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Abstract. A number of experimental evaluations of explanation-based learning (EBL) have been reported in the 
literature on machine learning. A close examination of the design of these experiments reveals certain methodological 
problems that could affect the conclusions drawn from the experiments. This article analyzes some of the more 
common methodological difficulties, and illustrates them using selected previous studies. 

Keywords. Explanation-based learning, speedup learning, performance measures 

I. Introduction 

A number of experimental evaluations of explanation-based learning (EBL) (DeJong & 
Mooney, 1986; Mitchell, et al., 1986) have appeared in the machine learning literature 
(Eskey & Zweben, 1990; Etzioni, 1990; Knoblock, 1990; Markovitch & Scott, 1988; Minton, 
1990; Mooney, 1989; O'Rorke, 1989; Shavlik, 1990; Tambe & Newell, 1988). These studies 
measure the performance of a learning system against the performance of a similar non- 
learning system. Performance is improved if the learning system can solve more problems 
or if similar problems are solvable after learning more efficiently than before learning. 
Often performance is improved in both ways. 

How much can conclusions based on experimental observations be trusted? In principle, 
when the relevant conditions of an experiment are replicated, similar results should be 
observed. In practice, our confidence depends on how carefully the experiment is designed-- 
in short, our confidence depends on sound experimental methodology. Close examination 
of experimental designs used in the past reveals certain methodological problems that can 
introduce unwanted experimental bias. 

The general idea behind EBL is to use traces of previous problem solving activity to 
alter the search space explored when solving future problems. In some systems (e.g., ARMS 
(Segre, 1988), GENESIS (Mooney, 1990), and BAGGER (Shavlik, 1990)), EBL is used 
to acquire problem space macro-operators that alter the search space by compressing gener- 
alizations of previously useful subproofs into more efficiently applicable proof idioms. In 
these systems EBL is essentially adding redundant operators which, when integrated with 
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the existing operators, bias the exploration of the search space. Acquired macro-operators 
may lead to quick solutions, but in some circumstances an acquired macro-operator may 
delay the discovery of a goal node. 

Other EBL systems (e.g., LEX2 (Mitchell, et al., 1983) and PRODIGY (Minton, 1990)) 
acquire heuristics for controlling the application of existing problem space operators. 1 These 
heuristics typically alter the ordering in which alternative choices are attempted. Some 
heuristics may reject certain operators outright, while others may select a particular operator 
as especially suitable in the current situation, implicitly downgrading all other applicable 
operators. As in the macro-operator systems, while search-control heuristics should con- 
tribute to a quicker solution of a future goal, the cost of evaluating the heuristics can slow 
down the search instead. 

Experimental evaluations of EBL attempt to draw conclusions about changes in the per- 
formance of a problem solving system by measuring a predefined performance metric over 
several trials. Each trial consists of solving selected problems using a different version 
of the system. The objective of any experiment of this type is to produce results that can 
be used to predict the future behavior of the different versions of the system. The purpose 
of this paper is to discuss some of the more common methodological difficulties that can 
limit the usefulness of the experimental results. 

2. Resource limit bias 

Past reports on EBL experiments commonly conclude that the utility problem is significant 
(Minton, 1990; Mooney, 1989; Tambe & Newell, 1988). This problem is that the addition 
of an EBL component can impose a performance penalty on a problem solver. Inspired 
by experimental results, the utility problem has also been studied using analytic models 
(Greiner & Likuski, 1989). 

Questions other than the utility problem can also be addressed experimentally. In partic- 
ular, experiments have compared different generalization strategies (O'Rorke, 1989), proto- 
cols for when to apply learning and how to use learned knowledge (Mooney, 1989), methods 
for learning recursive concepts (Etzioni, 1990; Shavlik, 1990; Subramanian & Feldman, 
1990), the effectiveness of abstraction hierarchies in problem solving (Knoblock, 1990), 
and whether learned knowledge should eventually be overwritten or discarded (Markovitch 
& Scott, 1988). 

Traditional EBL cannot endow a problem solver with new domain knowledge. Rather, 
EBL improves a problem solver's performance by modifying how the search space implic- 
itly defined by the existing domain knowledge is explored. EBL adapts a problem solver 
to a particular distribution of problems, reducing the time needed to solve problems similar 
to those in the training set. If the problem solver is already capable of solving most prob- 
lems presented to it, then EBL can make it faster. If the resource limit imposed on the 
problem solver--whether explicit or implicit--is too low to allow most problems to be solved 
initially, then EBL can increase the range of soluble problems. Regardless of which type 
of performance improvement is being tested, the manner in which a resource bound is 
imposed on a problem solver can adversely influence the reliability of experimental 
conclusions. 
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2.1. Setting resource limits 

Consider a hypothetical experiment comparing two versions of the same problem solver, 
where the second version is augmented with an EBL component. The experiment meters 
the performance of the two problem solvers on the same sequence of five problems over 
two trials. For each attempt at each problem, we record whether or not the problem is 
solved and if so, the time to obtain a solution. No learning takes place in the first trial; 
it is used as a baseline. In the second trial, the problem solver is allowed to apply its EBL 
component to each successful solution--the newly acquired knowledge is then available 
to the problem solver when solving subsequent problems in the sequence. 

In this hypothetical experiment, suppose we impose a resource limit of one CPU second 
per problem on the problem solver and obtain the data shown in Table 1. 2 It is an experi- 
menter's responsibility to summarize data (perhaps through the use of graphs or charts) 
in a way that generates understanding that can be carried over to the design of similar systems. 
Unfortunately, some of the analysis techniques used in previous experiments do not lead 
to results that can be reliably extrapolated. The following replication of some previous anal- 
yses taken from the machine learning literature shows how it is possible to reach unfounded 
conclusions about the utility problem. 

The simplest way to summarize the data in Table 1 is to sum the amount of time used 
by each system for all five problems. The non-learning system consumes 2.5 CPU seconds, 
while the EBL system requires 2.975 CPU seconds. By this measure, using EBL entails 
a 19 % performance penalty. We might even plot cumulative solution time against problem 
number as shown in Figure 1. 

Table 1. Experiment 1. 

Problem 1 2 3 4 5 Total 

No Learning 100 200 300 900 (1000) 2500 
EBL 100 275 600 (1000) (1000) 2975 

All values are CPU-milliseconds; parentheses indicate unsolved problems. 
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Figure 1. Cumulative time to solution. 
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Table 2. Experiment 2. 

Problem 1 2 3 4 5 Total 

No Learning 100 200 300 900 (1500) 3000 
EBL 100 275 600 (1500) 1001 3476 

All values are CPU-milliseconds; parentheses indicate unsolved problems. 

Table 3. Experiment 3. 

Problem 1 2 3 4 5 Total 

No Learning 100 200 300 900 (3000) 4500 
EBL 100 275 600 1560 1078 3613 

All values are CPU-milliseconds; parentheses indicate unsolved problems. 

Figure 1 appears quite convincing; it seems that our experiment confirms the presence 
of the utility problem in this domain. Is this conclusion justified? Perhaps not; let us repeat 
the experiment, extending the resource bound to 1.5 CPU seconds. The data for this set 
of trials is shown in Table 2. Now each system is able to solve four of the five problems. 
Comparing total CPU usage, we see the EBL system still carries a performance penalty 
of about 16%. It appears the predictions made previously are confirmed. 

However, consider what happens when the resource limit is increased again, to three 
CPU seconds (see Table 3). 

Now the EBL system can solve all five problems. The time to solve Problem 5 has in- 
creased slightly, presumably due to learning after solving Problem 4. Nonetheless, the non- 
learning system consumes a total of 4.5 CPU seconds, while the EBL system consumes 
only 3.613 CPU seconds; a net performance improvement for EBL of almost 20%. 

What is the methodological flaw that engenders unreliable conclusions? Comparing cumu- 
lative resource use produces unfounded predictions, since this performance figure is depen- 
dent on the resource limit imposed. As the resource limit is increased, the apparent improve- 
ment due to EBL will also change, depending on the number and distribution of unsolved 
problems in each trial. Since resource limits, whether explicit or implicit, are unavoidable 
in empirical work, we need to find another, more reliable, method to analyze our experi- 
mental results. 

2.2. Controlling for  correctness 

An alternative analysis procedure is to control for correctness. Using only those problems 
solved by both systems in the analysis, we ignore Problems 4 and 5 in Table 1 and obtain 
cumulative time values of 0.6 CPU seconds for the non-learning system and 0.975 CPU 
seconds for the EBL system, a 62% performance degradation for the EBL system. Table 
2 yields the same figures, while Table 3 yields 1.5 and 2.535 CPU seconds for Problems 
1 through 4: a 69% performance degradation penalty. In all cases, we observe a significant 
deterioration in performance for the EBL system. 
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Table 4. Experiment 4. 

Problem 1 2 3 4 5 Total 

No Learning 100 200 300 900 6000 7500 
EBL 100 275 600 1560 1078 3613 

All values are CPU-milliseconds; parentheses indicate unsolved problems. 

An analysis that excludes unsolved problems is often stable across resource limits, but 
it is inherently biased against a learning system. EBL changes the resource-limited compe- 

tence of a problem solver--i.e., the population of problems which can be solved within 
a given resource bound (sometimes termed the resource-limited deductive closure). Often 
performance decreases slightly on problems that can be solved without learning; this negative 
effect is, one hopes, outweighed by the usefulness of solving additional problems. If  the 
analysis is restricted to problems that can be solved without learning, only the negative 
effect is likely to be observed. The greatest benefit of EBL often lies in solving problems 
outside the reach of a resource-limited non-learning system--precisely those problems that 
are excluded when controlling for correctness. 

Consider extending the resource limit for our hypothetical experiment once again, this 
time by a margin large enough that the non-learning system can solve all five problems 
(Table 4). The non-learning system requires a total of 7.5 CPU seconds, while the EBL 
system only consumes 3.613 CPU seconds; an overall net performance improvement of almost 
52% for the EBL system. 

The series of examples above illustrates how an apparently minor aspect of an experiment 
(the use of a resource limit) can cause apparently reasonable data analysis techniques (cumu- 
lative solution time comparisons and, optionally, controlling for correctness) to produce 
unsubstantiated conclusions. 

3. Performance metric bias 

The ideal measure of the performance of a problem solver would count the number of 
times some unit-cost operation is executed, where the cost of this operation is the same 
after learning. 

Traditional CPU time measurements tie an experiment to fixed hardware, as well as to 
aspects of a particular software implementation that have little to do with learning. While 
CPU time measurements are easy to obtain, there is a risk of introducing hidden bias. As 
an example, consider the results obtained when repeating our hypothetical experiment of 
Section 2 using an identical resource limit of 2 CPU seconds on the same problem solver 
architecture implemented in three slightly different ways (Table 5). The differing values 
in Table 5 arise from the use of three different indexing algorithms. The data for EBLI 
assume constant-time indexing, for EBL2 a logarithmic time (in the number of database 
entries) indexing scheme, and for EBL3 (our original problem solver) a linear-time index- 
ing strategy. While constant-time indexing is optimistic, logarithmic time indexing schemes 
are in common use. If  we measure CPU time used by a problem solver, we are measuring 
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Table 5. Experiment 5. 

Problem 1 2 3 4 5 Total 

No Learning 100 200 300 900 (2000) 3500 
EBL1 100 250 500 1200 770 2820 
EBL2 100 260 540 1336 882 3118 
EBL3 100 275 600 1560 1078 3613 

All values are CPU-milliseconds; parentheses indicate unsolved problems. 

not only the effect of macro-operator learning, but also the effect of low-level implementa- 
tion choices. For EBL3 there is a bias against macro-operator learning, as EBL3 pays a 
premium price (linear vs. logarithmic) for each rule it adds to the domain theory? 

The bias due to an implementation's indexing scheme might be eliminated by using a 
different performance metric. Either the number of nodes expanded or the maximum depth 
of search could be used as a solution cost metrics. Unfortunately, these measures usually 
impart an unfair bias in favor of EBL. Expanding a node involves generating an ordered 
set of child nodes, an operation which can be expected to become more expensive with 
learning. Macro-operator learning systems will tend to increase the average number of child 
nodes, while systems that learn search control heuristics can be expected to take more time 
evaluating acquired heuristics when ordering the candidate nodes. Since expanding a node 
is not generally a constant time operation, the time required to search to a fixed depth 
or to expand a fixed number of nodes will increase. Thus a system incorporating an EBL 
component will consume significantly more CPU time than a non-learning system when 
expanding a like number of nodes (or searching to the same depth). A good performance 
metric must be impartial to the learning procedure used. 

In summary, the problem of finding an adequate measure of resource use for evaluating 
EBL is not an easy one. Nonetheless, some performance metrics are less problematic than 
others, and it is the responsibility of an experimenter to select the most appropriate measure 
for his or her particular problem solving system: a performance metric that measures con- 
stant time operations in an attempt to reduce experimental bias. 

4. Previous experiments and their methodologies 

In Sections 2 and 3, we discussed how interactions between data analysis techniques, prob- 
lem solver implementation, and experimental design could introduce experimental bias. 
In this section, we apply insights gained from this discussion to some previous experimental 
studies, and derive some general lessons about collecting useful performance data and ana- 
lyzing it reliably. 

Among the most complete analyses of the performance contribution of an EBL component 
to a problem solving system is O'Rorke's work (1987, 1989) based on a reimplementation 
of the early Logic Theorist (LT) system (Newell, et al., 1963). In these studies, a theorem 
prover with an EBL component was compared against non-learning and rote learning ver- 
sions of the same prover on an ordered population of problems drawn from Russell and 
Whitehead's Principia Mathematica (Whitehead & Russell, 1913). For historical reasons, 
O'Rorke's study relies on what by today's standards is a quirky, linearly-recursive, breadth- 
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first theorem-proving architecture. While the impoverished design of the LT prover makes 
studying the effects of learning difficult, it has the advantage of being well specified; for 
this reason the majority of the comments below concern the LT studies, although the points 
made are equally applicable to other studies. 

The critical choices in experimental design concern the resource limit, the performance 
metric, the domain theory, the problem set, the learning algorithm, and the learning protocol. 

4.1. Resource limit 

Resource limits are usually imposed on the same parameter that is used as the performance 
metric. However, some experiments have separated these two notions, while other experi- 
ments have imposed multiple resource limits (e.g., limits on both depth and nodes expanded, 
or on both CPU time and depth). Multiple resource limits usually arise from a need for 
search control. A depth limit forces a simple depth-first prover always to backtrack evenutally, 
thus guaranteeing termination. Using more than one resource limit makes results difficult 
to interpret; a better way to obtain completeness for depth-first search strategies is to use 
iterative deepening (Korf, 1985). 

Resource limits are typically expressed in terms of CPU time, search depth, number 
of nodes expanded, or number of nodes generated in the search. Many of the same prob- 
lems caused by using any of these parameters as a performance measure can also arise 
when using the parameter as a resource limit. As shown above, using search depth or number 
of nodes expanded as a performance metric typically introduces a bias in favor of a learn- 
ing system, and a similar bias is introduced if either is used as a resource limit. Resource 
limits based on elapsed CPU time introduce the same extraneous implementation dependen- 
cies as CPU-based performance measures. 

Imposing a limit on the number of nodes generated may impart a bias against learning 
systems. To understand why this is so, consider that a learning system is likely to generate 
more nodes (while still possibly expanding fewer nodes) than its non-learning counterparts. 
An EBL system that acquires perfect search control heuristics (where perfect heuristics 
result in an optimally directed search) might generate an arbitrary number of nodes while 
expanding only those nodes that lie directly on the solution path. Macro-operator learning 
systems suffer an analogous problem, since they may generate a large number of nodes 
while perhaps expanding only the nodes on the solution path. 

In O'Rorke's experiments, each attempt to solve a problem is limited to a certain number 
of nodes generated. Normally this practice would entail a bias against EBL. However, the 
LT prover handles node expansion in a non-standard fashion, attempting to match child 
nodes to facts in the database as they are generated, rather than when they are themselves 
expanded later. Since the LT learning components acquire only new database facts, the 
cost of generating a node grows with learning. This implies a bias in favor of the EBL 
prover, since it is charged a fixed cost for what is actually a growing cost operation. These 
conflicting sources of bias make evaluation difficult. 

In summary, a good resource limit should use constant time operations as its basic unit. 
Exactly what is or is not a constant time operation depends on the implementation of the 
underlying problem solver. Once a resource limit has been selected, the experimenter must 
be careful to avoid using analytic techniques that are sensitive to particular resource limit 
values. 
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4.2. Performance metric 

The problem of choosing a metric to measure the amount of work performed by the prob- 
lem solver is closely related to the problem of imposing a resource limit, with the added 
complexity that the performance metric must give comparable values over different versions 
of a problem solver and different populations of problems. Previous experimental evalua- 
tions of EBL have either held problem population constant across trials, included the cost 
of failed problems in the analysis, or simply ignored the issue altogether. None of these 
solutions are adequate. 

As discussed in Section 2, controlling for correctness (totaling resource usage for suc- 
cessfully solved problems only) leads to a bias against learning systems. Including the cost 
of failed problems--i.e., incrementing the total by the resource limit for each failed prob- 
lem-causes sensitivity to the initial resource bound. Allowing the problem population to 
differ across trials also usually results in a bias against EBL, since those problems solved 
by EBL which could not be solved by a non-learning system are often more difficult. As 
an example, consider again the hypothetical results of Tables 1 through 3. The inherent 
difficulty of Problem 5 (as measured by the cost of the eventual non-learning solution in 
Table 4) exceeds the total difficulty of Problems 1 through 4, yet Problem 5 is excluded 
from the analyses. Thus even an average CPU seconds per successful solution performance 
measure unfairly shows an increase in problem solving time for EBL. 

O'Rorke's study takes a step in the right direction by using a so-called average branching 
factor metric (this metric is defined as the quotient of the number of nodes generated over 
the number of nodes expanded by each version of his problem solver). There are two prob- 
lems with this approach. First, since some of the work usually performed at node-expansion 
time (i.e., unification with facts in the database) is frontloaded onto node generation in 
the LT prover, neither node expansion nor generation are fixed-cost operations. The corre- 
lation between time usage and this approximation of average branching factor is therefore 
unclear. Second (and most important), the denominator reflects the size of the space ex- 
plored by the current problem solver and domain theory rather than the size of the space 
explored by a control system. This makes direct comparisons of average branching factor 
across problem solvers difficult. 

As in the selection of a resource limit, the experimenter must adopt a performance metric 
whose basic unit is an implementation-independent constant time operation for the underlying 
problem solver. Once a performance metric is selected, the experimenter must carefully 
choose an unbiased procedure for analyzing data collected from trials involving different 
versions of the problem solver and different populations of solved problems. 

4.3. Domain theory and problem set 

One of the hardest problems in designing an experiment to test the usefulness of EBL is 
finding an adequately large corpus of problems that can be solved by a suitable domain 
theory. The requirements for a domain theory and problem set are necessarily vague. It 
seems clear that a reasonably large set of non-trivial problems is required; the problems may 
be randomly ordered, or placed by a teacher in a sequence intended to facilitate learning. 
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Some systems may improve their performance in the course of solving a single problem 
(by learning from solutions to subproblems), while others may learn only from problem 
to problem. The question of optimal problem ordering and of when to learn from subprob- 
lems has not yet been studied experimentally. Theoretical results on the difficulty of learn- 
ing from random problems (Eisenberg & Rivest, 1990; Valiant, 1984) suggest that ordering 
can be crucial. 

O'Rorke's reconstruction of the original LT experiment applies EBL to a problem set 
consisting of 52 propositional calculus problems drawn in their original ordering (easiest 
problems first) from Chapters 2 and 3 of Principia Mathematica. 4 Mooney (1989) repeats 
the experiment using a more modern performance-engine architecture. The LT domain 
has at least two clear advantages. First, there are many solvable problems with a relatively 
small (only 2 rules and 5 facts) domain theory. Second, the problems of Principia Mathe- 
matica were written for human consumption, and not devised with automated theorem prov- 
ing or machine learning in mind. Certainly no one can claim the problem set was inten- 
tionally biased in favor of any problem solver or learning strategy. 

Do conclusions based on experiments in the LT domain apply to other domains as well? 
Unfortunately, not all domains are equally well-suited to EBL; the LT domain only supports 
a specialized form of macro-operator learning that we call generalized caching. Since LT 
involves constructing proofs of properties of propositions and since there are no semantic 
differences between syntactically different propositions (e.g., P, Q, ~ R, etc.), any statement 
about a particular set of objects is always true of every possible set of objects. For this 
reason, macro-operator learning is inappropriate; instead, generalized versions of previously 
proven propositions are directly cached as new database facts. A sterile domain such as 
LT, where every object is exactly like any other object, gives EBL algorithms little room 
to outperform rote learning? 

In summary, the problem of finding adequate domains for testing EBL is still open. The 
LT domain forms in some sense a worst-case environment for EBL; conclusions based 
on experiments in the LT domain may have little bearing on EBL applications to other, 
semantically richer, domains. 

4.4. Learning algorithm and protocol 

To this day, most experiments have compared a particular learning system with a non-leaming 
system. But not all EBL systems are equal; whether EBL is being used to derive new macro- 
operators or to build search-control heuristics, the effectiveness of EBL is critically dependent 
on any operationality pruning performed on the original proof (Elkan & Segre, 1989; Segre, 
1987). Existing experiments document the effect of a particular EBL algorithm with a partic- 
ular operationality criterion; a different algorithm might display dramatically different results. 

Another parameter which must be taken into account is the learning protocol. This pro- 
tocol determines how examples are presented and when learning actually occurs. Learning 
is typically applied to successful problem solutions only; however, in some experiments, 
unsuccessful problems are entered as facts in the database, perhaps as generalized by a 
rote learning algorithm. 6 Not only does rote learning of unproven (and, therefore, possibly 
untrue) propositions seem an unusual method of augmenting a domain theory, it makes 
the performance contribution of a particular learning algorithm difficult to identify. 
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A slightly different learning protocol has been used in other experiments. In these experi- 
ments, problems are divided into separate training and test runs; the system is allowed to 
learn only from training problems, while its performance is recorded only during test prob- 
lems (Minton, 1990; Shavlik, 1990). This has two advantages; first, any dependency on 
problem ordering during the test runs is eliminated. Second, measurements taken during 
the test run correspond to a fixed problem solver and domain theory, rather than continuously 
changing versions as is the case when the results of learning are available to the problem 
solver in subsequent problems within the same trial. 

Other changes in learning protocol include learning only from problems of greater than 
a certain difficulty. A special case of this heuristic is to learn only from problems that 
cannot be solved by instantiating domain-theory facts. Rote learning from problems harder 
than a fixed threshold is exactly the caching strategy already in use by some theorem provers 
(Elkan, 1989). Yet another difference in learning protocol occurs when constraints are placed 
on the use and management of learned knowledge. For example, Mooney's reconstruction 
of O'Rorke's LT experiments imposes a chaining constraint on learned rules or macro- 
operators. 

The choice of learning protocol, like the expected performance gain due to EBL, is crit- 
ically dependent on the problem distribution. If each new problem is completely unrelated 
to the preceding problems, then EBL cannot be useful. On the other hand, if only a finite 
number of problems are ever posed, then an optimal protocol is simply to cache solutions 
as they are generated for later recall. Typically, EBL systems operate in an environment 
somewhere between these two extremes. One might assume that problems are chosen accord- 
ing to some fixed probability distribution, which is unknown but invariant over time. Alter- 
natively, one might use EBL to track a slowly changing distribution of problems over time. 
For this purpose, a system could manage learned rules as a fixed-size cache with various 
rule-management strategies. New learned rules would then cause previously learned rules 
to be removed from the domain theory. 

In summary, whatever conclusions are drawn from experimental data are critically depen- 
dent on the particular EBL algorithm used and the learning protocol followed. It is not 
always clear that any generalization across protocols or algorithms is possible, although 
this should remain our research goal. 

5. Conclusion 

The message of this paper is that in order to support reliable extrapolation of experimental 
conclusions, experiments comparing different problem solvers must be designed with care. 
Previous experimenters have often made design decisions that can lead to unreliable con- 
clusions. We do not claim that conclusions drawn from earlier experimental studies are 
necessarily wrong. We do claim, however, that previous studies have relied on experimental 
methodologies that are capable of leading to unsound conclusions. 

Using a series of examples, we have illustrated how data obtained from the same problem 
solver, using the same learning algorithm and protocol, operating on identical problem 
sets, can show both a performance penalty and a performance improvement for EBL. The 
examples focus on three common methodological pitfalls: the effect of arbitrary resource 
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limits on cumulative solution time metrics, controlling for correctness as an analytical device, 
and the selection of inappropriate performance metrics for metering the effects of learning 
on problem solving. We have also described how these difficulties affect previous studies. 

Many of the methodological difficulties described in this paper do not apply only to testing 
EBL systems, but also to empirical testing of other types of problem solving systems. A 
survey of the literature in logic programming, search, and automated theorem proving reveals 
that these communities are also struggling (Bancilhon & Ramakrishnan, 1988; Saletore 
& Kale, 1989; Warren, et al., 1984) to find adequate performance metrics for benchmark- 
ing systems whose search spaces are not static, such as when comparing multiprocessor 
and serial PROLOG implementations. 

In any area of science, the conclusions drawn from an experiment depend on various 
assumptions. Those assumptions not tested in the experiment place limits on the predictive 
power of the conclusions. In designing experiments, the choice of what assumptions are 
left untested must depend on the directions in which one wants to extrapolate the experimental 
results. In other words, for empirical results to inspire justified confidence, they must be 
obtained following an experimental methodology designed with extrapolation in mind. 

In (Segre, et al., 1990), we propose a simple yet robust methodology for experimental 
validations of EBL. The underlying assumptions are made explicit; the basic one is a model 
of problem solving as search. Our methodology is designed to produce reliable conclusions 
about the behavior of a given problem solver on large problems based on data about its 
behavior on small problems, permitting methodologically sound comparisons of different 
learning algorithms operating with the same problem solver, domain theory and problem 
population. The process of designing an experiment and analyzing the data collected within 
this methodological framework is illustrated with a sample reconstruction of the LT experi- 
ments. We hope that the analysis of earlier experiments presented in this paper will prompt 
others to take a careful look at their own experimental methodology as they continue to 
experiment with learning and problem solving. 
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Notes 

1. We use the term search-control heuristic to describe all learned search-control knowledge, regardless of whether 
or not it is deductively sound. 

2. For expository purposes, the data shown in Table 1 is artificial. Real data from our reconstruction of the LT 
experiments (Mooney, 1989; O'Rorke, 1987; O'Rorke, 1989) is given in (Segre, et al., 1990). At least one 
subset of that experiment's data exhibits the same behavior as our artificial data under appropriate experimental 
conditions. 

3. A similar phenomenon occurs when learning search control heuristics, as systems that acquire large numbers 
of heuristics can take advantage of clever indexing schemes for the heuristics. 
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4. In a later version of this same study, O'Rorke extends the problem set to a total of 92 problems from Principia 
Mathematica. 

5. Since the LT domain theory consists of only two operators, learning search control heuristics could hardly 
fare any better. 

6. This rather strange experimental procedure is a holdover from the original Logic Theorist work. 
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