVM rule 96.0 --  

Neural net 96.7 - -  

4.3. Echocardiogram tests 

The third set of data used to test the EACH program was a set of records from people who 
had recently suffered acute myocardial infarctions (heart attacks). This data set contained 
the smallest number of examples of all sets reported here, but it provided an opportunity 
to compare EACH to another modeling technique, since medical researchers have used a 
statistical regression algorithm on the same data. In addition, this data (like the breast cancer 
data) is real, noisy, and incomplete. It is incomplete in the sense that more variables would 
need to be measured for each patient in order to make perfect predictions. Noise exists 
in several variables for which measurement accuracy is not very precise. For example, the 
"wall motion score" described below is a score determined by a specialist looking at echo- 
cardiograms and grading them subjectively. 

4.3.1. Description of the domain 

First, a brief description of the data itself is necessary, since (unlike the breast cancer data 
and the iris data) it has not been described elsewhere in the literature. Each example is 
a record for a patient who has had a heart attack. The data set includes several measures 
taken from echocardiograms, which are ultrasound measurements of the heart itself. The 
goal of physicians using these measurements is to predict a patient's chances of survival. In 
particular, experimental work is being performed currently to detemine if the echocardiogram 
(in conjunction with other measures) can be used to predict whether or not a patient will 
survive longer than a certain time period; e.g., one year. The data used in these trials were 
provided by a medical researcher who is using a statistical regression model (Cox regres- 
sion) to predict whether patients will live more than one year after a heart attack (Kinney, 
1988). In addition, an earlier study (Kan et al., 1986) used echocardiograms to predict 
the same variable, with similar results. (Kan's study used a different data set containing 
345 patients.) Six input variables were used in the experiments below. A complete descrip- 
tion of the variables used by Kinney (1988) and by EACH can be found in Salzberg (1989). 

Because the prediction was binary, there are two results to report: positive predictive 
accuracy and negative predictive accuracy. These variables are defined as follows: a positive 
prediction is a prediction that a patient will live for more than one year, and a negative 
prediction is a prediction that the patient will die. Positive predictive accuracy is the ratio 
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of the successful positive predictions to all positive predictions (successful and unsuccessful), 
and negative predictive accuracy is the ratio of successful negative predictions to all negative 
predictions. The most interesting results concern negative successes, because it is with 
these that doctors have the most difficulty. The best statistical models are only correct about 
60% of the time in predicting that a patient will die (Kan et al., 1986; Kinney, 1988). 

4. 3. 2. Results 

The data in the tests below include 119 patients. Of these, just three were sufficient as a 
seed set, leaving 116 patients for the learning trials. Table 4 shows, in addition to overall 
success rates, the negative predictive accuracy and positive predictive accuracy for each 
method. An important methodological comment about the studies of Kinney and of Kan 
et al. is that they only recorded how well their statistical models fit the training data. (The 
experiments here used the same data set as Kinney, while the Kan study used a different 
data set.) Unlike the experiments testing machine learning techniques, neither of these ex- 
periments divided the data into a training and a test set. Since the statistical models have 
not been applied to unseen data, the accuracies for these models are a post hoc measure 
of how well each model fits the data. As discussed in Crawford (1989) and in numerous 
places in the statistics literature, such measures systematically overestimate the accuracy 
of a model. In fact, instance based models such as EACH and IB2 (Aha et al., 1990) can 
usually achieve perfect accuracy on data that has previously been seen. The success rates 
reported in Table 4 for EACH, on the other hand, were obtained using the "leaving one 
out" method described in the previous section. 

5. Discussion 

The results on both the breast cancer data and the iris data support the claim that EACH 
compares favorably with other machine learning algorithms. For the breast cancer data, 
EACH matched the performance of the PVM rule (Weiss & Kapouleas, 1989) and of the 
CART algorithm (Breiman et al., 1984), and it surpassed the performance of AQ15 
(Michalski et al., 1986). As mentioned above, a statistical comparison shows that EACH'S 
performance on this data is significantly better (p < .01) than AQ15's. For the iris data, 
EACR performed approximately the same as CART, PVM, and neural nets, using the results 
from Crawford (1989) and Weiss and Kapouleas (1989) as standards for comparison. 

Table 4. Echocardiogram success rates. 

Negative Predictive Positive Predictive Overall Size of 
Accuracy (%) Accuracy (%) Accuracy (%) Memory 

EACH, Af = 0.2 56 79 75 11 

EACH, Af = 0 50 78 71 7 

Greedy EACH 56 80 78 28 

Kinney 60 - -  - -  - -  

Kan et al. 61 97 86 - -  
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The accuracy of  EACH on the echocardiogram data compares favorably with statistical 
models on negative predictive accuracy (the measure of  most interest to doctors using these 
models), but does not perform as well as the model of  Kan et al. on positive accuracy. 
However, as noted above, the Kan study reported only the fit of the model to the training 
data, a number that is virtually always an overestimate of the accuracy on unseen data. 

Feature weights. A second claim supported by the results is that feature weights are an 
important component of EACH'S SUCCESS. The results on all three data sets show that feature 
adjustment does, in general, improve EACH'S performance. Table 5 summarizes the results 
with and without feature weight adjustment on the three test domains. Although the effect 
of feature weights is not large, it appears to be consistent across all the experiments. Exper- 
iments on a simulated domain (reported in Salzberg (1989)) indicated that more rapid weight 
adjustment is useful during the first few hundred examples, hut that smaller values of Af 
perform better when the training set expands to several thousand examples. Additional ex- 
periments need to be run to determine a weight adjustment policy that will apply across 
all domains. 

EACH VS. GREEDY EACH. The third claim that these experiments investigated was that 
EACH would be superior to Greedy EACH on either classification accuracy or memory re- 
quirements, or both. The hypothesis was that the inability of Greedy EACH tO create n e s t e d  

rectangles would reduce its classification accuracy. Furthermore, the nature of  the Greedy 
algorithm leads it to store more examples. The results on this claim are somewhat mixed, 
but generally support the superiority of EACH to Greedy EACH. Table 6 shows comparisons 
on both accuracy and memory requirements for the two algorithms. 

The table shows that EACH performed slightly better on two of the domains and slightly 
worse on the third. There does not seem to be a significant performance difference here. 
In terms of memory requirements, Greedy EACH needed considerably more memory on 
two of the three domains, although it needed slightly less on the iris flowers problem. Since 
both algorithms only store new exemplars when they misclassify an example, the difference 
in memory requirements will be most clear on problems for which classification accuracy 
is not very high. As expected, this difference was clear for the breast cancer and echocar- 
diogram domains, where overall accuracy was in the 70-80% range. 

Table 5. Effect of feature weights on accuracy. 

Breast Cancer Iris Flowers Echocardiogram 

EACH with weights 77.6 95.3 75 
EACH without weights 71.5 92.6 71 

Table 6. EACH vs. Greedy EACH. 

Breast Cancer Iris Flowers Echocardiogram 

Accuracy M e m o r y  Accu racy  M e m o r y  A c c u r a c y  Memory 

EACH 77.2 22 95.3 18 75 11 
Greedy EACH 72.9 68 94.6 14 78 28 
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As explained above, Greedy EACH is unable to create nested hyperrectangles. EACH should 
prove superior for domains in which nested exceptions are the most accurate representa- 
tion of the concept class. The results here demonstrate an advantage in storage efficiency 
for EACH, but no clear advantage in accuracy. The Greedy algorithm even performed slightly 
better (though not significantly) on the echocardiogram problem, which had the fewest 
examples. One conclusion to draw from this result is that as the size of the training set 
increases, the normal, conservative memory policy will outperform the greedy policy. Addi- 
tional experiments are required to further test this hypothesis. 

Memory size and structure. The fourth and final claim was that by storing only a small 
number of hyperrectangles, EACH achieves substantial compression of the training set. To 
evaluate this claim, we can calculate the number of bits required to store the training set 
and the number of bits EACH uses to store its exemplars (plus the number of bits needed 
to store any training examples that are misclassified by EACH). 

We begin by calculating the number of bits required to store each training example. For 
the breast cancer data, each example is described by nine attributes, of which three are 
binary (requiring only one bit each) and the others are real-valued. For all real-valued quan- 
tities, we will assume that 16 bits are required, although this is surely an overestimate. 
Finally, of course, one bit is required to indicate whether the cancer recurred. Hence, to 
store a training example, 3 + 6(16) + 1 = 100 bits are needed. There are 191 training 
examples, so the total number of bits required to store the training set is 19,100. 

Now let us compute the number of bits that EACH uses to store its representation of the 
training set. For the non-binary attributes in an exemplar, EACH stores an upper and lower 
bound. There is also a weight w/4 stored with each exemplar, so the storage required is 
3 + 12(16) + 1 + 16 = 212 bits. Since EACH used 22 exemplars for the breast cancer 
data, its storage requirement for these exemplars was 4664 bits. In addition, a weight w i 
was stored on each feature, requiring another 144 bits for the nine features. Finally, even 
after training, EACH misclassifies 24 of the training examples, so we must add another 
2400 bits to account for the storage that would be needed in order to perform perfectly 
on the training data. Adding these numbers up, we get a total of 7208 bits for EACH. 

Comparing these two quantities, we see that the data compression achieved by EACH was 
better than 2.5 to 1. The compression for the other data sets, although not as impressive, 
was still substantial. These calculations give some indication of how EACH compares to 
models that store every single example (Reed, 1972). (Kibler and Aha (1987, 1989) have used 
such models as benchmarks against which to compare their own exemplar-based models.) 

One useful feature of exemplar based learning is that the user can examine the memory 
after learning, and glean some useful informtion from it. A user can examine the rectangles 
visually (two dimensions at a time) to search for additional properties of the data. For ex- 
ample, for the iris classification task, the program needed very few exemplars to achieve 
its performance. On one trial (Salzberg, 1989), it needed only five exemplars, and still 
achieved over 90% accuracy. Of those five exemplars, three were used for the category 
L virginica, and only one for each of the other two categories, indicating that virginica 
was the most difficult category to define. Figure 5 shows one of the two-dimensional views 
of the rectangles. The figure also illustrates the fact that one of the categories (L setosa) 
was linearly separable from the from the other two. 
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Figure 5. Sepal width vs. petal width for iris flowers. 

Examining the model created by EACH for the echocardiogram data reveals other interest- 
ing characteristics. Using a trial that required 19 exemplars, five of the exemplars were 
found to make a positive prediction, which was the correct prediction for approximately 
three-fourths of the patients. One would expect, then, that these five hyperrectangles would 
be quite large, as in fact they are--the largest one covers 25 % of the entire feature space. 
In essence, these rectangles define the positive prediction as the system's default. 

Of the 14 negative exemplars, seven are simple points; i.e., they were never made into 
hyperrectangles. Each of the other seven points was used successfully in a prediction, and 
thus was expanded into a hyperrectangle. The generalization that the system learned could 
be characterized as a disjunct of these fourteen exemplars, and the exemplars could be shown 
to doctors as descriptions of patients who are unlikely to survive longer than one year. 
For example, Figure 6 shows an exemplar created by EACh that predicts that the patient 
will not survive beyond one year. This exemplar indicates that if the patient's age is between 
62 and 85 and pericardial effusion exists, and the other variables fall into the ranges shown, 
then the prediction is that the patient will die within one year. The weight indicates that 
this exemplar has made correct predictions in 55.6% of the cases in which it has been used. 

f l :  Age at t ime of  hear t  a t t a c k :  (62 85) 

f2:  P e r i c a r d i a l  e f f u s i o n :  T 
f3:  F r a c t i o n a l  s h o r t e n i n g  (0.07 0.26)  

f4:  E - p o i n t  sep ta l  s e p a r a t i o n  (8.5 20) 
f5:  Le f t  v e n t r i c u l a r  e n d - d i a s t o l i c  d imens ion (4.65 5.47) 
f6:  Wall mot ion  index (1.38 2.25)  

P r e d i c t i o n :  NIL 
Weight:  .556 

Figure 6. Exemplar created from echocardiogram data. 
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6. Conclusion 

The experiments presented above demonstrate that an exemplar-based learning model that 
constructs hyperrectangles can learn effectively in a diverse set of domains. The EACH system 
presented here displayed robustness in the face of noise and incomplete data. Comparisons 
with experts' performance in the breast cancer domain were quite favorable, with the pro- 
gram performing significantly better than the experts. 

One of the strengths of the exemplar-based learning model is the simplicity of both the 
algorithm and the representation it creates. In its barest form, the exemplar model says 
to store every example as a single point and to predict new points based on simple Euclidean 
distance to old points. Nested Generalized Exemplar theory retains some elements of this 
basic model, but it makes some significant modifications. The most important feature of 
the NGE model is the construction of axis-parallel rectangles--hyperrectangles--and the 
nesting of exceptions within these rectangles. 

The generalization process is also an important component of Nested Generalized Exem- 
plar theory. The generalization rule that EACH uses is to increase the size of a hyperrec- 
tangle whenever it makes a correct prediction for a new point lying outside its boundaries. 
The use of generalization in what is essentially an exemplar-based method points out the 
strong similarity between exemplar-based learning and DNF-based methods such as those 
of Quinlan (1986) and Michalski et al. (1986). One of the main distinctions between the 
methods is that exemplar-based methods can correctly classify an example that is not matched 
by any exemplar. EACH embodies this ability while still making generalizations whenever 
possible. 

Another important feature of the NGE learning model is the fact that the hyperrectangles 
can be easily interpreted, when presented in a form such as Figure 5 or Figure 6, by domain 
experts. This perspicuity is essential for any learning system that might be used by humans 
as a decision making tool. 

Another important issue for NGE is the use of weights in the distance metric. The results 
above indicate that performance is improved by adjusting the weights on features. The weights 
on the rectangles themselves are included in the model in order to increase the tolerance 
for noise. Although the experiments here did not systematically test the usefulness of these 
weights, Aha and Kibler (1989) have recently created a noise-tolerant version of their 
instance-based algorithm which uses a factor very similar to EAcR's weight factor. Their 
algorithm keeps track, for each exemplar, of the percentage of the time an exemplar is 
used to make a correct prediction. EACH tracks the same statistic. If the percentages fall 
below a certain threshold, Aha and Kibler assume the point represents noise and erase 
it from memory. Their experiments have yielded positive results with respect to their weight 
factor. Unlike their program, EACH never erases an exemplar, but the weight factor makes 
poor exemplars less and less likely to be used by the program. 

The theoretical results of Helmbold, Sloan, and Warmuth (1989) nicely complement the 
experimental model presented here. Although their algorithm includes many restrictions 
that prevent direct comparisons with NGE, they are working on more general proofs that 
may remove some of these restrictions. For example, they are working on a proof of an 
algorithm that allows many distinct sets of nested hyperrectangles, instead of just one 
(Warmuth, 1989). 
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As long as we lack proofs of the correctness or optimality of any machine learning algo- 
rithm, we will, and should, continue to explore many alternatives. The EACH algorithm 
represents an alternative that is simple to implement and undemanding of computer memory, 
yet produces accurate classification models. As with other learning programs, the best sup- 
port for this one lies in its successful application to real data sets. The results described 
here provide an encouraging basis for further work and extensions to the NGE algorithm. 
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Notes 

1. Setting A t- to 0.0 is equivalent to not using feature weights. 

Appendix 

The pseudocode shown below presents an overview of the EACH algorithm. Some details 
described in the text of the paper have been omitted for the sake of brevity. Procedures 
that simply search data structures have also been omitted. 

b e g i n  
N u m b e r _ o f _ s e e d s  := 10; 
f o r  i f r om  1 t o  number  o f _ s e e d s  do 

S t o r e _ i n _ r n e m o r y ( r e a d _ o n e _ e x a m p l e ) ;  
/ *  B e g i n  ma in  l o o p  * /  
p r i n t ( ' ' D o  you  wan t  t o  p r o c e s s  a n o t h e r  
r e a d ( a n s w e r )  

i f  ( a n s w e r  = ' ' y e s ' ' )  t h e n  
b e g i n  

e i := ( r e a d _ o n e _ e x a m p l e ) ;  
p r o c e s s _ n e x t _ e x a m p l e ( e l ) ;  

end ;  
end .  

/ *  S i z e  o f  seed s e t  * /  

e x a m p l e ? ' ' ) ;  

/ *  t h e  p r o c e d u r e  p r o c e s s _ n e x t _ e x a m p l e  does  a l l  o f  t h e  p r o c e s s i n g  
f o r  a s i n g l e  e x a m p l e  * /  

p r o c e d u r e  p r o c e s s n e x t _ e x a m p l e ( e _ i ) ;  
b e g i n  

/ *  f i n d  t h e  two  c l o s e s t  m a t c h e s  t o  t h e  new example * /  
M1 := f i n d _ c l o s e s t _ e x e m p l a r ( e _ i , * g l o b a l  m e m o r y * ) ;  
M2 := f ind_second_closest_exemplar(e_i ,*g lobal_memory*) ;  



274 s. SALZBERG 

/ *  p r e d i c t i o n s  a r e  s t o r e d  w i t h  e x e m p l a r s  * /  
P1 := g e t _ p r e d i c t i o n ( M r ) ;  
P2 := g e t _ p r e d i c t i o n ( M 2 ) ;  

/~  t h e  new e x a m p l e  has i t s  r e s u l t  s t o r e d  w i t h  i t  ~ /  
r e s u l t  := g e t _ r e s u l t ( e _ i ) ;  

end. 

i f  (P1 = r e s u l t )  t h e n  
b e g i n  

a d j u s t _ w e i g h t _ f o r _ s u c c e s s ( M 1 )  
g e n e r a l i z e _ e x e m p l a r ( M l , e  i ) ;  

end 
e l s e  

b e g i n  
a d j u s t _ w e i g h t _ f o r _ f a i l u r e ( M 1 )  
i f  (P2 = r e s u l t )  t h e n  

b e g i n  
a d j u s t _ w e i g h t  f o r _ s u c c e s s ( M 2 )  
g e n e r a l i z e _ e x e m p l a r ( M 2 , e  i ) ;  

end ;  
e l s e  

b e g i n  

a d j u s t _ w e i g h t _ f o r _ f a i l u r e ( M 2 )  

/~  s t o r e  t h e  e x a m p l e  as a new e x e m p l a r  * /  
s t o r e _ i n _ m e m o r y ( e _ i ) ;  
a d j u s t _ f e a t u r e _ w e i g h t s ( e _ l , M 1 ) ;  

end ;  
end ;  

/ *  p r o c e s s _ n e x t _ e x a m p l e  * /  

/ *  The p r o c e d u r e  g e n e r a l i z e _ e x a m p l a r  e x t e n d s  a h y p e r r e c t a n g l e  H j u s t  
f a r  enough  t o  i n c l u d e  a new e x a m p l e  e,  w h e r e  e s a p o i n t .  T h i s  
p r o c e d u r e  can a l s o  h a n d l e  t h e  case  w h e r e  H is  a 3 o i n t .  I have  
o m i t t e d  d e t a i l s  o f  s u b - p r o c e d u r e s .  ~ /  

p r o c e d u r e  g e n e r a l i z e _ e x e m p l a r ( H , e ) ;  
b e g i n  

f o r  i f r o m  1 t o  * n u m b e r _ o f _ f e a t u r e s *  do 
b e i n g  
/ *  f e a t u r e ( i , X )  r e t u r n s  t h e  v a l u e  o f  f e a t u r e  on f o r  

X, w h e r e  X is  e i t h e r  a p o i n t  o r  a r e c t a n g  e.  
The v a l u e  o f  f e a t u r e  i may be e i t h e r  a number o r  an 
i n t e r v a l ,  l o w e r _ e n d  and u p p e r  end r e t u r n  p o i n t e r s  
t o  t h e  l o w e r  and u p p e r  v a l u e s  o f  an i n t e r v a l  ~ /  

i f  f e a t u r e ( i , e )  < I o w e r _ e n d ( f e a t u r e ( i , H ) )  
t h e n  I o w e r _ e n d ( f e a t u r e ( i , H ) )  := f e a t u r e ( i , e )  
e l s e  i f  f e a t u r e ( i , e )  > u p p e r _ e n d ( f e a t u r e ( i , H ) )  

t h e n  u p p e r _ e n d ( f e a t u r e ( i , H )  := f e a t u r e ( i , e )  ; 
end ;  

end .  / *  g e n e r a l i z e _ e x e m p l a r  * /  
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