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Abstract. Kohonen and others have devised network algorithms for computing so-called topological feature maps. 
We describe a new algorithm, called the CDF-Inversion (CDFI) Algorithm, that can be used to learn feature 
maps and, in the process, approximate an unknown probability distribution to within any specified accuracy. 
The primary advantages of the algorithm over previous feature-map algorithms are that it is simple enough to 
analyze mathematically for correctness and efficiency, and that it distributes the points of the map evenly, in 
a sense that can be made rigorous. Like other vector-quantization algorithms it is potentially useful for many 
applications, including monitoring and statistical modeling. While not a network algorithm, the CDFI algorithm 
is well-suited to implementation on parallel computers. 
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1. Introduction 

1.1. Kohonen ' s  algori thm 

Let X be a large vector space, and assume there is a probabili ty distribution p that assigns 
a finite probability p(x) to each vector x in X. A well-known algorithm discovered by Kohonen 

(1982, 1984) produces what are called self-organizing topological feature maps of X. Roughly, 
a feature map partitions the space X into a predetermined number of subsets (called regions), 

and chooses a representative vector from each region. The "map"  (regions plus representa- 

tives) should have two properties: (1) the probabili ty density p(R) of each region R should 
be approximately the same; and (2) certain topological relationships among the represen- 
tative vectors should be preserved, regardless of the actual distribution. Aside from this 
broad characterization, there seems to be no agreement about the precise definition of a 
correct feature map. 

A brief overview of Kohonen's algorithm is as follows. The algorithm is given a graph 
G = (E E) of nodes F = {vl . . . . .  vr} and edges E ___ V × E The task is to map each 
node v ~ V to an "appropriate" location (vector) xv E X in the vector space. Initially each 
node is mapped an arbitrary vector in X. 

Ignore the edges E for the moment,  and consider only the nodes. As input, the algorithm 
receives vectors from X drawn at random with replacement according to the unknown prob- 
ability distribution p. Let x ,  be the next input vector drawn from this distribution. The 
node v c whose current map location Xvc is closest to x, in X is determined. Then the loca- 
tion xv~ is changed by moving it closer to the input vector: 
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Xvc ~ xvc + u(x ,  - Xv). 

The scale factor 1 < o~ < 0 is gradually reduced to zero as more input vectors are proc- 
essed; when it reaches zero, the map is complete. 

In the final map, the nodes should be well distributed throughout the vector space. "Well 
distributed" means that each node v represents a set of vectors in the neighborhood of 
its location Xv in the vector space, and that the total probability of the vectors associated 
with v are about the same for each v. For example, if there are r nodes in V then each 
node governs a neighborhood in X of probability about 1/r. In Kohonen's feature maps, 
the neighborhood of X governed by the node v is taken to be the set of vectors for which 
Xv is the nearest neighbor among the set of r vectors. 

Consider now the topology of the graph G as def'med by the edge relations E. This topology 
can be transferred to the vector space X if for each edge (v~, v2) in E we construct the 
corresponding edge (xv,, Xv2) in the map. In addition to the distribution requirement, we 
also stipulate that the edge relation on G should be preserved by the mapping to X. For 
example, if G is a rectangular grid, then the resulting graph in X should likewise have 
the general form of a grid. To accomplish this, Kohonen's algorithm moves, not only the 
location of the vector v¢ closest to the input, but also the locations of those vectors adjacent 
to vc according to E (i.e., joined by an edge to vc). It is remarkable how effectively this 
simple procedure transfers the general shape of G to the vector space X, even when the 
node locations are initially random. 

Kohonen's algorithm and its variants have been used successfully in a number of applica- 
tions, e.g., (Kohonen, 1988; Nasrabadi & Feng, 1988; Ritter & Schulten, 1988). Note- 
worthy characteristics of his algorithm include the fact that it requires very little storage 
and that each processor performs only very simple calculations. As a model of how neurons 
are adaptively mapped in response to sensory information, it is also of interest to biologists. 

A major limitation of all previously known feature-map algorithms is that they are very 
difficult to analyze. Such analysis is important, since applications often depend on both 
the speed of the algorithm and the accuracy of the resulting map. It happens that both theo- 
retical and experimental studies of Kohonen's algorithm have shown that his procedure is 
not ideal: there is a persistent tendency for nodes to cluster excessively in regions of lower 
probability density (Hecht-Nielsen, 1987; Ritter & Schulten, 1986). As a result, applications 
using Kohonen's algorithm have sometimes been modified in ad hoc ways to correct for 
this deficit, (e.g., DiSieno, 1988). 

1.2. Feature maps: A definition 

We define a feature map as follows. Let G = (X, E~) be a graph (directed or undirected) 
with nodes X and edges E~ c X x X. Let M = (Y, EM) be another graph such that 
I YI -< IxI. ~ is a parameter in the range 0 < e < 1/I YI, and p is a probability distribution 
on the set of nodes X. 

Let q~: X ~ Ybe a surjective function from X onto Y. Let =- be the equivalence relation 
on X such that x =- x '  iff O(x) = ~b(x'). The -= -equivalence classes on X induce a quotient 
graph, G/~ whose nodes are the --equivalence classes, and whose edges connect classes 
R~ and R2 iff there is an edge in Ec between some X-node in Ri and one in R2. 
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We say that ~b is a feature map of  G (with respect to M, p, and e) if 

• M is isomorphic to a subgraph of G/~_ ; and 
• for every --class R over X, p(R), the total probability of the set of nodes in R, is equal 

to 1/IYI + e. 

Intuitively, the mapping ~b partitions the nodes of the graph G into I YI approximately equi- 
probable regions, in such a way that the edge relations in M are preserved in the quotient 
graph. 

A feature map problem consists of five parts: 

• the graphs G and M; 
• the accuracy parameter 0 < c < 1/IYI; 
• a confidence parameter 6 such that 0 < 6 < 1; 
• a fixed, but unknown, probability distribution d over the nodes X of G. This distribution 

is observed by means of an infinite sequence of independent, random variables, {xi, 
i >_ 1}, each selected according to p; the value of each xi is a node in X. 

A general algorithm for the feature map problem will accept as input the graphs G and 
M, the parameters e and 6, and the stream {xi, i > 1}, and with probability at least 1 - 6, 
it will construct a feature map th of G with respect to M and halt. The samples xi are 
obtained by the algorithm in sequence and cost one unit of time each to read. 

As a minimum complexity requirement, a feature map algorithm should run in time poly- 
nomial in the size of the input and in the values 1/e and 1/6. Since in practice G is often 
quite large, an algorithm requiring time that is polynomial in the size of G may not be 
fast enough for applications. Moreover, the general feature map problem has an NP-complete 
subgraph-isomorphism problem embedded in it. For these reasons, feature map algorithms 
are usually designed to solve particular cases of the general problem. G, for example, is 
often limited to a family of graphs that can be encoded in O(polylog IxI) bits. 

Instances of the feature map problem may, of course, have no solution. For example, 
this is the case if no partition of the nodes of G simultaneously satisfies the equal-probability 
and subgraph-isomorphism requirements. A general algorithm will recognize when a given 
feature map problem has no solution, print fail, and halt. In practice, however, algorithms 
are designed to compute some mapping that may not be a correct feature map but is none- 
theless useful for the intended application. 

In all learning problems, the choice of representation is an important consideration, 
because by choosing the class of hypotheses or concepts that a learning algorithm may 
output, one trades expressiveness (and, with it, accuracy) against the computational require- 
ments for finding the best hypothesis in the class to describe the input information. When 
learning feature maps, the same choice comes into play. If IGI is large, the number of 
possible maps th is huge, and some feature maps may require more than polynomial time 
just to write them down. As a practical matter, therefore, we have to limit the family of 
mappings ~b that we consider as potential feature maps. Typically this means admitting 
only classes of subsets of X that can be represented efficiently with some encoding. Doing 
so, however, may mean failure to find a correct feature map, even if one exists. 
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For example, let G be an undirected graph consisting of the four points (1, 1), (1, 2), 
(2, 1), and (2, 2), connected by edges so as to form a square in the Cartesian plane. Assume 
p assigns these points the probabilities 1/2, 1/6, 1/6, and 1/6, respectively. Let M be the 
(undirected) graph with two nodes Yl and Y2 joined by an edge. If we admit only axis- 
parallel (orthogonal) subsets of the nodes of G, such as {(1, 1), (1, 2)} or {(1, 2), (2, 2)}, 
then if e < 1/6, no feature map can be found. A correct feature map exists, however, for 
arbitrary e: map the node (1, 1) to y, and the remaining nodes to Y2. 

1.3. Summary of the results 

The main result of this article is an algorithm (called the CDFI aglorithm) that inverts a 
univariate cumulative probability distribution function in a particular way. We show how 
this simple algorithm can be used to obtain feature maps efficiently over one-dimensional 
vector spaces. Unlike previously published feature map algorithms, ours is simple enough 
to allow formal analysis for correctness and computational complexity. Moreover, while 
not a "neural-network" algorithm, the CDFI procedure is naturally parallelizable in a 
straightforward way using a feasibly small number of processors. We then show how one 
can apply this algorithm to obtain feature maps of Euclidean n-spaces (the ones most often 
used in applications). Examples of maps obtained in this way are exhibited. 

The results of this paper were originally obtained within the context of NASA applica- 
tions research, while studying different approaches to the unsupervised learning problem. 
"Learning" here refers to the fact that the process must examine a stream of data and for- 
mulate a stochastic model reducing the informational complexity contained in that data. 
The quality factors of an algorithm for this problem include: 

• time efficiency: the algorithm should converge quickly. 
• space efficiency: the algorithm should require only a small amount of storage. This is 

especially important for applications intended for space flight. 
• accuracy: the resulting regions should differ in probability from one another by no more 

than some arbitrary specified error. 
• confidence: the knowledge that, even though stochastic events may occasionally cause 

the algorithm to fail to achieve the above goals, the likelihood of such a failure can be 
made arbitrarily small. 

• robustness: the ability to achieve these properties independently of the actual distribution 
over the space. 

Learning algorithms with these properties (sometimes called PAC algorithms) have been 
a topic of active research in recent years, beginning with the work of Valiant (1984). 

2. The CDFI algorithm 

Let G = (X, E6) be an undirected graph with N nodes X, labeled for convenience by the 
integers {1 . . . . .  N}, andE6,  the set of edges (i, i + 1), 1 ~ i _< N -  1. As noted 
earlier, N is often quite large--too large to store and too large to enumerate. The input 
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for our algorithm includes an infinite stream xl, x=, . . .  of integers in X drawn independently 
and randomly according to some unknown multinomial probability distribution on X. The 
probability that the integer x ~ X will be presented next is written p(x). The cumulative 
probability function, P(x), gives the probability that the next integer will be x or less: 
P(x) = P'y_<x P(Y)- 

The target graph M is, likewise, an undirected graph of h nodes (where 1 < h < N), 
joined by edges (i, i + l) into a line. Forming a feature map, then, consists of partitioning 
the set of integers from 1 to N into h regions of nearly equal probability. To state it equiva- 
lently but in somewhat different terms, let mo, m l  . . . .  , m h be integers such that mo = 0, 
m h = N ,  and mi_  1 < m i for 1 < i < h. Let R i be the set of integers belonging to the 
subinterval (mi_ l ,  mi]. We write p(Ri) for the probability that the next input belongs to 
R i. Then the m i are to be chosen so that 

1 
P(Ri) = ~ + e. (1) 

In practice, two circumstances may cause our algorithm to fail. One is plain bad luck: 
if the algorithm bases its calculations on a highly unrepresentative sample of X, then (1) 
may not be satisfied. But probability theory shows that "mos t"  samples of sufficient size 
are representative, and that we can quantify the likelihood of an improbable sample. By 
these techniques the algorithm limits the probability of this type of failure on any random 
run to an arbitrarily small fraction b > 0 specified by the user. The other circumstance 
is poor spread: if a few symbols in X have very high probability, then it may be impossible 
to satisfy (1). For example, it may happen that a single symbol occurs with probability 
one. In such situations, some of the regions found by our algorithm may not satisfy (1). 
As noted above, we consider poor spread as an anomalous problem instance and shall be 
content to have our algorithm report failure in such cases. 

The algorithm is given the two parameters: ~ and e, satisfying 0 < 8 < 1 and 0 < e < l/h. 
is an upper bound on the likelihood that one or more of the intervals constructed by the 

algorithm is unacceptable (too big or small), and e is the maximum permitted variation 
in the interval probabilities, as in equation 1. 

For 0 < i < h, we define the sequence m(0), m(1), . . . ,  m(h)  ofh  + 1 integers as follows: 

rn(i) = min{x ~ X tO {0} I P(x) _> i / h } .  

(Note that m(0) = 0.) Intuitively, re(i) is the smallest integer in X for which the likelihood 
is at least i /h  that the next integer we observe will be m(i )  or smaller. For example, m ( h / 2 )  

is the statistical median of X. The output of the CDFI  Algorithm is a set of estimates rh(i) 
for the values of re(i). Given these values, we can take as intervals Ri = (m( i  - 1), re(i)] 
(for 1 _< i _< h). If  ot is the maximum probability of any node in X, then there must be 
some node whose cumulative probability is between i /h  and ( i /h)  + oe. Hence P(m(i)) < 
( i /h)  + oe. Since P(Ri) = P(m(i)) - P(m(i - 1)), we have 

maxI  o minI  + o 0 
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Hence, unless some node has a probability larger than e, each of the regions R i have prob- 
ability within c of 1/h. An interval Ri is said to be unacceptable if  Ip(R/) - i/hl > e, and 
acceptable otherwise. Our objective is to see that all intervals Ri computed from the output 
of the CDFI  algorithm are acceptable, with probability at least I - 6. We shall find that 
the following condition ensures that a solution is possible: 

Mappability Condition: For no x E X is p(x) _> ~/2. 

2.L Estimating m(l~ 

Consider the problem of estimating m(i) (for 1 < i < h) such that condition (1) holds 
with the specified confidence. I f  space efficiency were not a consideration, we could use 
a very simple histogram procedure that obtains a sample x, . . . . .  x~ from the distribution 
and determines the smallest value rh(i) in the sample such that a proportion of at least i/h 
of the sample are no greater than rh(i). The sample size u required to satisfy the accuracy 
and confidence requirements simultaneously for each of the rh(i) can be determined by 
statistical techniques based on the uniform convergence of random variables to their expec- 
tations (Pollard, 1984; Haussler, 1990). The time required to find the element rh(i) is then 
O(p). However, the cost of storing all p sample points is prohibitive for many purposes. 
We shall, therefore, seek an incremental algorithm, one that stores only a small, constant 
number of sample points and whose space requirements are O(log ~) instead of O(u). Such 
an algorithm can be used even on a small microprocessor with limited memory, for a wide 
range of values of the parameters h, e, and 6. 

Also, instead of a loop that runs the procedure to estimate m(i) h times (one for each 
value of i), we envision a procedure of which h copies can all execute in parallel and share 
the same sample data. With h up to about 1000, today's SIMD architectures can readily 
handle this amount of parallelism. 

Now suppose we could ask an "oracle" for the cumulative probability P(x) of any x E X. 
Then a straightforward search for the least x such that P(x) > i/h would find m(i) easily 
and quickly. Unhappily, we do not know how to obtain such an oracle. Instead, we shall 
assume, and later construct, an oracle'  6 ) with the following behavior. 

The oracle (P : 

• Input to the oracle: values i, h such that 1 _< i _< h; a symbol x E X; and the parameters 
and 6. 

• Output from the oracle: indication of one of the following: 
A,: P(x) < i/h - c/2 with probability at least 1 - ~5. 
A2: P(x) _> i/h with probability at least 1 - c5. 

Roughly, the oracle takes as inputs x, i, and h and in return tells us, with high probabil- 
ity, whether P(x) is below i/h or not. Also, the oracle admits that it can make mistakes, 
but it bounds by 6 the probability that its response is erroneous. 
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Algorithm I (Seaxeh Algorithm) 

Input: N, i, h, e, ll. 
Output: A symbol in X comprising an estimate of re(i). 
Procedure: 

1. Initialize: z := [N/2]. L := 0. U := N. 6' = 6/(h[logN]).  

2. W h i l e U - L > l :  

2.1 If 79(z,i, hl,,/i ') indicates that P(x) < i /h  - e l 2  (outcome A~), then set 
L :=  x a n n  x : =  • + r ( u  - : ) / 2 a  

2 . 2  E l s e  s e t  U : =  • ~ d  • : =  ~ - L(~ - L)I2]. 

3. Outpu t  U and terminate. 

Figure 1. The search algorithm. 

Based on this oracle, we define the Search Algorithm (Figure 1) that determines rh(i) 
for one value of i. As noted above, the h executions (one for each 1 _< i _< h) can occur 
in parallel, since they do not interact with one another except for the sharing of input exam- 

ples xi. 
How good are the estimates th(i) resulting from this algorithm? The following useful 

lemma answers this question. 

Lemma 1. When Algorithm I halts, with probability at least 1 - (g/h) it emits a value 

x such that 

(i) P(x) >_ i/h - d2 ,  and 
(it) P ( x -  1) < i/h. 

Proof. First assume that the oracle never makes a mistake. Note that at termination U is the 
emitted value x, and L = U - 1. If  L = 0 then condition (it) clearly holds since P(L) = 0. 
Otherwise, L is modified at least once by step 2.1. Each such change to L occurs after 
the oracle indicates that P(L) < i/h; at termination, therefore, (it) holds. 

Similarly, condition (i) holds ifx = N (i.e., if U is never changed during the algorithm). 
Otherwise, U is last assigned in the algorithm (step 2.2) after the oracle has responded 
with outcome A2. In either case, P(U) _> i/h - e/2. 

The oracle may make a mistake on any answer with probability 6/h ~log Nq . Because 
of the binary-search strategy, at most ~log N 7 calls are made on the oracle. Thus the 
probability of one or more erroneous responses from the oracle is no greater than 6/h. 
Hence with probability >__ 1 - (6/h) all oracle responses are correct, and the conditions 
(i) and (it) both hold. [~ 

For each i the likelihood that the conditions of  the lemma fail to hold is at most ?)/h. 
Thus the probability is at most di that the conditions fail on one or more of the h executions 
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of the algorithm. The confidence, therefore, is 1 - 6, that all values of rh(i) obtained from 
Algorithm 1 satisfy Lemma 1. Note also that Lemma 1 is valid whether or not the Mappa- 
bility Condition is true. When the Mappability Condition holds, we also have condition 
(1) as a corollary. 

Corol la ry  2. Suppose that the Mappability Condition holds, and that Algorithm 1 is exe- 

cuted fo r  each 1 < i < h. Then, with confidence 1 - 6, f o r  each o f  the regions R i = 
(n~(i - I), rh(i)], 

p(R/) = 1/h + e. (2) 

Proof From the lemma, P(rh(i)) _> i/h - d2, and rh(i) is the least x such that A2 holds. 
Suppose that P(rh(i)) > i/h + d2. Then either the Mappability Condition or condition 
(ii) in the lemma must be violated. Thus ]P(rh(i)) - i/hl -< e/2 for all 1 _< i < h (with 
confidence 1 - 6), and the result follows directly. [] 

Consider briefly the time complexity of Algorithm 1. For each of the h values of  i, there 
are O(log N) repetitions of  the while loop, and each repetition requires an oracle call and 
O(log N) time to copy O(log n) bits into L or U. Thus the time to compute th(i) on a serial 
machine is O((log N)(log N + t)), where t is the cost of  each oracle call. In practice we 
have found that the time t for the oracle call dominates the total run time. 

2.2. Constructing the oracle (P 

Given an integer x, the oracle's task is to determine (within the specified confidence) whether 
P(x) is < i/h - d2 (response A0 or > i/h (response A2). I f  i/h - e/2 < P(x) < i/h, 
either response will do. The case where i = h is special and treated in the appendix; in 
this section, we assume 1 < i < h. 

Consider a process that obtains a sample point xi from the distribution and responds 
"Heads"  if xi < x and "Tails" otherwise. Then the probability of the "Heads"  response 
is P(x), and the probability of the "Tails" response is 1 - P(x). In effect, this process 
is a coin flip with a probability of  P(x) of getting heads ("1"). Applying Hoeffding's ine- 
quality (Vapnik, 1982), we can show that, by obtaining in sequence p = (8/e01n(2/6) sam- 
ple points and counting the proportion of Heads (which we can do without storing more 
than one point at a time), the process can estimate P(x) that is within +e/4 of  its true value, 
with probability at least 1 - 6. Then if this proportion of Heads does not exceed i/h - E/4, 
the oracle responds '~11," and '~1~' otherwise. Specifics are in Figure 2. 

It is hard to imagine a simpler oracle to implement. The sample size ~ required for each 
point is polynomial in all the critical parameters; and the fact that this many sample points 
must be obtained for each of the long N iterations of the Search Algorithm is mitigated 
somewhat by the knowledge that all h processes can use the same data. 

Still, we can do better. The problem with this implementation becomes apparent when 
i/h is close to 1 and we are testing a point x for which P(x) happens to be close to zero. 
To an observer it quickly becomes apparent that we are seeing nearly all O's when we expect 
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atgorith,,, ~: The Or~e  ~'(=,i, h I', 8) (n~ic Version) 
Procedure: 

1. (Initialization) r := 0. t, = (8/,2)1n(2/6). 

2. For j := I to v: 
Let zj be the next sample point from the distribution; i[ zj <_ z, r := r + 1. 

3. If r /v  < ( i /h  - e/4), return "Aa'. Else, return "A2". 

Figure 2. Basic implementation of (P. 

to see nearly all l's. So we should be able to reach a decision with a much smaller sample 
size than would be required if P(x) and i/h were closer. 

What we require is a hypothesis test that adjusts its sample size dynamically, instead 
of using a fixed sample size determined before the start of the experiment. Such a test 
is called a sequential  procedure,  and the Sequential Probability Ratio Test (SPRT) due to 
Wald (Wald, 1947; Mood & Graybill, 1963) is well suited to problems such as the one 
faced by the oracle. 

Details of the sequential version of  the oracle are given in Figure 3. Basically, for each 
new observation xi, the quantity Z (representing the log-likelihood ratio of the sample) is 
increased or decreased by a fixed amount based on whether x i < x. Then Z is compared 
with the boundary values, UPPER and L O W E R .  The oracle continues as long as Z remains 
between the two boundary values. If  it equals or surpasses UPPER, then '~1~' is the response; 
if it is less than or equal to L O W E R ,  then '~1~' is the response. The boundary values have 
been chosen so that the probability of an incorrect response is at most/5. 

With a sequential procedure, the most interesting quantity is the expected sample size. 
Unfortunately, for this problem it is difficult to say anything precise about the expected 
sample size over the set of  log N iterations, because this value depends critically upon the 
particular distribution p. It has been shown that the SPRT is, in a strong sense, optimal 

Algorithm S: The Ora~:le P(z ,  i, h I e, 8) (Sequential Version.) 

Procedure: 

1. (Initialization) g := 0. UPPER = log(2 - 8) - log 6. L O W E R  = - UPPER. 

2. While L O W E R  < g < UPPER 

2.1 Let zj be the next sample point from the distribution. 

2.2 If z~ < z, g := g - [ log(1 - i/h)[ + Ilog(1 - i /h  + ,/2)1. 

9..3 Else g := g + Ilog(i/h)[ - Ilog(i/h - e/2)l. 

3. If  g >_ UPPER,  return "A2". Else return "AI". 

Figure 3. Sequential implementation of (P. 
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in minimizing the expected sample size for all comparable tests with the same confidence 
(Mood & Graybill, 1963). 

Although the SPRT can in principle continue forever without returning a response, the 
theory shows that this occurs with zero probability. Still, no fixed upper bound on the sample 
size can be given. A reasonable approach to preventing "runaway" sampling is to combine 
Algorithms 2 and 3, halting whenever one of the two versions of the oracle halts. 

Comparing the worst-case complexities of the two versions, we can see that they both 
require time ~9(~-2 log(1/~)) and space of about O(log N + log p) (the SPRT requires 
slightly more space, on the order of a factor of log log h). 

2.3. The complete algorithm 

Our description of the CDFI Algorithm is nearly complete. With the above results as sub- 
routines, the algorithm is as follows. 

1. The program, given values of N, h, e and tS, creates h parallel processes, each executing 
the Search Algorithm (Algorithm 1) for a different value of i, 1 < i < h. 

2. Each of these processes calls on the "oracle" (P, which observes the input stream for 
some number of observations until the termination conditions are satisfied. The oracle 
assists the process in deciding whether P(x) _ i/h for various values of x during the 
search. 

3. The i'th process outputs rh(i), its estimate for m(i). 

The correctness of the CDFI algorithm is a consequence of Lemma 1, Corollary 2, and 
the correctness of the oracle implementation. Given the complete set of values of rh, we 
take n~(0) = 0 and change rh(h) to N, so that the n~ values span the entire range of X.2 
The h regions Ri = (rn(i - 1), n~(i)] all satisfy equation 2 above, if the Mappability Con- 
dition holds. The expected running time is polynomial in log N, h, log 1/& and 1/e. Since 
no more than one example at a time is stored, the storage requirements are quite small. 

Theorem 3. If the Mappability Condition holds, Algorithm 2 partitions X into h regions, 
each of probability 1/h + ~, with confidence 1 - tS. With h CREW processors, it requires 
(parallel) time of O(log 2 N + E-2 log N log tS-1) and space of O(h(log N + log v)). 

[] 

The map ~b that sends each of the nodes in Ri to the i'th node in the graph M gives us 
a feature map for the graph G. 

If the Mappability Condition does not hold, the regions Ri may not satisfy equation 2. 
To detect whether it is satisfied, we may obtain a sample of points and determine the pro- 
portion of those points in each region. This is, again, a problem of estimating the parameter 
of a binomial distribution to within some given accuracy and confidence, and the same 
techniques apply as in developing the oracle (P. Of course, if rh(i) = r~(i + 1) for any 
i, then we know immediately that the condition does not hold. 
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3. Feature maps using the CDFI algorithm 

The basic CDF-Inversion Algorithm maps a totally ordered sequence of nodes onto another 
totally ordered graph. We now consider how it can be used to construct feature maps of 
a k-dimensional vector space X = X~ × . . .  × Xk, the situation treated in the literature. 

We can view the tuple x = (x~, . . . ,  Xk) as an element of the set X of all possible 
k-tuples. After imposing an arbitrary linear order on X (e.g., lexicographic), we simply 
run the one-dimensional algorithm and let the regions R i define the feature map. For 
vector-quantization applications, one chooses a vector in each region R i to serve as a rep- 
resentative for that region; in our experiments we have used the mean (center of mass) 
vector in the region. Note that the algorithm enjoys all the properties of such maps listed 
in Section 1.3. 

Figure 4 shows the result of one run of this algorithm. Points in a triangular region of 
a two-dimensional vector space were chosen with equal probability, and the one-dimensional 
algorithm was used to produce a map with 35 points. The vectors were linearly ordered 
left to right, low to high. In the diagram, circles indicate where the map points were placed 
by the algorithm, and lines are used to show the topological ordering of the points (rh(1) _< 
rh(2) _< . . .  ). The resulting line "snakes" through the region, much like the feature map 
from Kohonen's algorithm under similar circumstances (Kohonen, 1984, p. 136). Note that 
one map point fell outside the region, but this was consistent with the error tolerance of 
the algorithm. 3 

Consider next how we might map a k-dimensional vector space X = X~ × . . .  × Xk 
onto a graph isomorphic to a two-dimensional grid of d~ = d E points. As noted above, 
it is often necessary, for efficiency reasons, to limit the family of  mappings that we con- 
sider. In this very simple case, we shall look only for maps which partition X into orthogonal 
boxes. Select two of the k dimensions of X. Ignoring all vector components but that of 
the first chosen dimension, run the one-dimensional CDFI  algorithm, replacing h in Algo- 
rithm 1 by d~, t5 by t5/2, and N by the size of the range of the component. The result is 
a partition of X into a number of regions based only on the values of this first component. 
Normally these regions will be d~ in number unless a few values of the component occur 
with exceptionally high probability (e/2). (In fact, the first component may be chosen on 

Figure 4. Feature map (linear array) of a polygonal region. 
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the basis of how well the Mappability Condition applies to projections of the space onto 
that dimension.) The probability of each region is 1/dl 4- e, provided that the Mappability 
Condition holds for the marginal probability distribution of the first component. For each 
of these regions, we again run the CDFI algorithm to further section it into about d2 equi- 
probable regions; for each of these d~ executions, we specify d2 for h, 6/(2dl) for 6, the 
size of the range of the second component for N, and e(d2 - 1)/d2 for e. Again, assuming 
mappability, the probability of each of the resulting (sub-)regions will be 

1 I 1  e~ e ( d 2 -  1) - 1 
d~ ~ + + d2 d,d2 + ~" 

The likelihood that any of the regions deviate from this bound is at most 6/2 + dl(6/2dl) = 6. 
Figure 5 shows the result of one run mapping a two-dimensional vector space with a 30- 

by-30 grid. Vectors were chosen uniformly from a polygonal subset of the space. Figure 5(a) 

(a) Feature map of a polygonal region. 

Oa) Corresponding regions. 

Figur E 5. Two-dimensional map on a grid. 
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shows a 30-by-30 feature map; each point (xi, Yi) has been connected by a line to its four 
neighbors ((xi_ l, Yi), (Xi+I, Yi), (Xi, Yi-1), and (x i, Yi+I)) tO show the topological ordering 
of the points. In Figure 5(b), the regions corresponding to the points are shown; one can 
clearly see how the map points correspond to regions of comparable probability. The map 
points shown at the grid intersections in the upper diagram are the center-of-mass points 
of the corresponding region in the diagram below. (It is interesting to compare this diagram 
with the corresponding one, Figure 6a, in Ritter & Schulten (1986).) 

In general, the CDFI algorithm can be used to construct a particular family of feature 
maps from a k-dimensional vector space X to a k'-dimensional space M by imposing topo- 
logical orderings on the two spaces and iterating the CDFI algorithm k' times. Different 
maps can be obtained, for example, by mapping onto a Cartesian grid, a polar grid, or 
any of a variety of other coordinate systems. This approach is useful only for small k' since 
the cost of the algorithm increases exponentially with k' and the accuracy is likely to decline 
with each iteration. It is interesting to note that the resulting feature map 6: X ---, M is 
order-preserving: if xl < Xz, then 4)(Xl) < 4~(x2), where _< denotes the respective partial 
topological orderings of X and M. Hence order-invariant properties of X are preserved by 
the mapping ~. 

4. About the implementation 

The algorithm has been implemented in C and on a Sun 3/60 Workstation with an MC68881 
floating-point accelerator. No concurrency or parallelism was introduced, but input data 
points xi were shared among the h independent routines computing the rh(i). The program 
is compact: about 16 kbytes suffice for code and working storage when h ___ 1000. The 
oracle 6 ) was a sequential oracle similar to, but differing in significant details from, that 
of Algorithm 3. 

No heuristics were introduced in order to speed up the algorithm (although many good 
heuristics suggested themselves). The only optimizations, aside from those provided auto- 
matically by the compiler, came as a result of reordering some calculations and making 
in-line calls to frequently used subroutines. These optimizations were made in about two 
days' worth of experimentation, and as a result the speed of the program roughly doubled. 

Another result of this work was the observation that the oracle consumes the largest pro- 
portion of the computation time (at times, over 70 %). Note that the use of parallel compu- 
tation would not remove this bottleneck, since it is part of all h parallel processes. Evidently 
the stringent accuracy and confidence conditions entail rather large sample sizes. 

To cite a typical run time for this program, we programmed a uniform distribution over 
N = 214 symbols, with c = 0.05, h = 10 and 6 = 0.2. The total sample size p used by 
the algorithm for this problem was about 150,000 points, with a fluctuation of about 16% 
from run to run. The time for this run to complete was about 4.5 minutes. 

Using our implementation we were able to test the dependence of the sample size u re- 
quired by the algorithm as a function of the size N of the vector space and the accuracy 
E of the result. Some typical results are shown in Figure 6. As expected, we found that 
p grew in proportion to log N, except for very small N when fixed computational overhead 
was a major portion of the run time. We were more interested, however, in the dependence 
of u upon 1/L The results were convincing that v grows as about 1/~ 2 (with N and 6 fixed). 
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(a) Total sample size m versus vector-space size N. The line was fitted visually to 
show that m has roughly log N behavior for large N. (For this run, ~ was 0.1). 
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(b) Sample size m versus accuracy 1/~ for two different N values: 21° (left) and 222 
(right). The lines show least-squares fits, with ,-2.a4 and ,-2.o3 dependence, respec- 
tively. 
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Figure 6 Measured sample sizes m versus N and 1/e. 

5. Conclusions 

We have presented a simple algorithm that divides a finite set into a fixed number of  ap- 
proximately equiprobable regions, with statistical guarantees about the accuracy and confi- 
dence of the result. We have then applied the algorithm to obtain feature maps of vector 
spaces, and determined clearly the properties of those maps, Our implementation has shown 
that the algorithm is feasibly efficient, and simultaneously has identified the main bottleneck 
as the oracle 6). 

A brief comparison with other feature-map algorithms is useful. As noted, our algorithm 
comes with rigorous definitions of the maps it produces and their accuracy. Kohonen's 



MAKING FEATURE MAPS 159 

algorithm appears to be faster, although direct comparison is difficult since crucial parameters 
controlling the convergence of the algorithm are left unspecified in the literature and in 
practice are chosen heuristically. In both algorithms, processors perform only local compu- 
tations, and computations are highly storage efficient. For multidimensional maps our algo- 
rithm runs in stages (one for each map coordinate), whereas the network algorithms have 
the advantage of computing the entire map in one stage. Finally if the algorithms are pre- 
maturely terminated prior to convergence, the usefulness of the intermediate state of the 
programs is different. Kohonen's procedure, for example, produces a map, but one whose 
topology and distribution will be less correct, the more prematurely the algorithm is inter- 
rupted; the CDFI algorithm provides a set of non-disjoint regions (each defined by the 
U and L values in Algorithm 1) whose probabilities can be estimated and whose topological 
relationship is correct. 

It is likely that better feature map algorithms can be developed than the ones here, based 
on the CDFI procedure. Instead of imposing an artificial total ordering on the input graph, 
or mapping the space in stages by component, we suspect it is possible to map the entire 
space in a single stage like Kohonen's algorithm, while satisfying the statistical accuracy 
and confidence requirements. 

A fundamental assumption of our feature-map algorithm--indeed, of all existing feature- 
map algorithms--is that the individual observations of vectors in X are statistically indepen- 
dent. In practice this is seldom the case; nevertheless the results of the algorithm can be 
useful provided the time scale of statistical dependencies is small compared to the time 
between observations. Extending this and other feature-map algorithms to handle time series 
is an interesting and potentially useful problem. Recently Paredis (1989) has suggested one 
approach. 

6. Acknowledgments 

Wdl Taylor provided technical support for the graphics. Coe Miles-Schlichting kindly loaned 
us his program for computing Kohonen feature maps. We benefitted from discussions with 
Albert Ahumada, who brought several relevant references to our attention. Silvano Colom- 
bano and Ron Yager reviewed the early drafts, and Bruce Trumbo offered suggestions for 
improving the statistical mechanisms in the program. Peter Cheeseman, Peter Friedland, 
Matthew Self, and our other colleagues at NASA Ames have also contributed to this research. 
Finally, the anonymous referees made generous suggestions that substantively improved 
the content, accuracy, and clarity of the paper. 

Notes 

Portions of this work were presented at the Fourth International Symposium on Methodologies for Intelligent 
Systems, October, 1989 and at the Fujitsu IIAS-SIS Workshop on Computational Learning Theory, November, 1989. 
1. In this article an oracle is merely a subroutine whose existence we assume for now and for which we later 

provide an algorithm. 
2. If the regions R i are not required to span the entire set X, then ~h(h) can be left unchanged. Otherwise the 

process that computes rh(h) (given in the Appendix) can be eliminated and rh(h) set directly to N. 
3. Other feature map algorithms also may place points in zero-probability regions, a fact that has not been 

acknowledged. 
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Appendix: Determining n~(h) 

Est imat ing m(i) when i = h is a special  case  for both the oracles  given in Sect ion 2. The 
hypothesis  test is to dec ide  whether  P(x) < 1 - ~/2 for a g iven value o f x .  I f  it is, then the 

l ike l ihood of  observ ing  no values > x in a sample  of  size ~, is (1 - e /2y .  W h e n  v = (2/e) 
log t5-1, this value is at most  iS. Thus a s imple oracle  similar  to the one in F igure  2 handles 

the case i = h as follows: 

Observe  p = (2/E) log t5 -1 sample  points  f rom the dis t r ibut ion.  I f  all  of  them are < x,  

reply  '~12." Else  reply  '~1~." 

A sequential  version of  this a lgor i thm (complement ing  the orac le  in F igure  3) does  the 

obvious thing: 

Stop obtaining sample  points  when ei ther  (a) a poin t  > x is observed ,  or  (2) the sample  
size reaches  ~,', where  v '  is the least  integer such that (1 - ~/2) ~' <_ ~. In the former  
case,  reply  '~11," and in the latter, '~12." 

This  so-cal led curtailed-sampling procedure  has been analyzed by Anderson  and Fr iedman  
(1962), where  they prove the fol lowing strong opt imal i ty  p roper ty  (expressed using our  
te rminology) :  any orac le  a lgor i thm that  always repl ies  '~1~' in case P(x) = 1 and repl ies  
'~1~' w i th  p robabi l i ty  at mos t  t5 when P(x) > 1 - e/2 requires  a sample  size at least  as 
great  as ~'. 


