
Machine Learning, 22, 283-290 (1996)
O 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Technical Note

Incremental Multi-Step Q-Learning
JING PENG
College of Engineering, University of California, Riverside, CA 92521

RONALD J. WILLIAMS
College of Computer Science, Northeastern University, Boston, MA 02115

jp @vislab.uer.edu

rjw@ccs.neu.edu

Editor: Leslie Pack Kaelbling

Abstract. This paper presents a novel incremental algorithm that combines Q-learning, a well-known dynamic-
programming based reinforcement learning method, with the TD(A) return estimation process, which is typically
used in actor-critic learning, another well-known dynamic-programming based reinforcement learning method.
The parameter A is used to distribute credit throughout sequences of actions, leading to faster learning and
also helping to alleviate the non-Markovian effect of coarse state-space quantization. The resulting algorithm,
Q(A)-learning, thus combines some of the best features of the Q-learning and actor-critic learning paradigms.
The behavior of this algorithm has been demonstrated through computer simulations.

Keywords: reinforcement learning, temporal difference learning

1. Introduction

The incremental multi-step Q-learning (Q(A)-learning) method is a new direct (or model-
free) algorithm that extends the one-step Q-learning algorithm (Watkins, 1989) by com-
bining it with TD(A) returns for general A (Sutton, 1988) in a natural way for delayed
reinforcement learning. By al lowing corrections to be made incrementally to the predic-
tions of observations occurring in the past, the Q(A)-learning method propagates infor-
mation rapidly to where it is important. The Q(A)-learning algorithm works significantly
better than the one-step Q-learning algorithm on a number of tasks and its basis in the
integration of one-step Q-learning and TD(A) returns makes it possible to take advan-
tage of some of the best features of the Q-learning and actor-critic learning paradigms
and to be a potential bridge between them. It can also serve as a basis for developing
various multiple t ime-scale learning mechanisms that are essential for applications of
reinforcement learning to real world problems.

2. TD(A) Re tu rn s

Direct dynamic-programming based reinforcement learning algorithms are based on up-
dating state values or state-action values according to state transitions as they are experi-
enced. Each such update is in turn based on the use of a particular choice of estimator for
the value being updated, which spells out differences among various learning methods.

284 J . P E N G A N D R . J . W I L L I A M S

This section describes an important and computationally useful class of such estimators
- the TD(A) estimators (Sutton, 1988; Watkins, 1989).

Let the world state at time step t be xt , and assume that the learning system then
chooses action at. The immediate result is that a reward rt is received by the learner
and the world undergoes a transition to the next state, Xt+l. The objective of the learner is
to choose actions maximizing discounted cumulative rewards over time. More precisely,
let 7 be a specified discount factor in [0, 1). The total discounted return (or simply
return) received by the learner starting at time t is given by

r t = r t + ~/Tt+l ~- ~ 2 T t + 2 Jr- " " " ~- ~[nTt+n -]- " " • •

The objective is to find a policy 7r, or rule for selecting actions, so that the expected
value of the return is maximized. It is sufficient to restrict attention to policies that select
actions based only on the current state (called stationary policies). For any such policy
7r and for any state x we define

VW(x) = E[r0[xo = x, ai = ;v(xi) for all i > 01,

the expected total discounted return received when starting in state x and following
policy ;r thereafter. If ;r is an optimal policy we also use the notation V* for V ~r. Many
dynamic-programming-based reinforcement learning methods involve trying to estimate
the state values V * (x) or V ~ (x) for a fixed policy ;r.

An important class of methods for estimating V" for a given policy 7r is the TD(A)
estimators, which have been investigated by Sutton (1988) and later by Watkins (1989).

Following Watkins' notation, let r~ n) denote the corrected n-step truncated return for
time t, given by

n ^ T r
r~ n) = r t + 7rt+l + "{2rt+2 + " " + " ~ n - l r t + n - 1 ~- ~ Y t + n (X t + n) (l)

where Vt ~ is the estimate of V ~ at time t. If $?~ were equal to V ~, then the corrected
truncated returns would be unbiased estimators of V ~. Watkins (Watkins, 1989) shows
that corrected truncated returns have the error-reduction property in that the expected
value of the corrected truncated return is closer to V ~ than T/~ is.

Then Sutton's TD(A) return from time t is

r f = (1 - A)[r~ 1) + Ar~ 2) + A2r~ 3) + . . .]

= rt + 7(1 - A)Q[r(xt+l) + 7A[rt+l + 7(1 -)k)T~t;x(Xt+2) ~ - ' " "]

= r t + 7(1 -)k)Tlft~(Xt+l) - F ~ / ~ r t A + l . (2)

The TD(0) return is just r t ° = rt + y ~ (X t + l) and the TD(1) return is

r~ = rt + "yr t+l + " / 2 r t + 2 Jr- - "

which is the exact actual return. Watkins (1989) argues that, in a Markov decision
problem, the choice of A is a trade-off between bias and variance. Sutton's empirical
demonstration (Sutton, 1988) favors intermediate values of A that are closer to O. More

INCREMENTAL MULTI-STEP Q-LEARNING 285

recent analysis (Sutton & Singh, 1994) suggests that in certain prediction tasks near
optimal performance can be achieved by setting A at each time step to the transition
probability of the immediately preceding transitions. For further details, see (Sutton,
1988; Sutton & Singh, 1994; Watkins, 1989).

3. One-Step Q-Learning

One-step Q-learning of Watkins (1989), or simply Q-learning, is a simple incremental
algorithm developed from the theory of dynamic programming (Ross, 1983) for delayed
reinforcement learning. In Q-learning, policies and the value function are represented by
a two-dimensional lookup table indexed by state-action pairs. Formally, using notation
consistent with that of the previous section, for each state x and action a let

Q*(x, a) = R(x, a) + ~/ ~ Pxy(a)V* (y)
Y

(3)

where R(x, a) = E{rolxo = x, a0 = a}, and Pzy(a) is the probability of reaching state
y as a result of taking action a in state x. It follows that V*(x) = maxa Q*(x, a).

Intuitively, Equation (3) says that the state-action value, Q*(x, a), is the expected
total discounted return resulting from taking action a in state x and continuing with the
optimal policy thereafter. More generally, the Q function can be defined with respect to
an arbitrary policy ~r as Q~ (x, a) = R(x, a) + 3' ~ y Pxy (a) VTr (y) and Q* is just Q~ for
an optimal policy zr.

The Q-learning algorithm works by maintaining an estimate of the Q* function, which
we denote by Q*, and adjusting Q* values (often just called Q-values) based on actions
taken and reward received. This is done using Sutton's prediction difference, or TD error
(Sutton, 1988)-the difference between the immediate reward received plus the discounted
value of the next state and the Q-value of the current state-action pair:

r + v g * (v) - ©*(x , a)

where r is the immediate reward, y is the next state resulting from taking action a in
state x, and l)* (x) = maxa ~)* (x, a). Then the values of Q* are adjusted according to

Q*(x, a) = (1 - c~)Q*(x, a) + c~(r + 7rV*(y)) (4)

where c~ c (0, 1] is a learning rate parameter. In terms of the notation described in the
previous section, Equation (4) may be rewritten as

& (x , a) = (a - ~) Q * (x , a) + ~ r ° (5)

That is, the Q-learning method uses TD(0) as its estimator of expected returns. Note
that the current estimate of the Q* function implicitly defines a greedy policy by 7r(x) =
argmaxa Q*(z, a). That is, the greedy policy is to select actions with the largest esti-
mated Q-value.

286 J. PENG AND R.J. WILLIAMS

It is important to note that the one-step Q-learning method does not specify what actions
the agent should take at each state as it updates its estimates. In fact, the agent may take
whatever actions it pleases. This means that Q-learning allows arbitrary experimentation
while at the same time preserving the current best estimate of states' values. Furthermore,
since this function is updated according to the ostensibly optimal choice of action at the
following state, it does not matter what action is actually followed at that state. For this
reason, Q-learning is not experimentation-sensitive. On the other hand, because actor-
critic learning updates the state value at any state based on the actual action selected, not
on what would have been the optimal choice of action, it is experimentation-sensitive.

To find the optimal Q function eventually, however, the agent must try out each action
in every state many times. It has been shown (Watkins, 1989; Watkins & Dayan, 1992)
that if Equation (4) is repeatedly applied to all state-action pairs in any order in which
each state-action pair's Q-value is updated infinitely often, then (~* will converge to Q*
and V* will converge to V* with probability 1 as long as c~ is reduced to 0 at a suitable
rate.

Finally, Watkins (1989) has also described possible extensions to the one-step Q-
learning method by using different value estimators, such as r)~ for 0 < A < 1, and
he has illustrated the use of r ;~ returns in Q-learning in his empirical demonstrations by
memorizing past experiences and calculating these returns at the end of each learning
period, where a learning period specifies the number of experiences occurring in the past
the agent needs to store. The following section derives a novel algorithm that enables
the value estimation process to be done incrementally.

4. Q(A)-Learning

This section derives the Q(/k)-learning algorithm combining TD()9 returns for general)~
with Q-learning in an incremental way. Note that in terms of the notation introduced
here, one-step Q-learning is simply Q(0)-learning, making it a special case.

For simplicity, in what follows we drop the superscript 7r in V ~ and assume that the
given policy 7r is the agent's greedy policy. Now let

e t = r t + " ~ (X t + l) - ~ r t (X t) (6)

and

e't = r , + - a ,) (7)

where V(x) = maXa (~(x, a). Then, if we use Equation (7) for one step and Equation
(6) thereafter, the difference between the TD(/~) return of Equation (2) and the estimated
Q-value can be written as

r~ - (~t(xt , at) = e' t + 7)~et+l + 72/~2et+2 + " "
(x)

+ - (x , + n)] . (8)

r~=l

INCREMENTAL MULTI-STEP Q-LEARNING 287

If the learning rate is small, so that Q is adjusted slowly, then the second summation
on the right-hand side of the above equation will be small.

The Q(A)-learning algorithm is summarized in Figure 1, where T r (x , a) is the "activ-
ity" trace of state-action pair (x, a), corresponding to the "eligibility" trace as described
in (Barto, Sutton & Anderson, 1983).

The main difficulty associated with Q(A)-learning in a Markov decision process is that
rewards received after a non-greedy action cannot be used to evaluate the agent's greedy
policy since this will not be the policy that was actually followed. In other words, Q(A)-
learning is experimentation-sensitive, assuming that A > 0 is fixed. One way around this
difficulty is to zero A on each step that a non-greedy action is taken. However, as argued
in (Rununery & Niranjan, 1994), zeroing the effect of subsequent rewards on those prior
to a non-greedy action is likely to be more of a hindrance than a help in converging to
optimal policies since max~ Q(x , a) may not provide the best estimate of the value of
the state x.

Still another difficulty is that changes in O at each time step may affect r ;~, which will
in turn affect (~, and so on. However, these effects may not be significant for small
since they are proportional to c~ 2 (Peng, 1993).

At each time step, the Q(A)-learning algorithm loops through a set of state-action pairs
which grow linearly with time. In the worst case, this set could be the entire state-action
space. However, the number of state-action pairs for which actual updating is required
can be kept at a manageable level by maintaining only those state-action pairs whose
activity trace (3,A) '~ is significant, since this quantity declines exponentially when "yA < 1.
For a more elaborate procedure see Cichosz & Mulawka (1995). Another approach is to

1. (~(x,a) = 0 and T r (x , a) = 0 for all x and a

2. Do Forever:

(A) xt ~ the current state

(B) Choose an action at according to current exploration policy

(C) Carry out action at in the world. Let the short-term reward be rt, and
the new state be Xt+l

(D) e~ = rt + 7 ~ (x t + l) - Q t (x t , a t)

(E) et = rt + ~/~Zt(xt+l) - G(x~)

(F) For each state-action pair (x, a) do

• T r (x , a) = "yATr(x ,a)

• 0 , + l (x , a) = 0 , (z , a) +
(G) Ot+l(:T , t ,a t) = Qtq_l(xt,at) ~- o~e~

(H) T r (x t , at) = T r (x t , at) + 1

Figure 1. The Q()0-Leaming Algorithm.

288 J. PENG AND R.J. WILLIAMS

implement a Q(A)-learning system on a parallel machine in which each state-action pair is
mapped onto a separate processor. This corresponds directly to the kind of neural network
implementation first envisioned for the actor-critic approach (Barto, Sutton & Anderson,
1983).

Finally, it is interesting to note that both Q(A)-learning and actor-critic learning use
TD(A) returns as their value estimators through a trace mechanism. Therefore, it seems
reasonable to expect the Q(A)-learning algorithm to exhibit benefiziO performance char-
acteristics attributable to the use of TD(A) returns for A > 0, as illustrated in (Barto, Sut-
ton & Anderson, 1983; Sutton, 1988). At the same time, both Q(A)-learning and one-step
Q-learning construct a value function on the state-action space rather than just the state
space, making them both capable of discriminating between the effects of choosing differ-
ent actions in each state. Thus, while Q(A)-learning is experimentation-sensitive, unlike
one-step Q-learning, it seems reasonable to expect it to be less so than actor-critic learn-
ing. Overall, then, Q(A)-learning appears to incorporate some of the best features of the
Q-learning and actor-critic learning paradigms into a single mechanism. Furthermore, it
can be viewed as a potential bridge between them.

5. Discussion

This paper has only examined the Q(A)-learning algorithm in which the TD(A) returns
are computed by taking the maximum Q values at each state visited. There are other
possibilities, however. For example, the algorithm may estimate the TD(A) returns by
using the current exploration policy. This is the algorithm, called sarsa, described in
(Rummery & Niranjan, 1994). In this algorithm, the update rule is

t

k=O

(9)

where w denotes the weights of connectionist networks, and Qt+l is associated with the
action selected. In terms of Q(A) learning, the right hand side of Equations (2D) and
(2E) in Figure 1 would be replaced by

It is demonstrated (Rummery & Niranjan, 1994) that the overall performance of Q(A)
learning, including sarsa, shows less sensitivity to the choice of training parameters and
exhibits more robust behavior than standard Q learning. See also (Pendrith, 1994).

Experiments involving both Markovian and non-Markovian tasks, whose details we
omit here, were carried out to validate the efficacy of the Q(A)-learning algorithm.
The results showed that Q(A)-learning outperformed both actor-critic learning and one-
step Q-learning on all the experiments. The significant performance improvement of
the Q(A)-learning system over the simple Q-learning system (including the case where
the Q-learner was given the experiences of the Q(A)-learner) is clearly due to the use
of the TD(A) return estimation process, which has the effect of making alterations to

INCREMENTAL MULTI-STEP Q-LEARNING 289

past predictions throughout each trial. If this is the main benefit conferred by TD(A),
one might expect model-based, multiple-update methods like priority-Dyna (Peng, 1993;
Peng & Williams, 1993; Moore & Atkeson, 1994), to perform at least as well. However,
additional experiments using such techniques showed that they performed significantly
worse than Q(A)-learning. We believe the reason for this is that the coarse state-space
quantization used here has the effect of making the environment non-Markovian, and
increasing A makes TD(A) less sensitive to this non-Markovian effect. Pendrith (1994)
made a similar argument on a related algorithm.

It should be noted that both the fixed period learning process of Watkins (1989) for
sufficiently long learning periods and the experience-replay process of Lin (1992) produce
similar beneficial effects as that of Q(A)-learning. However, both of these approaches
operate in "batch" mode in that they replay, backwards, the memorized sequence of
experiences that the learning agent has recently had.

From a computational standpoint, the incrementality of Q(A)-leaming makes it more
attractive than Watkins' batch mode learning and Lin's experience replay process since
the computation can be distributed over time more evenly, and thus under many cir-
cumstances can ease overall demands on the memory and speed. Similar arguments are
made in (Sutton, 1988). Furthermore, incrementality speeds up learning. In one exper-
iment where off-line Q(A) learning was applied to experiences of its own and to those
of on-line Q(A) learning, it was found that the results of off-line Q(A) learning in both
cases were much worse than those obtained using on-line Q(A) learning. One additional
attractive characteristic of the Q(A)-learning method is that it achieves greater compu-
tational efficiency without having to learn and use a model of the world (Peng, 1993;
Peng & Williams, 1993; Sutton, 1990) and is well suited to parallel implementation.

Finally, although look-up table representation has been our main focus so far, it can be
shown without difficulty that Q(A) learning can be implemented on-line using connec-
tionist networks, as is done in (Rummery & Niranjan, 1994).

6. Conclusion

The Q(A)-learning algorithm is of interest because of its incrementality and its relationship
to Q-learning (Watkins, 1989) and actor-critic learning (Barto, Sutton & Anderson, 1983).
However, this algorithm, unlike the one-step Q-learning algorithm, cannot be expected
to converge to the correct Q* values under an arbitrary policy that tries every action
in every state (although the obvious strategies of gradually reducing ~ or gradually
turning down the Boltzmann temperature as learning proceeds would probably allow such
convergence). In spite of this, the Q(X)-learning algorithm has always outperformed the
one-step Q-learning algorithm on all the problems we have experimented with so far.

It is clear that in continuous-time systems, or even systems where time is discrete but
very fine-grained, the use of algorithms that propagate information back one step at a
time can make no sense or at least be of little value. In these cases the use of TD(A)
methods is not a luxury but a necessity. In general, A can be viewed as a time scale
parameter in such situations, and we argue that better understanding of its use in this
regard is an important area for future research.

290 J. PENG AND R.J. WILLIAMS

Acknowledgments

W e wish to t h a n k R i c h Su t ton for h is m a n y va luab le sugges t ions and c o n t i n u i n g encour -

agemen t . W e would also l ike to t h a n k the r ev iewers of the pape r for the i r ins igh t fu l

c o m m e n t s and sugges t ions . Th i s w o r k was suppor t ed by G r a n t I R I - 8 9 2 1 2 7 5 f r o m the

Na t iona l Sc ience F o u n d a t i o n .

References

Barto, A. G., Sutton, R. S. & Anderson, C. W. (1983). Neuronlike elements that can solve difficult learning
control problems. 1EEE Transactions on Systems, Man, and Cybernetics 13:835-846.

Cichosz, P. & Mulawka, J. J. (1995). Fast and efficient reinforcement learning with truncated temporal
differences. Proceedings of the Twelfth International Conference on Machine Learning, 99-107.

Lin, L. J. (1992). Reinforcement learning for robots using neural networks. Ph.D. Dissertation, Carnegie
Mellon University, PA.

Moore, A. W. & Atkeson, C. G. (1994). Prioritized sweeping: reinforcement learning with less data and less
time. Machine Learning 13(1):103-130.

Pendrith, M. (1994). On reinforcement learning of control actions in noisy and non-Markovian domains.
UNSW-CSE-TR-9410, University of New South Wales, Australia.

Peng, J. (1993). Efficient Dynamic Programming-Based Learning for Control. Ph.D. Dissertation, Northeastern
University, Boston, MA 02115.

Peng, J. & Williams, R. J. (1993). Efficient learning and planning within the Dyna framework. Adaptive
Behavior 1(4):437-454.

Ross, S. (1983). Introduction to Stochastic Dynamic Programming. New York, Academic Press.
Rummery, G. A. & Niranjan, M. (1994). On-line Q-learning using connectionist systems. CUED/F-INFENG/TR

166, Cambridge University, UK.
Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, 216-
224.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning 3:9-44.
Sutton, R S & Singh, S. P. (1994). On step-size and bias in temporal-difference learning. In Eighth Yale

Workshop on adaptive and Learning Systems, pages 91-96, New Haven, CT.
Watkins, C. J. C. H. & Dayan, P. (1992). Q-learning. Machine Learning 8:279-292.
Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. Dissertation, King's College, UK.

Received November 2, 1994
Accepted March 10, 1995
Final Manuscript October 4, 1995

