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Abstract. This paper has two major parts. The first is an extensive analysis of the problem of induction, 
and the second part is a detailed study of selective induction. Throughout the paper we integrate a number 
of notions, mainly from artificial intelligence, but also from pattern recognition and cognitive psychology. 
The result is a synthetic view which exploits uncertainty, task-guidance, and biases such as language 
restriction. Some of the main themes and contributions are as follows. (1) Practical induction is really a 
problem of efficacy and efficiency (power). (2) Search in a space of hypothetical concepts is governed by 
a credibility function which combines various knowledge sources in a single subjective probability or belief 
measure/t. (3) The amount of knowledge supplied by various sources can often be quantified; these 
sources include various biases and the learning system itself. (4) Induction is equivalent to discovery of 
a utility function u, which captures the purpose or goal of induction. (5) The difficulty of induction may 
be characterized by the form of u. Smooth or coherent functions mean selective induction, which has had 
the most attention in machine learning. (6) Systems for selective induction are more similar than 
commonly understood. By juxtaposing them we can discover similarities and improvements. (7) Our 
analysis suggests a number of incipient principles for powerful induction. 

O. Introduct ion  

0.1 The prevalence  and  nature  o f  induct ion 

I n d u c t i o n  is a n  i m p o r t a n t  b u t  c o m p l e x  p r o b l e m  w h i c h  has  b e e n  ex t ens ive ly  s t ud i ed  

i n  p s y c h o l o g y ,  p h i l o s o p h y ,  p a t t e r n  r e c o g n i t i o n  a n d  a r t i f i c i a l  in te l l igence .  I n c r e a s i n g  

i n t e r a c t i o n  a m o n g  the se  f o u r  f ie lds  has  p r o m o t e d  n e w  pe r spec t ive s ,  a n d  r e d e f i n e d  

ke rna l s  f r o m  e a c h  d i sc ip l ine  m a y  s o o n  p r o v i d e  a m o r e  c o m p l e t e  u n d e r s t a n d i n g  o f  

i n d u c t i o n ,  a l o n g  wi th  i m p r o v e d  m e c h a n i z a t i o n .  T h i s  p a p e r  p r e sen t s  s o m e  r ecen t  
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findings and approaches, primarily from AI, but to some extent from the other three 
fields. We attempt to integrate several aspects and methods. 

The problem of  induction is complex. It can be considered as the compression of  
massive data, as the formation of  meaningful concepts, or as the discovery of  
coherent descriptions. Induction may also be thought o f  as the imposition of  order, 
or as the expression of  invariance. Induction presumes some purpose or abstract 
goal. Devoid of  purpose, induction is generalization, the formation of  subsets or 
classes from a universe of  patterns, events, or objects. An object might be a visual 
grid, the state of  a checker board, a patient with a disease, or countless other items 
of  interest. But here we return to purpose; objects within a class are similar with 
respect to some goal. The classes are cohesive categories described as purposeful 
concepts. Angluin & Smith (1983), Christensen (1964), and Watanabe (1969) provide 
many views of  induction. 

Since induction reduces the number of categories to manage, it promotes economy 
of  space and time. Because a concept description embodies not only observed 
objects, but also similar objects yet to be encountered, induction is predictive. 
Efficient and accurate prediction is one of  the main characteristics of  intelligence. 

0.2 Themes and purposes o f  this paper 

This paper has a number of  themes. First, it examines representations, methods and 
principles for making induction effective yet computationally tractable. Both 
fundamental and advanced issues are considered, often in a new light, as some novel 
schemes are unified with some better known ones. We examine and synthesize aspects 
such as inductive bias, goal-direction, uncertainty, and power. 

A related goal of  this paper is to unify, to draw parallels between some learning 
systems which seem more diverse than closer examination reveals. The systems we 
consider tend to be the ones which are better known, better evidenced, or seminal. 
Some issues are clarified, some approaches are juxtaposed and synthesized, and some 
ideas are more fully articulated and developed than previously. 

Another major  purpose of  this paper is to present a methodology for studying 
practical induction. We want to understand the reasons for the success of  various 
learning systems, and the degree to which various components or methods affect 
their power. To do this we need some concrete ways of  comparing systems and their 
components.  If standards of  comparison and measures of  performance can be 
developed, they can help to identify underlying principles, pinpoint useful 
mechanisms, and consequently sharpen our investigations. Measures of  performance.  
may even permit greater mechanization. 

The scope of  our examination is necessarily limited. We primarily consider systems 
for supervised learning (learning from examples), although our  approach suggests a 
certain similarity between this and unsupervised learning. We cover many aspects of  
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supervised learning, including uncertainty and incremental revision. However, after 
presenting a basic framework for the general problem of  induction, this paper 
examines a relatively straightforward'kind of  induction, which is sometimes called 
"selective" (Michalski, 1983). 

Apart  from these restrictions, our examination is rather extensive. In the following 
major part of the paper we shall develop a framework for analyzing and 
understanding induction. This will include quantitative definitions of  important  
measures, such as the credibility of  an hypothesis and the amount of  knowledge 
induced. In Part 2, we shall use our framework to analyze selective induction, to 
synthesize approaches to it, and to extract incipient principles. 

1. A view of practical induction 

This part of  the paper examines a number of  fundamental issues in practical 
induction and introduces some terms and concepts which will be used later. The first 
section explains what induction is and details why heuristic methods are required to 
discover good hypotheses. Section 1.2 examines means for assessing alternative 
hypotheses in terms of  their underlying purpose or "credibil i ty";  this is the issue of  
efficacy. The third section characterizes ways of  discovering credible hypotheses 
quickly, for example by imposing "inductive bias";  this is the efficiency concern. 
Finally, Section 1.4 presents a uniform measure for several aspects of  induction, 
including imposed bias, problem difficulty, and acquired knowledge. The resulting 
framework will unify methods and may encourage discovery of  principles for 
learning. 

1.1 What is induction? 

Induction may be used in many ways, e.g. to optimize control for tasks (Rendell, 
1983a), to learn rules in expert systems (Michalski, 1983), or to discover concepts for 
any purpose. But underlying any domain application or learning approach is the 
same fundamental problem. In its simplest form, induction is the partitioning of  a 
set of  objects, patterns, or events into subsets, i.e. induction is class formation. In 
contrast to this colorless view, however, we normally think of induction as having 
a rich meaning. For  one thing, construction of  new objects or descriptions may be 
required, and even without this complication, something more than just class 
formation is essential. There is no reason to choose one classification over any other 

un l e s s  some preference criterion is imposed; when induction takes place, similar 
objects are compressed into classes which are coherent categories or meaningful 

concepts .  See Watanabe's (1969) " theorem of  the ugly duckling", Mitchell's (1980) 
discussion of  "b ia s" ,  and Murphy's  & Medin's (1985) "conceptual  coherence".  
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1.1.1 Fundamental definitions and perspectives 

We shall employ a dual approach to induction which is somewhat unusual in AI.  
Instead o f  restricting our investigation to logic or some other representation 
language, we sometimes take a more abstract standpoint independent o f  language. 
This will allow us to clarify certain issues such as the amount  of  learning an inductive 
system is doing. At other times we shall focus on representation and description, and 
this perspective will allow examination of  agents such as inductive operators and 
learning systems. The cumulative effect o f  our combined study will be to provide a 
basis for comparing methods,  and to identify principles of  inductive power. To 
begin, we need to define some terms. 

Definition 1. Objects and attributes 

A pattern,  event, or object can be any kind of  entity, although for our purposes an 
object is actually a description, since an entity must be represented. Hence a desk 
becomes a list of  its properties, a visual scene becomes a matrix of  pixels, and a game 
position becomes a state. Instead of  a physical entity, an object can be any construct 
whatsoever. 

An object can be described at any level o f  abstraction, depending on its attributes, 
which are ascribed properties, or variables taking on values in a specified range. For 
example, a checker board might be expressed using features such as piece advantage, 
mobility, etc. Instead the board  could be described in terms of  the contents o f  its 
individual squares. Or the board might even be a visual grid of  pixels with game 
squares undiscriminated. In other words, what we consider an object in one problem 
might be a whole collection of  objects in a different context. Attributes can be 
abstract features, like piece advantage, or they may  be elementary primitives, like 
checkerboard contents. 

An object can also be structured, but structure can be hidden in a description (e.g. 
consider the attribute "mobi l i ty"  in checkers). In this paper  an ~ object is either its 
name, e.g. Ol, or an object is a vector of  attribute values x = (xl, x2 . . . . .  Xk). 

Definition 2. Classes and concepts 

Given a set or universe of  objects, a class is a subset o f  these objects. The term 
concept is usually meant as a description of  a class (its intension), although the 
distinction between "c lass"  and "concep t "  is not always sharp, and the two words 
are synonymous for some purposes. The two terms are similar when we consider the 
more abstract properties and consequences of  induction, such as class format ion 
irrespective of  method.  In other cases, especially when we discuss implementation 
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details of  induction such as representation and search, "concept"  not only means a 
description of a class, but it also connotes purpose, regularity, and structure. 

-Definition 3. Induction 

Basically, induction is class formation, the partitioning of  a universe into subsets. 
• The simplest kind of induction classifies only the original universe of  objects (cf. the 
"single representation trick",  Dietterich, 1982). In some cases, the classes are 
partially formed, and the problem is to complete the process. Our definition stands, 
however, because the initial aggregates can be considered as objects: an object may 
be a whole collection of  less abstract objects. 

Another possible complication is that objects may require construction from 
subobjects (this means the formation of  relations). But here, too, there is a universe 
of  objects to be classified, a universe of  relations (the relations are subsets of  
cartesian products having subobject components). However, when a system must 
learn structuring, the inductive process is more difficult. Although we shall use some 
complex representation in this paper, we shall be concerned primarily with problems 
which do not require extensive restructuring of the original descriptions. (This is the 
topic of  a subsequent paper.). 

A meaningful definition of  induction presumes some purpose or goal, so we 
reserve the term induction to mean goal-oriented class formation. Further, induction 
suggests testing relative to the goal. The terms "concept"  and " induct ion" are 
strongly related. 

Definition 4. Hypotheses 

An hypothesis is fundamentally a partition of  the universe, i.e. hypothesis formation 
is class formation (see Table 1). In more meaningful terms, an hypothesis is a 
purposeful assertion about objects in the universe, a product of  induction before 
testing has been completed. While an hypothesis could be an assertion involving any 
number of  classes, we can always consider one dichotomy at a time. For example, 
a universe of  visual grids could be categorized into 26 letters plus a nonsense class, 
but instead each letter can be learned separately by performing induction 26 times. 
In this paper an hypothesis is usually a dichotomy or a description of  a dichotomy. 
Hence an hypothesis is frequently a candidate concept. 
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Definition 5. Practical induction and system power 

Learning systems manipulate descriptions of  classes, or hypotheses. A candidate 
concept H is normally associated with some purpose or goal, and the extent to which 
H satisfies the purpose determines the quality of the induction. Since we want 
learning systems to solve problems quickly, we could say that practical induction is 
the study and application of  effective and efficient concept learning, using methods 
having significant scope. Scope means efficacy and efficiency across domains. 
Together, efficacy, efficiency and scope determine inductive power. 

Our ultimate goal is to understand and to construct algorithms for practical 
induction. B y "  inductive algori thm" o r "  induction method" ,  we mean an algorithm 
which forms concepts of  high quality, but not necessarily the optimal one (cf. 
Angluin and Smith, 1983). 

1.1.2 Illustrative examples o f  class formation 

To perform practical induction, we must consider notions about coherent categories 
and meaningful concepts; these involve ideas such as similarity and conceptualiza- 
tion. But let us also illustrate certain abstract properties of  class formation, namely 
the combinatorics, which will underscore the great difficulty of  the problem. The 
examples below will also suggest the ubiquity of  induction, which appears in every 
domain from vision to problem solving. These examples will recur throughout the 
paper to illustrate various points. 

Example 1: "'Single concept" learning. This is the problem of  creating just two 
classes: C and its complement U -  C relative to universe U (if we think of C as a 
concept description, we would write the complement of  C as .  C). There are two sets 
of  objects involved in this problem. One is the universe of  all N possible objects which 
might ever arise [ Ol, o2 . . . . .  oN} .1 The other set is the training set of  n objects (n 
_< N). Each member of  the training set is presented as a positive or negative example 
of  C. This is supervised learning (Duda & Hart,  1973; Tou & Gonzalez, 1974) or 
learning from examples (Michalski, 1983; Winston, 1984). Whenever n < N and C 
covers more objects than just its positive training instances, we have a case of  
induction (note the potential for prediction). 

The number of  different ways to dichotomize the universe is extremely large. To 
define a category, we may select each object independently of  every other one, so 
there are 2 N possible dichotomies in all (counting C and U - C  twice, once for the 
concept, and once for its negation). This is the number of  classes or subsets of  the 

t The universe could have an infinite number of elements, but in practice N is usually finite, because 
of the way objects are described. We shall elaborate shortly. 
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universe ,  as shown in Figure 1. I f  N is merely 20, the number  o f  hypothet ical  classes 

or  candidate  concepts  is over a million. 

ol V o z o s Vo 4 

¢ 

Figure 1. Propositional lattice or version space. The nodes are labeled with disjuncts of objects. This 
structure interrelates all possible concepts, and search for a credible hypothesis (a elassifieation matching 
the purpose) may take place by moving up and down the lattice. Search would then be simplified, since 
confirmations and denials of one candidate support and preclude other candidates. E.g. rejection of 
(03 v 04) implies (02 v 03 v 04) should be eliminated (note that the lattice facilitates this perfectly). 

Example 2: Symbol recognition. Consider  a small 10 x 10 grid o f  bits which encodes 
a symbol .  Since every one o f  the 100 pixels can be on or  o f f  independent ly  o f  the 
others,  the number  o f  different  grids is N -- 21°° = 10 l°. I f  each posible grid 

represents a letter o f  the alphabet ,  the number  o f  different ways o f  forming the 

necessary 27 classes (one for  each letter, plus a nonsense category) would  be - 27 N 
= 271101°1 = 10[ 1.4× 10101 (See Anderberg ,  1973, p. 3 . ) i . e . ,  a mult ipl ication symbol .  

This problem can be reduced to learning one symbol  at a time. Instances o f  an " A "  
would  first he given as positive examples, and all other  instances would  be negative. 

T h i s  would  be repeated for  each letter in turn  (each time with appropr ia te  positive 
and negative training sets). Hence the problem becomes 26 cases o f  single concept  
learning, each with 2[ 101° ] hypotheses.  

This immensi ty  can be drastically improved  if we replace the 100 primitive 
attr ibutes (pixels) by  a few abstract  features which indicate the presence and posi t ion 
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of  standard strokes and curves. For example we might define 6 features, say with 5 
values each; then the number N of  objects in the universe is 56 = 15600. Hence the 
number of  hypotheses becomes 2 N = 215600 = 104680; this, however, is still greater 

than the number of  particles in the physical universe. 

Example 3: State-space heuristic search. Consider the game of  checkers. There are 
32 squares which may be legally occupied, each in five possible ways (black king, 
black man, no piece, red man, or red king). If there were no constraints in number 
and placement of  the pieces, the number of  possible checkerboard configurations or 
states would be 532 = 2.3 × 1022. Accounting for the various restrictions in 
placement and quantity, the actual number of  states can be estimated to be roughly 
N = 1018. 

We might wish to know which of  the 1018 states are wins, which are losses, and 
which are draws (assuming something consistent about our opponent,  e.g., that she 
is a perfect player). The number of  ways of  classifying all of  these board 
configurations into three categories (win, loss, or draw) is huge: 3 ~ = 3[ 1018] = 
10[ 4.8×1017]. Each one of  these 10[4.8 x1¢71 is a different hypothesis, just one of  

which is correct. 
In typical machine learning experiments with games, primitive board descriptions 

are mapped into abstract features such as piece advantage and center control. This 
improves the situation markedly, because the size of  the universe is thereby reduced 
to roughly a million (Samuel, 1967). The number of  hypotheses is now 3[10~1 = 
10[ 4.8 × 1°5], still practically infinite. 

Discussion. We can formulate several conclusions from these examples. One is that 
no matter what the domain, induction is fundamentally the same abstract problem. 
For example, inducing evaluation functions is much like single concept learning 
(Rendell, 1983b). Another conclusion" is that induction is procedural,  since 
hypotheses are well defined and enumerable. But perhaps the most important fact 
for practical induction is that algorithms already exist which do much better than our 
combinatorial analyses suggest. Why is this? 

Part  of  the answer lies in a criterion for constructing and assessing hypothesis. The 
inductive criterion or "credibil i ty" depends on two components (Watanabe, 1969). 
One is evidential, and relates to the intended purpose of  the induction. The other 
component is extra-evidential, and depends on preconceived notions about 
desirability, such as simplicity of  expression. 

We shall discuss the crucial topic of  credibility briefly now, and examine it later 
in detail. In Example 1 (single concept learning), and Example 2 (symbol  
recognition), one way to define the evidential component is obvious and direct: an 
hypothesis is credible if it classifies objects correctly. In Example 3 (checkers), a 
teacher could indicate the quality of  an hypothesis, or else a program could measure. 
performance autonomously. In contrast to these straightforward interpretations of  
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evidential credibility, the extra-evidential component is difficult to specify and not 
well understood. For Example 1, we might prefer "simple" concepts as in Figure 2, 
but simplicity is tricky. In Example 2, an "elegant" symbol description might involve 
intermediate concepts such as strokes and curves which would be uniform over all 
letters, but implementing elegance to create these intermediate concepts from pixels 
would be intricate. 
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Figure 2. Concept descriptions biased by implicit disjunction. Here objects are points in feature space 
described by two attributes. Imagine a movable and deformable window, through which the visible objects 
define a concept. If  the window is rectangular, the concept is conjunctive; for example the solid rectangle 
on the left is (4 -< x~ ~ 8) & (2 _< x2 -< 5). This expression implicitly captures disjuncts o f  basic objects. 
Disjunctive concepts may be expressible as a single neighborhood, or they require more than one window. 
Limiting the number o f  windows favors conjunctive descriptions (of implicit disjunction). 

Despite the difficulty of formulating some criteria, credibility may be used to 
assess hypotheses, to constrain their expression, and to guide their formation. We 
may now begin to distinguish between blind hypothesis generation and controlled 
search. 

1.1.3 Simplistic versus practical induction 

Finiteness and solvability. While the combinatorics are extreme in our illustrative 
examples, induction could nevertheless be performed simply by generation and 
testing. Given a universe of N objects ol, 02 . . . . .  oN, and a desired number of classes 
m, each of the roughly m N partitions (hypotheses) could be formed, and then assessed 
according to some credibility criterion. Theoretically, induction is directly attainable, 

-providing that N is finite. Even an infinite number of objects may not be a problem. 
We normally express objects in terms of a limited number k of attributes xl (1 < i 
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_ k). If an attribute has an infinite range, it may usually be quantized into c values, 
so the universe of  objects U is then compressed into N _ c k descriptions. 

Figure 1 illustrates the complete set of possible inductions when the universe 
contains only N = 4 objects. There are 24 --- 16 classes that can be formed here. This 
propositional lattice (Watanabe, 1969) is a simple version space (Michell, 1978). This  
particular diagram does not describe individual objects but only names them. 

Advantage ofintension. If  we describe objects (Figure 2) instead of  just naming them 
(Figure 1), we provide an alternative way of specifying classes. Rather than a subset 
C of  the universe, we can specify a description Hc of  C, expressed in terms of  
attributes xi (this is definition by intension). Despite the apparent equivalence, there 
is a distinct advantage in specifying a description Hc instead of  an amorphous subset 
C. z As shown in the " theorem of  the ugly duckling" (Watanabe, 1969), no one class 
is inherently better than any other. There is absolutely no basis for induction unless 
the training examples, together with the inductive method, produce concepts 
expressing similarities to and extensions of the original examples. This can occur only 
if we impose some preference when forming a class, and any preference is 
fundamentally arbitrary. However, the illogic disappears if we impose a language in 
which to represent an hypotheses H~. The language and our preferences for its use 
supply the inductive predisposition, which Mitchell (1980) has called a bias. 

One bias is to prefer hypotheses described as windows or neighborhoods, as shown 
in Figure 2. A neighborhood may be expressed as a conjunction of  attribute ranges 
(al --- Xl -< bl) & (a2 --- x2 --- b2) & . . • & (ak ~--- Xk m_ bk). This captures disjunctions, 
but in a restricted fashion. Suppose that a concept or hypotheses can only be a single 
neighborhood; in this case any disjuncts must be local. We may relax the bias 
somewhat by permitting a concept to be a few neighborhoods. This allows the 
expression of  more hypotheses, but if the number of  windows m is finite, we have 
restricted the set of  possible concepts, and therefore we have imposed a bias. 

If  m is a small number, we call the bias implicit disjunction. Implicit disjunction 
has often been investigated in its specialized forms as discriminant analysis, internal 
disjunction, etc. (Dietterich, 1982; Duda & Hart ,  1973; Michalski, 1983). This bias 
may occur in humans (Bruner, Goodnow & Austin, 1956). Like many other biases, 
implicit disjunction is a consequence both of  the language (e.g., feature space 
rectangles) and of  their preferred use (small numbers of  them). This preference is not 
entirely arbitrary, though. It is cognitively economical (no storage is required) to 
increase the size of  a neighborhood, since only the limits need to be altered in the 
conjunction of  attributes (al < xl -< bl) & (a2 -< x2 ~ b2) & . • • (cf. the minimization 
of  logic circuits). In contrast, adding new windows requires more storage, unless the 

z Using concepts instead of classes may also cause a problem. Depending on the description language, 
more than one concept may represent the same class. This difficulty is precluded in some approaches" 
(Rendell, 1985b). 
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windows themselves are regularly arranged and this regularity can be summarized as 
another kind of  implicit disjunction as in (Rendell, 1985b). 

Instead of  describing a concept using conjunctions of attribute ranges, we may 
represent the concept using its centroid or prototype. This is a variant of implicit 
disjunction having only one window with fuzzy boundaries; the degree of  class 
membership becomes fainter with increasing distance from the prototype. The 
essence of  implicit disjunction is that neighborhoods are meaningful, so like the strict 
logical case, a prototype description is also naturally depicted using a feature space 
diagram (Figure 2). Prototype representations have been studied in (Duda & Hart,  
1973; Medin & Smith, 1984). We shall return to these ideas in Part 2. 

Summary. To learn a concept in theory, we may simply enumerate and test 
hypotheses, but in practice we must use various aids., One is to impose structure on 
the set of  hypotheses to exploit ordered search (e.g. Figure 1). Another aid is to prefer 
certain hypotheses and possibly ignore others (e.g. Figure 2). Notions of testing and 
bias bring us to one of our main themes: practical induction has three aspects, 
efficacy, efficiency, and scope. In the following sections we consider ways of judging 
and aiding efficacy and efficiency without compromising scope too much~ 

1.2 Efficacy: the quafity o f  an induction 

In our discussion of  illustrative examples, we began to address efficacy through 
inductive purpose and hypothesis testing. Let us consider detailed methods. 

1.2.1 Hypothesis assessment 

We define the assessment function l~ mapping the set I H } of  all hypotheses into some 
range R. (Recall that if the size of  the universe is N, and we are learning single 
concepts, then there are 2 s hypotheses in all.) If  we want a strict definition of/z, all 
but one of  the members H of  [ H} (i.e. 2 N - 1 of  them) would have/~(H) = 0, while 
/z(H) = 1 for just one Hi E [ H }. In this rigid view, the range R of  # is binary; see 
Table l(a). 

But is binary assessment function adequate? For small problems like Example 1 
with N = 4, a program can afford to learn deterministically: training examples are 
usually noiseless, and search for a concept is inexpensive (Figure 1). However, when 
the problem is larger, there are difficulties. The most obvious is the exponential 

. growth of  hypothesis set { H } with N. Because of  the immense quantities involved, 
constraints are usually imposed on the language expressing a concept (as in Figure 
2), and we can no longer be sure that any of the limited possibilities express the 
.concept properly (see Figure lc). Moreover, data tend to be sparse, and perhaps 
unreliable, so they offer little help. The aoubts introduced by these problems and 
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compromises suggest a more flexible view of  hypothesis assessment. 
Binary assessment appears inadequate for yet another reason: there are gradations 

in the quality of  an hypothesis. Consider again that induction is class format ion and 
imagine the degree of  error. In Example 1 (single concept learning), if the correct 
concept is (02 V 04), then the hypothesis HI  = o2 is better than H 2  = (O1 V 02 V 03 
V 04)- TO see this, ignore the type of  misclassification (omission versus commission) 
and count the number  of  errors. HI  is wrong just once (about 04), whereas HE is 
wrong twice (about Ol and o3). A more realistic case is that of  Example 3 (checkers), - 
where a few misclassifications (e.g. draws misrepresented as wins) would not matter  
much, since a relatively small number  of  incorrectly identified board configurations 
might never arise in a typical game. 

Although just one hypothesis is correct, many others may  be very good. Instead 
of  a rigid binary judgment ,  then, a more flexible definition of  our assessment 
function would be better. A rational choice for a graduated assessment function is 
/~(H) = the proport ion of  correct categorizations of  objects. This is the probabili ty 
that an object would be correctly identified by hypothesis H. Because of  the large 
number  of  objects typically to be classified, there are many  different H ~ { H } for 

Table 1. Set o f  hypotheses and  hypothesis assessment function #. Al though there are an  immense number  
of  them, hypotheses might  be enumerated and each H evaluated by the assessment function #, which gives 

a belief or credibility value. In (a), the range o f  values R = I 0, 1 }, signifying a binary decision. In (b), 
R = [0, 1], indicating degree of  belief we have in H. The latter is more  flexible since it permits degrees 

o f  belief and facilitates incremental updating.  In (c), the domain  of  # is restricted, as only a fraction o f  
the hypotheses are expressed (the representation language may  constrain candidates). 

(a) (b) (c) 
Rigid, Degree Restricted 

Hypo- Binary o f  Belief # 
thesis # # Domain  

HI 0 0.1 - 
H2 0 0.7 0.7 

H3 0 0.3 - 
H4 0 0.4 - 
H5 0 0.6 0.6 
H6 0 0.3 - 

H7 0 0.7 - 

Hi 1 1.0 1.0 



A GENERAL FRAMEWORK FOR INDUCTION 189 

which It(H) is very high, al though these constitute just a small fraction of  the total  

number  of  hypotheses in [ H I ;  see Table l(b). 3 

1.2.2 Representing belief 

We have been considering the assessment It(H) as the objective probabil i ty of  correct 
classification by H.  Unfortunately,  this information about  proport ion of  correct 
~categorizations cannot  be obtained in practice, except for uninteresting games like 
tic-tac-toe or oversimplified problems such as symbol recognition using small visual 
grids. At this point induction seems a doubly impossible problem: Hypotheses are 
much too numerous to consider even a fraction of  them, and they cannot be eval- 

uated anyway. 
I f  objective probabil i ty measures are unobtainable,  what alternative do we have 

for defining #? One step toward an answer is to consider It(H) as a subjective 
probability. Then #(H) is the credibility of  hypothesis H,  i.e. our degree of  belief in 
H (Cheeseman ,  1985, Watanabe,  1969). With this broader  interpretation of  
probabil i ty as belief, tt may  be obtained f rom a combinat ion of  several sources: partly 
f rom feedback about  task performance  using H,  and also f rom biases favoring 
certain kinds of  hypotheses. The various kinds of  knowledge which influence belief 
in a hypothesis have been called knowledge sources (Erman,  Hayes-Roth,  Lesser & 

Reddy, 1980). 
There are two kinds of  credibility: evidential and extra-evidentiaL Watanabe  

(1969) also called these confirmation and creditation. We shall sometimes use the 
term "con f i rma t ion"  as a synonym for evidential credibility, al though this can be 
misleading unless we realize that  evidential criteria may  guide hypothesis format ion 

as well as confirm the final product.  
There are many  examples of  both kinds of  credibility. One definition of  

confirmation is the objective probabil i ty we discussed earlier, perhaps accelerated by 
sampling. As for  the extra-evidential component ,  it might appear  as a preference for 
implicit disjunction (see Figure 2). We shall present other possibilities later. 

Evidential and extra-evidential criteria may  be combined formally,  to give a single 
measure o f  credibility (Watanabe,  1969, chap. 4). While Mitchell (1980) has called 
the implementat ion of  either kind of  credibility a bias, we usually consider extra- 
evidential credibility to be a special, goal-directed predisposition. Notice that  
evidential criteria correspond loosely to the AI  notion of  data-drivenness, and extra- 
evidential criteria correspond to model-drivenness. Methods for defining and 

3 The matter of hypotheses assessment raises some subtle issues. First, note that assessment takes place 
a t  two levels: (1) H evaluates (identifies) objects of the universe in the problem domain, and (2) t~ 
evaluates (assesses) H, which is one of a set of hypotheses. Secondly, a graded assessment function # is 
more useful than a rigid binary one in many domains. For example, Newtonian physics is much more 
-useful than Aristotelean physics, but not always as good as relativity. Finally, we might ask how to 
evaluate an hypothesis which is expressed as a prototype. This is addressed in Part 2 of the paper. 
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updating credibility are given in (Lenat, 1983; Michalski, 1983; Rendell, 1985a; Wise 
& Henrion, 1985). 

As we shall see in the next section, credibility may serve not only to assess 
hypotheses, but also to select them, and hence to speed induction. Before proceeding, 
let us summarize the main ideas of  this section. 

Definition 6. Hypothesis assessment and credibility 

Because of the ambiguous nature of induction, many hypotheses compete, and we 
wish to compare them. Ideally, the assessment function # would objectively measure 
the proportion of  objects correctly identified by hypothesis H. Since exhaustive 
measurement is usually infeasible, we replace or combine objective probability with 
the subjective probability or belief, to form a composite assessment called the 
credibility/~(H). Because of  uncertainties in the environment and in our inter- 
pretation, ~t has many factors, such as goal-related feedback from the environment 
and predispositions or biases about which kinds of concepts may be good. 

Definition 7. Inductive efficacy 

An inductive method is effective if it produces hypotheses having high credibility, 
and hence concepts which are useful. We would like to assess credibility objectively, 
and we can afford to test hypotheses if the method does not generate too many. 
However, if the method is to be truly effective, it must apply subjective credibility 
to restrict hypothesis formation, and these subjective beliefs must correlate well with 
objective measures. 

1.3 Schemes for  efficiency: guidance from bias and goal-direction 

An efficient induction algorithm should not only produce hypotheses which are 
credible, it should discover them in a reasonable length of  time. In this section we 
shall examine some efficient methods for hypothesis formation. There are two basic 
ways to improve the efficiency of  induction, one is model-driven, a product of bias 
or extra-evidential credibility, and the other is data-driven, a product of goal- 
orientation or evidential credibility. 
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1.3.1 Four kinds o f  bias 

There are many instances of  bias. To comprehend its manifestation in various 
structures and algorithms, we take an abstract perspective and relate all the 
approaches directly or indirectly to the hypotheses assessment function tt (Table  1). 
In terms of/~, there are two main varieties of  inductive constraint and two kinds of 
each. One major bias is the exclusion of  some hypotheses; this corresponds to 
limiting the domain of  # or deleting rows in Table l(c). This restriction can be 
imposed from the outset or it can be governed dynamically by an inductive algorithm. 
Instead of  precluding hypotheses, a more flexible scheme involves preferential 
ordering and informed selection of  hypotheses; # then becomes an evaluation 
function for search. Like exclusion, this can be either static or dynamic (the latter 
involves continual redefinition of  /~). Each of  these four kinds of  bias can be 
implemented in several ways. 

Universe and language restriction (narrowing the domain o f  Iz). The easiest way 
to simplify induction is to begin with a small universe. This has to do with the degree 
of  abstraction or grain size of  objects. For  example, the range of  an attribute can be 
arbitrarily compressed, as in Samuel (1967). In Example 2 (symbol recognition), 
increasing the granularity of  a visual grid would sacrifice resolution; alternatively a 
more severe kind of  abstraction is to replace pixels (primitives) with strokes and 
curves (features). A similarly drastic choice is possible in Example 3 (checkers), where 
there are at least two major  types of  attributes: primitives giving the contents of  each 
square of  the board, versus features like piece advantage, center control, etc. As we 
saw earlier, the choice o f  abstract features reduces the number N of  expressible 
objects, and consequently the number m N of  possible hypotheses when learning m 
classes (though the features may not discriminate adequately, resulting in 
unresolvable classification errors). 

Another  easy way to decrease the number of  hypotheses is to limit the 
representation language for concepts. Without constraint, the full predicate logic 
permits relationships among objects. In this case, hypotheses describe a more 
complex universe than the original universe of  objects. However, if logic is restricted 
to attributes only (i.e. to one place predicates), relationships are precluded, and the 
number of  expressible concepts is diminished. Of  course, this very restriction permits 
fast induction and is valid in cases where object interrelationships are irrelevant to 
the current problem. Restricting further, we may limit hypotheses, e.g. to a few 
conjunctions of  attribute ranges (a~ - Xl --- bl) & (a2 --- x2 --- b2) & . . . .  This sort 

_ of  syntactic constraint was illustrated in Figure 2 and discussed as a form of  implicit 
disjunction. We shall detail these ideas later; also see Banerji (1985) and Michalski 
(1983). 
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Sets o f  hypotheses organized into spaces (actively zeroing some # values as more is. 
learned. Since induction is class formation, it can theoretically be attained by simple 
enumeration and testing. This is impossible in practice, but there are schemes to 
speed search for credible hypotheses. One general approach is to impose some 
structure on concepts and hypotheses which captures the nature of  the problem,- 
using knowledge about logic as in Figure 1, or about the domain as in Figure 2. The 
imposed structure can speed an inductive algorithm because such an algorithm does 
not search an amorphous set of  classes, but rather a space of  intei-related concept" 
descriptions. 

To see one way to implement this, we need to examine the logical structure of  
concepts (Figure 1). Suppose there are N objects in the universe and just two classes 
(Example 1, a case of  "single concept"  learning). If we name the objects ol, 02 . . . . .  
oN, then any one of  the classes H may be described as a disjunction of  some of  the 
oi's. If  we discover that the correct concept C is inconsistent with some hypothesis 
H, then every description Hi above H is also inconsistent with C (and the credibilities 
/~(ni) become zero). For example, if C = ol v o2, and if we reject 03, then/,(03) = 
/z(o2 v oa) = 0. Mitchell (1978) has called this method candidate elimination; it is 
useful if N is small enough that the lower and upper boundaries of  the version space 
are manageable. 

In a version space, we interrelate concepts of  the universe and we transform them 
using generalization and specialization operators such as those shown in Figure 1. In 
this diagram, moving up the lattice adds an object and moving down removes one. 
Instead of  the simple lattice of  Figure 1, a different structure may be imposed to 
interrelate concepts, i.e. alternative spaces may be defined. Rather than adding or 
subtracting a single in one step (Figure 2), we may use generalization and 
specialization operators which add or subtract a number of objects in a single 
application. Various forms of  this appear in the machine learning literature (Duda 
& Hart ,  1973; Langley, 1985; Michalski, 1983; Rendell, 1981). 

6l ie  sucla possil~ffity is shown in Figure 3, where an hypothesis represented as a 
conjunction of attribute ranges (i.e. a feature space r e c t a n g l e ) m a y  grow 
(generalization) or shrink (specialization).4 These operators may admit inconsistency 
and incompleteness. The amount  of  search required for a credible hypothesis 
depends on the intensity of  the operators, which is the degree to which objects are 
added to or removed from the hypothesis in a single application. 

As generalization or specialization operators are applied to some concept, a 
selection of  new hypotheses H1, H2 . . . . .  Hq is produced, and some of  them H i -  1, 
. . . .  Hq may immediately be dismissed because they are judged to have little 

credibility compared with the competing hypotheses H1 H2 . . . . .  Hi which are t h e i r  

4 Note that from the viewpoint of the overall process of concept formation from data, even specializa- 
tion contributes to induction. This is in keeping with ideas that generalization and differentiation are two- 
aspects of the same phenomenon (Koestler, 1964). 
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Figure3. A more constrained version space (this is essentially another view of  Figure 2). Here two factors 
speed induction. One is the syntactic limitation wherein concepts may only be conjunctions of  feature 
ranges (rectangles). The other aspect is the greater intensity; these generalization and specialization 
operators may add or subtract more than one object at a time (see text). 

siblings (this is beam search). Essentially the credibilities/z(Hi+ 1) . . . . .  #(Hq) of these 
poorer hypotheses are zeroed. 

Notice that the simplest propositional lattice (Figure 1) assures correct inferences. 
In other words, the associated credibilities are certain and not merely subjective, as 
long as the data are correct. On the other hand, there is no provision for noise or 
other forms of uncertainty discussed in Section 1.2. In contrast, when representation 
is restricted (Figure 2) or when the specialization or generalization operators are more 
intense, the situation becomes probabilistic (both of these biases occur in Figure 3). 
Such situations may cause error but they also may survive noise. To accommodate 
uncertainty we need subjective probability, belief, or multivalued credibility. 
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Hypotheses ordered by credibility (# as evaluation function). We may exploit the 
credibility /~ as an evaluation function to permit best first search in a space of 
hypotheses. An example of such a/z is some measure of simplicity. In this case the 
generalization labeled g2 in Figure 3 might be awarded a high value since it does not 
require the specification of attribute Xl. Here credibility is extra-evidential. 

Instead,/z may incorporate evidential credibility. The data may agree better with 
one hypothesis H1 than another Hz; for example in Figure 3, the specialization 
labeled sl is preferable to s2 because there are proportionately more positive examples 
in HI = rl than in H2 = rz. Based on current data, the probability of a positive 
example in r~ is pl = 3/4, while pz = 2/4. These two probabilities can be considered 
the credibilities/~ and #2 of the hypotheses ra and rz, or p~ and p2 can modify the 
credibilty of the original hypothesis r. "Best fit" criteria much like this are used by 
a number of systems, including CLUSTER/2 (Michalski, 1983), ID3 (Quinlan, 
1983), and PLS1 (Rendell, 1977). This is goal-direction (Rendell, 1983a). 
CLUSTER/2 combines evidential with extra-evidential criteria to form a single 
"lexicographical" evaluation function (LEF). 

Another instance of evidential credibility /~ as evaluation function appears in 
Holland's (1975) genetic algorithm considered as an inductive system. Here 
hypotheses in a population compete for survival and are awarded various credibilities 
(fitness)/~ based on their relative performance in a task environment. For example 
if three hypotheses H1, Hz and H3 are observed to have relative performances of 6, 
4 and 5 units, their credibilities might be normalized as P, i  = 1~ (performance of Hi) 

/ (average performance), giving #1 = 0.6, #2 = 0.4 and #3 = 0.5. 

Hypotheses (re-)ordered by continually changing credibility (# as redefinable merit 
or agenda function). A more interesting and powerful kind of bias is provided by 
dynamic credibility. For instance, in a genetic system the more credible hypotheses 
continually replace the poorer ones, and this competition results in increasing quality 
over repeated generations. However, as shown in the example above, # is computed 
for current data alone, so the assessment is always relative. In other words, the 
computed credibility depends on the state of our knowledge. Over several 
generations, our assessment becomes more demanding, as we insist on evaluating 
based on the best we know at the time. Credibility is thus a conditional probability 
Pr(hypothesis is correct I current knowledge). Conditional probabilities may be 
updated using standard statistics (Cheeseman, 1985), or related methods (Wise & 
Henrion, 1985). Another example of evolving # is Lenat's (1983) Eurisko, in which 
the credibility may be altered both by the program and by the user. 

Summary. We have related bias to credibility #, an evaluation function over the set 
of hypotheses. These various biases may be encoded in the data structure, in the 
representation language, or in the inductive algorithm. Our choice of bias depends 
on knowledge about the task domain, and we can supply a large amount of it from 
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the outset. However,  if too much bias is static, the program has little scope, and most  
of  the power is not in the program.  Ideally "b ias  control"  would be a capability of  
a "higher-level" algorithm which woiald modify  # dynamically. 

1.3.2 Efficiency through goal-direction 

Utility as function, and induction as discovery o f  the function. Instead of  viewing 
.inductive efficiency as obtainable through various restrictions, biases or models, we 
can take a complementary  perspective. Induction always has a purpose or goal, and 
the objects of  a universe contribute to varying degrees. The degree of  goal- 
satisfaction of  an object x is its utility u (Rendell, 1983b). 5 One interpretation is that 
u is the credibility of  the hypothesis "ob jec t  x is in the desired class",  or " x  will 
contribute to the goa l" .  We could just as well say that u gives the degree of  class 
membership of  x, or that  u is the probabil i ty of  x is a positive example of  a concept. 
There is often no need to distinguish between these interpretations. 

In supervised learning, an object x is presented as a positive or negative example 
of  a class; thus the utility u(x) is 1 or 0. I f  this information is unreliable, u(x) is some 
(probability) value intermediate between 0 and 1 (Rendell, 1983a). Given a number  
of  training examples x, we wish to induce a function u(x) for any object x -- (Xl, x2, 
. . . .  xk). I f  the concept learning is rigid, u is a Boolean function, i.e. a logical 
expression as in Figure 4(a). I f  the learning is flexible, u is real-valued, e.g., a 
probabilistic expression as in Figure 4(b) or (c). We may select the type of  function 
to be learned independent o f  data reliability. 

U J 

4- 

(o) (b) (c) 

o - o ,  

3 e ,~ ki o 3 e ,'2 x i  o ~ ',~, xi" 

Figure 4. Utility of  domain objects x or degree of  class membership of  x, as a function u(x). These three 
diagrams show just one attribute. In (a), u gives a binary decision about class membership, based on a 
logical model. In the other two cases, u gives graded belief, based on a probabilistic model. In (b), the 
model involves discrete probability classes; in (c), the model is a smooth curve. For any of  these models 

t o  be effective, neighboring objects must have similar probabilities o f  membership (i.e. the implicit 
disjunction bias must be valid). 

s Recall that objects can be anything, physical entities, operators, etc. Examples of  the utility u include 
the "A-ness"  of  a visual grid, the strength o f  a game position, etc. 
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Efficiency, gradual discovery, and utility~bias synergy. Particularly in the 
probabilistic case, the data may be used to guide the induction itself. While the 
second major part of  this paper explores this notion in depth, we may briefly state 
some of  the ideas here. 

Limited information about the variation of  u with available training examples x. 
permits tentative hypotheses: not necessarily about all the details of  u, but about the 
form of  this function (i.e. the model or bias), and perhaps about its rough outline 
(e.g., a step function). A simple example is shown in Figure 4, where there are two- 
distinct areas of likely class membership. The limits of  the concept (3 < xi - 6) v 
(11 _ xi - 13) in Figure 4(a) could be learned efficiently using the implicit 
disjunction bias with two neighborhoods (Figure 2). But this  bias, itself, may be 
indicated only after probability classes are clustered as in Figure 4(b), and the system 
discovers that two neighborhoods are sufficient. In other words, the data may 
contribute to efficient bias selection. Further, goal-orientation and bias may combine 
to support and strengthen hypotheses both about the bias selection and also about 
the domain. 

The observation and use of  object utility obviates detailed generation and testing 
of  hypotheses. In our earlier discussion of  the illustrative examples, an hypothesis 
H was an entire utility function u, complete in every detail. In other words, H 
specifies u for every object x. In contrast, the incremental construction of  u means 
that H is built as it is tested, and hypotheses of  low credibility never appear. 

Two kinds o f  hypotheses and the importance o f  probability. Notice that we have 
hypotheses on two levels, and beliefs about each. The utility u(x) is the degree of  
belief that x is useful for the goal, and the credibility/~ is the belief that the function 
u(x) is correct. To avoid confusion, we shall continue to refer to the belief in the 
hypothesis H "funct ion u(x) is correct"  as its credibility #(H); and we shall refer to 
the belief in the hypothesis "object  x is useful for the domain goal"  as its utility u(x). 

Note that both kinds of  hypotheses are functions. The utility function u may be 
binary-valued, giving a definite decision about class membership, or u may be real- 
valued, representing probability or degree of  class membership. The non-binary 
choice converts to a binary decision at any time, yet the gradation facilitates 
incremental learning (Figure 4). Similarly, we recall that an hypothesis may be 
assessed in a rigid fashion, or it too may be flexibly represented and updated as a 
belief or credibility (Table 1). 

To 'summarize this preliminary discussion of  utility and bias, we note that there 
subtle relationships among bias, utility, efficiency, and incremental learning. We also 
suggest that humans first learn probabilistic information (Figure 4(b)), then convert 
it to a logic form for concise communication (Figure 4(a)), and further, that both 
representations are normally present at once. (See Glass & Holyoak, 1975; Medin & 
Smith, 1984; Rendell, 1983b.) 
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.Definition 8. Utility 

Utility is a term used to describe a goal-oriented quantity u related to the problem 
domain. For  present purposes, we consider u to be the utility of  some object x. The 

-range of  u may simply be binary, to indicate class membership, or u may be a real 
number in [0, 1], to code the degree of  class membership. Given this flexible choice, 
we often do not need to distinguish between the degree of  membership of  x and 
probabi l i ty  that x satisfies the domain goal. 

Since x is a vector of  attributtes (x~, x2 . . . . .  xk) u is a function of  these k variables. 
The problem o f  induction is to discover this function. 

The utility u(x) is our degree of  belief in the hypotheses "object  x is in the desired 
class". Here u is supposed be be correct, so efficacy is implicit. Compare this with 
the higher level hypothesis " funct ion  u is the correct one" ,  where efficacy is explicit, 
and another function ~(u) measures the efficacy of  u (see Section 1.2). 

1.4 Understanding the contributions o f  various sources o f  knowledge 

Given a number of  diverse ways to improve the power of  inductive systems, we might 
ask, as have Ritchie and Hanna  (1984), whether we can understand these systems 
better. We would hope, for example, to be able to compare the amount  of  knowledge 
added by a program versus the amount  given by the user. But is this possible? Here 
we take some steps toward an answer to this and related questions. We define a 
measure for the amount  of  generalization P, and then use I' to determine the 
difficulty of  an inductive problem, the contribution of  a knowledge source, the 
strength of  an inductive bias, and the amount of  learning done by a system (cf. 
Michie, 1977). 

1.4.1 Amount o f  generalization 3/and inductive gain I" 

Consider the notion of  generality/specificity, assuming that just one concept is to be 
learned. Given a universe U of  objects, one concept C describing class Sc c_ U is said 
to be more general than another B describing class SB _ U (and B is more specific 
than C) if C applies in more cases than B, and if SB C Sc; cf. (Dietterich, 1982, p. 
365). For example, in Figure 1, the concept C = (oz V 04) applies in two cases and 
B = oz in only one, so C is more general than B. In Example 3, the number of  winning 

• states in checkers is greater than the number of  board configurations having a piece 
advantage of  10 men (since there are more ways to win than by having an 
overwhelming piece advantage, and the latter should always win). Hence the concept 

-"winning posit ion" is more general than the class "piece advantage = 10". 
In performing induction, a learning program must infer a concept C from a 
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universe o f  more  specific descriptions B1, B2 . . . . .  BN. These may  or  m a y  not  be the 
fundamenta l  objects o f  the universe. For  the checkers example, C might  be "winning  
posi t ion '  . The Bi might  describe all N = 1018 individual states, or  at another  

extreme, the Bi might  be N = 20 degrees o f  piece advantage  (recall that  an object  
can be anything).  6 In general, the smaller the value o f  N, the less difficult is the. 
induct ion required to produce  C. I f  the Bi are already abstract ,  if they have a large 

grain size, the induct ion is easier. 
Aside f rom the number  N o f  initial classes, there is a second source o f  difficulty.- 

I f  the language used for  the descriptions B1, B2 . . . . .  BN is much different f rom the 
language used for  C, part icularly if the initial descriptors or  ground attributes are 

different,  then the induct ion is harder .  For  example, g round  attributes for  games 
such as checkers are of ten  features like piece advantage,  center control ,  etc. (the 
number  o f  feature descriptions is then about  106 (Samuel, 1967)). Induc t ion  is 
feasible using features, mainly because they relate directly to  winning; cf. the "single 
representat ion t r ick"  (Dietterich, 1982). On  the other  hand,  if we describe a state in 
terms o f  primitives that  are the contents o f  each square Of the board ,  the problem 
is qualitatively more  difficult (RendeU, 1985b). Hence,  our  measure o f  inductive 
difficulty should account  for  the structuring required to create C f rom B1, B2 . . . . .  

BN. For  the present, however,  we consider a first approx imat ion  o f  a proper  measure.  
We define the inductive compression "y between Bh  B2 . . . . .  BN and C (or between 

the classes they describe) as log2 N - 1 (the subtract ion relates to the fact that  the goal  
is two classes and logz2 = 1). In  the checkers example, if 10 6 feature descriptions are 

classified into " w i n s "  and " n o t  wins" ,  the inductive compress ion 3' -- log2 106 - 
1 = 19 bits. One reason for  using the logar i thm is that  the amoun t  o f  generalization 
is of ten  extreme. Ano the r  reason is that  inductive compress ion should be additive in 

cases involving multiple stages (Watanabe ,  1969). 
It m a y  be that  more  than  two classes are to be fo rmed at a time. For  example, 

rather  than classifying game states as wins or  not ,  we m a y  wish to categorize states 
into classes o f  different strengths or  utilities. With  m = 100 utility classes, the overall 

inductive compress ion islog2 (N /m)  = log2 106 - log2100 = 13 bits. This suggests 
that  it may  be easier to spread the states out  a m o n g  100 utility classes than to decide 
precisely which are wins. 7 On  the o ther  hand,  learning unrelated classes is more  
difficult,  not  less, so 3' is suitable only for  learning degrees o f  utility, i.e. for  learning 

SCalling a particular piece advantage an object is really not so strange. Consider that we filter out in- 
formation unnecessary for the problem at hand, such as whether a man is placed neatly in the middle 
of the square it occupies. Of course, classifying on the basis of piece advantage alone would result in 
many errors. But if piece advantage really were sufficiently descriptive for winning, we could legitimately 
filter out other details about the board configuration. 

7 Consider that an uncertain case might be resolved by placing it in a new class midway between two 
contenders. Also consider that 3' is designed primarily for ground attributes which are tame features not 
requiring structuring, so that the bias of Figure 2 may be used to discriminate utility into intermediate- 
probability classes that are adjacent in feature space. 
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the degree of  membership  for a single class. The suitability of  3 /of  course extends 
to utility classes which may be only partially formed,  as long as the class format ion 

moves toward the ultimate goal. 

Definition 9. Ground attributes 

A ground attribute is an attribute explicitly defined and supplied by the user of  an 
inductive system. Sometimes the program itself may create more abstract attributes 
(new terms) f rom the original ground attributes, though few systems have this 

capability. 

Definition 10. Inductive compression 3/(first approximation) 

I f  there are N object descriptions B1, B2 . . . .  , BN in the universe, to be formed into 

m utility classes C1, C2 . . . . .  Cm, the inductive compression is 3/ = logaN - logzm. 
Note that  3/ depends on the abstraction of  the initial descriptors or ground 

attributes (reflected in N), and also on the spread of  the end product  (the number  

m of utility classes). 

This definition, which assumes equal prior probabilities of  the N objects, is the 
information compression (Watanabe,  1972). A better measure of  3, should account 
for the fact that  some of  the objects may have little or no chance of  occurring; this 
would preclude false impressions of  the real problem difficulty. Other extensions of  
the definition would account for effects o f  feature interaction, and for the difficulty 
of  rearranging, conceptualizing, or structuring objects, i.e. of  transforming their 
descriptions if necessary. However,  inductive compressions are often so large that 
estimates are indisputable. Furthermore,  when we compare  domains or systems, 
qualitative differences in inductive compressions can be resolved in favor of  the lesser 
compression, so that  inequalities remain valid. 

The measure 3, implicitly assumes that the a domain object has been placed in its 
proper  utility class, i.e. that the inductive compression is effective. I f  we want to 
make efficacy explicit, we may instead consider induction as a search for the correct 
means to classify domain objects. In this case, we need to place each hypothesis into 
its proper  credibility class. In Figure 1, the number  of  objects N = 4, and if we are 
!earning one concept, m = 2, so the inductive compression 3/ = logz4 - logz2 = 
1 bit. The number  of  hypotheses is 2 N = 24, and if we are learning a binary credibility, 
the number  of  classes M = 2, so the inductive gain F = log22 N - log22 N - logzM 
= N - logzM = log216 - logz2 = 3 bits. Somewhat like the situation with 3/, a more 
complete measure of  F should account for the difficulty of  structuring the hypotheses 
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themselves. Unlike T, F does account for the difficulty of  finding an effective 
hypotheses (the correct concept). This is another way of  saying that F accounts fo r  
any structuring required to classify the original objects o f  the domain universe 
(consider that  an hypothesis is a utility function). 

Definition 11. Inductive gain P (first approximation) 

I f  there are 2 N hypotheses H1, H2 . . . . .  H2N to be formed into M credibility classes 
~1,/.t2 . . . . .  #M, the inductive gain is F = lOgE2N-log2M = N - l o g 2 M .  

While we have written the number  of  hypothesis 2 r~ in terms of  the number  of  
domain objects N, the value of  N is not always known. For example, when we use 
F for bias determination, we know the number  of  hypotheses, but not necessarily the 
effect on the objects of  the problem domain (examples appear later). The M 
credibility classes may be only partially formed,  as long as they are consistent, i.e. 
as long as any bias used in their format ion is appropriate.  

This single measure F can be used for the difficulty of  an inductive problem, for 
the amount  of  learning done by a system, and for the strength of  any sort of  bias. 
The idea is that knowledge can be supplied by various means and agents, but the 
overall inductive gain is independent of  the source. 

1.4.2 Broad use o f  P to assess difficulty, bias, and knowledge acquired 

As we have seen, there are many  ways to constrain induction. These restrictions or 
biases involve several choices, including ground attributes, description language, 
hypothesis space operators,  credibility criteria, and means for updating credibility. 
Each choice restricts and focuses, and the contribution of  each may  be measured by 
F. Let us consider some knowledge sources. 

Problem domain and object description. To begin with the most obvious effect, the 
difficulty of  a generalization problem depends on the grain size of  the ground 
attributes relative to the number  of  classes to be learned. Since the inductive gain is 
r = N - log2M, where m is related to the purpose of  the induction and N is number  
of  objects in the universe, increasing the initial grain size decreases the value of  F. 
As a simple case of  Example 1, suppose there are two attributes and each may take 
8 values. The number  of  objects in the universe is then 64, and the number  of  
hypotheses is 264. The inductive gain required to learn one concept is V -- log2264 - l" 
= 63 bits. 
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Syntactic constraint. Next, the representation language may restrict hypotheses and 
thereby reduce the effort  necessary to produce and test them. Continuing with our 
example, suppose that the only concept descriptions permitted are conjunctions of  
the form (al -< Xl m_ bl) & (a2 <- x2 --- bE); these descriptions are the rectangles of  
Figures 2 & 3 producing the bias of  implicit disjunction. The number of  sensible 
descriptions of  this type is (~8) 2 = 1296. Log21296 = 10 bits, so the gain F provided 
by our  syntactic constraint is 64 - 10 = 54 bits, leaving only 63 - 54 = 9 to be 
learned. (Assuming that such language restriction is appropriate, nearly all the gain 
is provided by the knowledge that a single conjunction is adequate). 

System learning versus user hints. Unless the user provides advice, the remainder of  
the induction is performed by the system, and we may compute the system 
contribution by subtraction. There are some remaining considerations, however. The 
user may alter the credibility # or its equivalent. This user aid may sometimes be 
measured from the number of  candidate hypotheses eliminated, though not always. 
If  # is dynamically altered by the programmer (Lenat, 1983), it is difficult to 
apport ion credit between user and machine (Ritchie and Hanna, 1984). Despite this 
unresolved difficulty, there are many learning systems for which credibility is 
determined solely by the program, and for these learning systems, we have: 

Definition 12. Problem difficulty, bias strength, and conceptual knowledge 
acquisition 

The total inductive gain r d  = r o  + r s ,  where ro  is the initial gain provided by the 
restriction of  universe and language, and rs  is the gain of  the learning system. The 
total gain Ind is the problem difficulty. Fo is a measure of  the bias strength which was 
discussed qualitatively by Mitchell (1980), and by Utgoff  and Mitchell (1982). Fs is 
a measure of  the amount  of  induction done by a system, the conceptual knowledge 
acquired (Rendell, 1983b). 

Conceptual knowledge Us can be acquired in stages (Rendell, 1983b). r s  can be 
used in combination with other measures to determine the power of  a learning 
system. (Consider an analogy with physics, where power -- energy / time. Roughly 
speaking, if Fs measures energy expenditure, then the inductive power --- r s  / com- 
puter time.) 



202 LARRY RENDELL 

2. Realization of  inductive power using strong initial bias 

This major part of the paper examines some schemes and principles for attaining 
powerful induction, using a particular bias sometimes called selective induction 
(Michalski, 1983). Loosely speaking, selective induction means implicit disjunctions. 
and this requires " t ame"  ground attributes giving well behaved utility functions (see 
Figures 2 & 4). Selective induction is a prevalent, useful and extreme bias; it is widely 
used because it has significant scope and markedly improves efficiency. To 
investigate the characteristics of selective induction, we shall use the fundamentals 
discussed in Part 1. We shall also examine some new issues, such as judicious 
management of uncertainty to facilitate incremental learning and resource 
conservation. There are three sections. The first explains what selective induction is, 
how it simplifies the problem in terms of inductive gain Fo, and when selective 
induction is appropriate. Section 2.2 develops an approach for managing uncertainty 
through the use of probability. The final section considers the issues of efficiency and 
efficacy and examines some specific methods and principles. 

2.1 The syntax and semantics o f  selective induction 

As Utgoff and Mitchell (1982) have argued, there are two important aspects of any 
bias. One is the strength of the bias, which we have defined as Fo, and the other aspect 
is the appropriateness of the bias, which we have also called its efficacy. In order to 
know the bias strength imposed by a language for concept representation, we need 
to examine the syntax of that language. In order to understand the appropriateness 
of a bias, we must examine the meaning or semantics of the constraint imposed by 
the language. 

Preliminary definition. Selective induction 

Selective induction is a commonly used bias which has many guises. Its essence, 
however, is that the user chooses ground attributes so that implicit disjunction will 
be sufficient (see Figure 2). Either literally or metaphorically, the problem of 
induction is reduced to selecting neighborhoods of feature space. Implicit disjunction 
permits relatively straightforward, efficient algorithms which restrict the number of 
elements required to specify a concept (these elements may be disjuncts, prototypes, 
or parameters of various sorts). These notions will become clearer as we proceed. 
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~. 1.1 The syntactic limitation and bias strength of  selective induction 

We may consider selective induction as a restriction of  predicate logic. The full 
predicate calculus permits the expression of  structure or relations through predicates 
having more than one argument, but if only unary predicates are allowed, relation- 
ships cannot be expressed among objects in the universe. What remains is the 
capability to identify attributes of  an object (see Definition 1); this helps to construct 

classes of  objects. We express an object as a vector x = (xl x2 . . . . .  Xk), and we 
describe a class as a concept C based on such vectors, e.g. C = (3 < Xl - 6) & (1 
<- x2 -< 5) as in Figure 5(a). 

A related issue is the type of  scale used for attributes. Two possibilities are nominal 
and interval scales. A nominal scale assumes no order in the values of  an attribute, 
whereas an interval scale does. In combination with an inductive algorithm, the 
ordering may restrict the number of  describable hypotheses, so an interal scale can 
increase the bias strength ro  (i.e. the inductive gain provided by the user). We shall 
primarily discuss interval scales (this includes the binary possibility, which is a special 
case of  both interval and nominal scales). For an examination of  various scales and 
their effects, see Anderberg (1973, p. 27 ff.). For experiments with nominal and 
structured variables see Michalski (1983). 

Many algorithms exploit interval features and proximity measures to restrict the 
number of  hypotheses. These methods all construct feature space neighborhoods by 
aggregating vectors (generalization) or by differentiating sets of  vectors (special- 
ization). There are three basic ways to limit formation of  classes (sets of  vectors) by 
constraining concepts (class descriptions). One way is to circumscribe the positive 
class, another is to delineate the boundary between the positive and negative classes, 

(a) (c) 

×2 

I -  

(b) 

_ + 

X2' 

X1' 
Figure 5. Three methods  for selective induction,  in which classes or concepts are concisely represented as 
neighborhoods of  feature vectors. In (a), a (positive) class is described as a concept. In (b), the positive 

" and negative classes are distinguished by the boundary  between them.  In (c), a concept is represented as 
a centroid or prototype,  and class membersh ip  may  be a decreasing function o f  distance f rom the 
prototype. Each method  is a form of  implicit disjunction (see Figure 2). When  justified, selective induction 

.provides great saving in computa t ional  resources because o f  the t remendous  reduction in the number  o f  
hypotheses considered. 
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and the third method is to discover a " m o s t  representative" vector of  the positiv ,~ 
class, called a centroid or prototype (see Figure 5). 

Methods which describe a concept. One kind of  method,  commonly used in  AI,  
replaces individual attribute values with sets o f  values (Dietterich, 1982; Michalski, 
1983). For example, if x = (Xl, x2) = (4,0), one concept C which could be induced 
using x as a positive example is shown in Figure 5(a): C = (3 _< xl - 6) & (1 _< x2 
_ 5). I f  the attributes have interval scales (as they do here), this selective expression 
is a rectangle in feature space (see also Figures 2 - 4 ) .  Rectangles are economical to 
store and to manipulate (Rendell, 1981). 

Assume that a concept is to be learned as a function of  two attributes. As in Section 
1.4.2, suppose that  the universe has 64 objects, covering a discrete 8 × 8 feature 
space. Let the description of  a datum be (xl, x2), where each feature has eight values: 
Xl E [ ai] and x2 E [ bj} (0 ___ i, j ___ 7). With no constraint, the number  of  ways of  
forming 2 classes is very large: 264 = 1.8 × 1019, so that the required inductive gain 
is F = 1og2264- log22 = 63 bits. 

However,  the allowable concepts may  be restricted. One constraint is to impose 

the f o r m x l  = all v a i z v . . ,  v a i n & x 2  = b hVbjzV . . .  v b j m ( w h e r e n  = m < 8). 
Since the values for each attribute may be selected independently of  the other 
attribute, the number  of  formulae of  this type is 28 × 28 = 216, an extremely small 
fraction (2-48 = 10-14) of  the total number  when there is no constraint. Here the bias 
strength 1~o = log2264 - Iog2216 = 64 - 16 = 48 bits. Michalski (1983)has employed 
this bias, which he calls internal disjunction. 

More restrictive still is an earlier example, in which the only concept descriptions 
permitted are conjunctions of  the form (al < xl < bl) & (a2 - x2 _ bz). As we saw 
in Section 1.4.2, the gain resulting f rom this bias is Fo = 64 - 10 = 54 bits. I f  we 
relax the constraint by permitting a disjunction composed of  two such descriptions, 
we reduce the bias by about  10 bits (the logarithm of  the number of  hypotheses 
added), so this less severe bias is 44 bits. 

These biases are all forms of  implicit disjunction (Figure 2). Implicit disjunction 
has appeared in many  learning systems which are superficially different. Samuel 
(1967) used rectangular feature space cells for checkers. RendeU (1985a) has 
constructed a complex scheme more flexible than Samuel 's .  Michalski (1983) has 
used interval, nominal  and " s t ruc tu red"  scales, all with a strong bias. Hunt ,  Matin 
& Stone (1966) and Quinlan (1983) have incorporated decision trees, a slightly 
different representation with the same underlying bias (as we shall see later). 

Methods which express discriminating boundaries. The second way of  representing 
a class is to specify algebraic relationships among attributes of  objects. In its simplest" 
form, this means interval features and hyperplane insertion. We can say that an 
object x is a member  of  the desired class if x = (xl, x2 . . . . .  Xk) falls on one side of  
a hyperplane in feature space. In Figure 5(b), 1.6Xl + x2 > 8 is the separating 
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boundary. This kind of representation is used in discriminant analysis (Duda & Hart, 
1973; Tou and Gonzalez, 1974). 

In linear discriminant analysis, the number of hypothesis is a function of the size 
N of the universe and the feature space dimensionality k (Duda and Hart, 1973, pp. 

-69 ff.). The bias becomes stronger as N increases, s In our example of 64 objects in 
an 8 × 8 space, the number of dichtotomies which can be produced by inserting 
linear boundaries is only about 4000, which is approximately 2.2 x 10- ~6 of the total 
-number of possible categorizations. Here the inductive gain is about 64 - log24000 
= 52 bits (leaving only 11 bits to learn). 

Methods which represent prototypes. The third common expression of a concept is 
its centroid or prototype, which is interpreted as the most representative object of 
the class. Its spatial extent is given by class boundaries which may be sharp or fuzzy. 
Sharp boundaries correspond to a single implicit disjunction, whose bias we have 
already quantified for rectangles (the center or centroid of a rectangle is its 
prototype). The bias is roughly similar if the class is spherical, if the boundaries are 
fuzzy, or if the attributes are nominal. 

Both the prototype and the boundary representation admit analytic mothods, 
which do not explicitly generate hypotheses, but rather compute the parameters of 
a model. Hence these methods can be even faster than our bias calculations suggest 
(although incremental learning is a problem). See (Duda & Hart, 1973; Medin & 
Smith, 1974; Tou & Gonzales, 1974). Easterlin & Langley (1985) discuss some 
advantages of prototypes. Rendell's (1983a, 1985a) systems accommodate 
incremental learning and yet they represent concepts as prototypes (and 
simultaneously as logic descriptions). Later we shall consider details. 

Synthesis. What are fundamental similarities and differences among these three 
methods for selective induction? First, the commonalities: When attributes have 
interval scales, restricting classes by using discrimination boundaries is similar to 
constraining concepts by using conjunctions of attribute ranges. Both these and the 
prototype methods rely on feature space proximity (Figure 5), i.e. implicit 
disjunction (Figure 2). When attributes are not interval, the basic idea is similar, 
except the concept descriptions are conjunctions of attribute sets rather than 
conjunctions of attribute ranges. All three methods produce concise class 
descriptions, and they all embody a strong bias. 

s More precisely, suppose that the N objects in the universe are evenly spread out in k dimensions. Then 
the f~action of dichotomies (single concepts) covered by a linear discriminant function is 

P 
f(N, k) = 

i____~O 

N ~ k + l  

N > k + l .  
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This bias is selective induction. It limits the representable concepts to implicit 
disjunction, and this is describable as long as the problem fits the restriction. In other 
words, when the domain permits, we may aid efficiency without impairing efficacy, 
by imposing appropriate syntactic constraints to reduce the number of hypotheses 
expressible. The strength of this bias is measurable; as our examples suggest, selective 
induction often results in an inductive gain of 80°7o or more (and this measure is 
logarithmic). 

While the three major methods share implicit disjunction, they also exhibit- 
important differences. Discrimination functions may be nonlinear, and these and 
other techniques improve flexibility (they reduce the bias somewhat). Moreover, 
there are fast algorithms for computing decision boundaries and prototypes (Tou & 
Gonzalez, 1974). On the other hand, concepts represented in logic are easily 
comprehensible to humans (Michalski, 1983), and some associated methods are well 
suited to fast incremental learning (Rendell, 1981, 1983a). Like logic, the prototype 
representation is also comprehensible, but at the same time, it is naturally suited to 
noisy situations (Matheus, 1985). 

As we shall soon see, these three basic methods may be combined to produce a 
more powerful scheme. Briefly, discriminant analysis becomes clustering when 
degrees of belief or probabilities are grouped. If the discriminant boundaries are 
parallel to feature space axes, the clusters become conjunctive concepts or rectangles 
(Figure 5). Each rectangle r expresses not a concept C in the problem domain, but 
rather the probability p that r implies C. Each (p, r) pair has a centroid, and a set 
of centroids takes the place of a single prototype for C. 

2.1.2 The semantics of  selective induction: preconditions of  the bias 

When is selective induction appropriate? Consider our illustrative examples. The first 
one has often been the subject of AI experiments, in which a concept such as "ball"  
is found to be round in shape (not square or triangular), and smooth in texture (not 
rough). Such attributes usually have few values and relate directly to the concept to 
be learned (Dietterich, et al., 1982). Similar situations arise in many tasks, such as 
disease diagnosis (Michalski & Chilausky, 1980). 

Special attributes. However, the problem is not always so simple. To contrast two 
extremes, consider two kinds of ground attributes in symbol recognition. One is 
abstract features, such as various curves and lines which compose a symbol to be 
learned. In this case there is a direct relationship between ground attributes and 
concept (the symbol). A different choice of attributes is an array of low level 
primitives which are squares (pixels) of an image. Here the relationship between 
attributes and concept is distant and complex. As another example, consider 
checkers, where an object (a board configuration or state) can once again be 
described in two fundamentally different ways. One choice of ground attributes is 
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the set of  32 primitives indicating the contents o f  each permissible square. In 
contrast, a more abstract  description of  a state involves features such as piece 
advantage, mobility, etc. Abstract  features have a rather direct relationship to the 
ultimate concept (winning): a small change in the value of  any feature causes a small 

.change in the board  strength. In contrast,  primitives are not directly related to the 

goal: a small change in one square can make a drastic difference. 
This returns us to the notion of  utility discussed in Section 1.3.2. In learning the 

~concept of  " b a l l " ,  a positive training example might be the vector (large, round,  
smooth); it has a utility of  1, whereas (large, square, rough) has a utility of  0 as a 
ball. In symbol recognition, the utility is the degree of  match between a pattern and 
the target symbol.  In checkers, the utility is some measure of  the strength for 
winning. No matter  what the problem domain,  there is always some purpose or goal 
for induction; this purpose may  be expressed in terms of  the utility. As we saw in our 
earlier discussion, the utility is a function u of  some vector of  ground attributes x that 
describe the object under consideration. Our recent examples show that when x is a 
vector o f  primitives, the function u(x) is very irregular, but when x is a vector of  
abstract features, the function u(x) is well behaved. Abstract  features prearrange 

objects with regard to their utility, so that u(x) has few peaks (Figure 4). 

Utility coherence as a requirement for  selective induction. In Section 1.3.2 we saw 
that  the problem of  induction is the problem of  discovering the utility function u(x). 
To detail the requirements for selective induction, let us consider some possible forms 
of  u. Suppose first that  utility is binary, and indicates class membership.  Figure 6 
shows two different patterns of  concept complexity. The situation in Figure 6(a) is 
an instance of  implicit disjunction like that o f  Figure 2. In cases like Figure 6(a), one 
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Figure 6. The special nature of attributes for selective induction. Selective induction (a) assumes a very 
straightforward kind of regularity, where neighborhoods are uniform because attributes are abstract 
~¢eatures. In contrast (b), if objects are described in terms of less favorable attributes (primitives), any 
regularity is usually more complex, and selective induction is not appropriate if the pattern extends far. 
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of the fast methods for selective induction discussed earlier will suffice to produce 
a simple concept description. 

For Figure 6(b), however, a little analysis proves that selective induction is 
inapprQpriate. According to Definition 7, the efficacy of selective induction would 
be low here because a small number of neighborhoods cannot express any credible. 
hypothesis whatever. As we saw in Definition 6 and the discussion preceding it, the 
credibility of an hypothesis must ultimately depend on objective evidence expressed 
in terms of classification accuracy. In Figure 6(b), the evidence does not support a- 
small number of neighborhoods, since any such hypothesis results in many 
classification errors. 

Hence, to be appropriate, selective induction must work with attributes which 
permit the implicit disjunction bias of Figure 2. We can think of algorithms for 
selective induction as operating on individual windows of Figure 2 in an attempt to 
cover positive examples and omit negative ones. The windows become disjuncts of 
a concept, and if too many disjuncts are required, the process can be prohibitively 
expensive (Banerji, 1985). 

Let us broaden our examination to include both binary and non-binary utility. In 
Figure 4(a), the utility u is binary; this diagram corresponds to Figure 6(a) except that 
only one attribute is shown and there are two neighborhoods of positive objects 
instead of one. Each blip in Figure 4(a) requires a separate disjunct in the 
corresponding concept description. In the other two diagrams of Figure 4, u is a real 
number representing the probability or degree of class membership. In Figure 4(b), 
the blips can be identified efficiently by fast algorithms for selective induction (e.g. 
discriminant analysis). In Figure 4(c), the maxima can also be located by fast methods 
(such as curve fitting). In contrast, if (b) and (c) had many peaks, the sparse data 
typically available would not support the models necessary (e.g. low order 
polynomials for curve fitting). 

Whether the utility function u(x) is binary, discrete, or continuous, selective 
induction requires uniformity or smoothness in u(x), since neighborhoods of 
constant utility are discovered. Selective induction needs local utility coherence. 

These ideas have arisen in other work. Koestler (1964) argued that goal-direction 
is necessary in (perceptual) induction. Medin & Wattenmaker (1985) have examined 
the importance of utility coherence in contexts like ours. Rendell (1985b) has 
extended the notion of utility coherence to achieve tractable induction in cases of 
concept formation where difficult structuring is required. 

Summary. Since induction is purposeful, it aggregates patterns of utility. Selective 
induction discovers simple utility functions using special ground attributes which 
produce utility coherence. Utility coherence may appear as implicit disjunction or as 
smooth variation; the exact manifestation depends on the model imposed. Selective 
induction may complete logical models (constructing concepts of unit utility), it may. 
find discrete functions (clustering classes of different utilities), or it may fit real 
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functions (parameterizing curves of continuous utility). Every kind of selective 
"induction involves concise expression, strong bias, and efficient algorithms. 

Definition 13. Selective induction 

Syntactically, selective induction is class formation in which the classes are described 
as a small number of disjuncts (if utility is binary) or as a small number of maxima 
(if utility is continuous). 9 This means a strong (measurable) constraint or bias, and 
consequently fast algorithms. Semantically, if selective induction is to be effective 
(appropriate), a very special characteristic is necessary: the vector x of ground 
attributes describing objects in the domain must be abstract features that cause the 
utility function u(x) to be uniform, smooth, or locally invariant. 

2.2 Dealing with uncertainty: using exceptions to advantage 

This section examines a general framework for selective induction. The result will be 
a probabilistic method which not only can manage uncertainty, but also can profit 
by it. 

2.2.1 Binary versus probabilistic concept representation 

Simple, all-or-none representation. In supervised learning (learning from examples), 
a teacher provides positive and negative training examples of a desired class. As 
discussed earlier, concepts describing the class may be formed in various ways: by 
inserting decision boundaries, by determining conjunctive descriptions, or by finding 
representative prototypes. Each of these forms of selective induction amounts to 
implicit disjunction, wherein a few disjuncts or neighborhoods compose the concept. 
In the simplest case, there is only one neighborhood; e.g. in Figure 7(a), an object 
x is an instance of C as long as (0 _ xl -< 3). Discovery of a precise dichotomy into 
positive and negative aspects of a class is binary induction. 

In cognition, this rigid, defining features view of concept representation has been 
contrasted with a more flexible perspective which accommodates uncertainty, called 
the probabilistic view (Medin & Smith, 1984). Humans may use both kinds of 
representations, the binary or defining feature one for fast communication (it 
requires less information), and also the probabilistic representation for noise 
management and simple modification (probabilistic information can be updated 

• 9Michalski 's  (1983, p. 105) definition o f  selective induction is that  the process creates no new 

attributes. 
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Figure 7. Binary versus probabilistic concept representation. Ideally, classes can be neatly differentiated 
into positive and negative instances (a). But more commonly, exceptions occur (b). In less extreme cases, 
where the neighborhoods still cohere, the exceptions are just anomalies whose effects can be recorded 
using proportions or probabilities. 

reliably and easily). A probabil i ty can be converted to a binary decision at any time. 

Flexible, probabilistic representation. But not only is the probabilistic representation 
more flexible, it is essential in a fully capable system. While simpler problem domains 
can avoid probability,  the real world requires us to deal with uncertainty. As we saw 
in Section 1.2, sources of  uncertainty include sparse and noisy data, imperfect 
ground attributes and syntactic constraints. Moreover,  there are natural feasons for 
preferring some hypotheses over others, depending on bias and evidence. In 
addition, incremental learning situations adjust preferences: we must retain more  
than one hypothesis, and dynamically alter the credibility of  each. 

There are certain minimal requirements for updating credibility or belief. One 
requirement, especially useful in incremental learning, is not only a probability, but 
also a second order probability,  or uncertainty in the credibility itself. In other words, 

we have both a belief and also a confidence in our belief. In Figure 7(b), a sample 
of  n = 5 objects x = (xt, x2) have the description (0 _< xl -< 3), and g = 4 o f  them 
are positive instances. This leads us to predict the probabili ty of  finding a positive 
instance in (0 _< Xl - 3) as u = g /n  = 4/5 = 0.8. But we might be more or less certain 
of  any such judgment.  It is possible to compute the confidence, or (inversely) the 
error e in u. With n = 5, e might be +50°70, and this would reduce to about  + 13°70 
if n were increased to 20 (elementary statistics shows that e varies inversely with "i-n, 
al though there are other factors). 

In incremental learning we would discard the original data, but we can summarize 
the important  information:  probabil i ty and its error are the just pair (u, e). Our 
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interpretation of  a high u and low e would be that there must have been few 
exceptions, and that our experience must have been extensive. If  e were high, we 
would asst~me that our experience must have been limited, unless u were around ½, 
which would indicate many exceptions. If  u = ½ and e were very low, then we might 
suspect that the attributes are inadequate, since no binary statement can be made 
about the utility, and we are sure that further experience will not improve matters 
much. Rendell (1983a, 1985a) gives some methods for computing and updating 
beliefs for incremental induction. 

Our discussion has assumed that just two numbers are adequate (the belief u and 
its error e). Other possibilities exist, however, since underlying the concise 
representation (u, e) is a complete probability distribution (though we rarely know 
what it is). Researchers have taken a number of  related approaches to the problem, 
although a standard technique has not yet emerged (Cheeseman, 1985). This is 
reminiscent of  work in knowledge representation, where alternative languages are 
sometimes equivalent, but one may be more natural for a particular application. 

Below we consider a representation which captures both the usual requirements 
(e.g. the ability to identify a new object), and also the demands of uncertainty. These 
include the assessment of an hypothesis (its credibility or belief), the confidence we 
have in the assessment (or inversely, its error), and the ability to convert from 
probabilistic information to a binary decision while retaining the potential for 
updating (incremental learning). 

2.2.2 A specific approach to uncertainty 

Representing sub-concepts. Instead of just two categories (positive and negative), the 
presence of  uncertainty requires gradation. Rather than expressing a goal concept C 
outright, we represent probability classes; i.e. classes of  discrete values which 
represent different probabilities of  membership or varying degrees of  membership. 
Associated with a probability u may be one or more sub-concepts. In Figure 8, the 
leftmost rectangle is r = (0 _< xl -< 4) & (0 _< x2 -< 2), and this sub-concept has 
probability u = 0.2 of  being C. In other words, u is the conditional probability 
Pr(CI r) of  C. 

From one point of  view, the number of classes is the number of values; 1° from 
another point of view, there are only two classes, positive and negative. In this binary 
view, the utility function is Boolean and directly determines class membership; in the 
probabilistic view, the utility function is multi-valued and indicates probability of  
class membership. In the binary view, we attempt to learn the ultimate concept C 

1o In practice, it is always reasonable to use a finite range for u. If  the range is decided by machine 
(i.e. if there is no prior knowledge of  probability classes), the learning is unsupervised in this respect, 

. even though the training examples may be presented in a supervised fashion. One way of  implementing 
the creation of  probability classes (unsupervised learning) is by using clustering, which we shall discuss 
later. 
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Figure 8. Probabilistic concept representation or region set. Instead of coding binary utility as a Boolean 
function, a concept comprises separate sub-concepts r of varying probabilistic utility u. (n values are 
shown inside rectangular sub-concepts r.) u is the degree of class membership or the belief in the hypothesis 
"an object falling within rectangle r fullfils the desired purpose". A tuple of associated information such 
as R = (r, u . . . .  ) is called a region. A feature space partition with this probabilistic information is a region 
set R. r is a concise, step-wise constant representation of a utility function u. Formed from regional sub- 
hypotheses, R embodies the complete hypothesis. 

directly; in the probabilistic view, we learn intermediate, sub-concepts r for the 

eventual determination of  C. 

Inducing concepts and sub-concepts. To induce a binary concept, we would use one 
of  the methods for selective induction discussed earlier, such as replacing constants 

with variables. As a simple example, suppose there is only one attribute, and restrict 
the form or model of  C to the expression allowing just one interval: (a _ xl < b). 
This is a simplification of  Figure 4(a), where the utility u is a Boolean function, and 

u has the value 1 at just a few neighboring points. Given the model and positive and 
negative examples of  C, a system can easily determine values for a and b. A slightly 
different view of  C appears in Figure 7(a), which suggests the discrimination method. 

A program can easily find the parameters of  the decision boundary. 
Normally the discrimination ends after a single boundary has been found to 

delineate (most) positive and negative instances. But suppose we continue the 

discrimination when there are exceptions. Figure 7(b) shows this case; here we form 
several classes having different probabilities of  class membership. The classes are 
sub-hypotheses, elements of  a discrete utility function. 

In cases of  uncertainty, the logical view is replaced by a real-valued one; instead 
of  a Boolean form, the model is a discrete or continuous function. If  the model is 
discrete, sub-hypotheses may be discovered by aggregating the positive examples or 
by differentiating them from the negative ones, as in Figure 7. In this case, the 
eventual concept is a by-product of  the search for local invariance, or of the search 

for marked dissimilarity. I f  the utility model is some curve, as in Figure 4(c), then 
the discovery of  the parameters for the model, and perhaps the selection of  the model 
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itself, may be a concequence of  preliminary classification procedures in the discrete 
approach (Rendell, 1983a). These procedures are based on similarity and 
dissimilarity. We may conclude that the discovery of  a concept is the result of  a search 
for similarity or dissimilarity. In other words, hypothesis formation follows 

.invariance localization or dissimilarity detection. 

Housing sub-hypotheses in a region set to produce a concise but flexible representa- 
-tion o f  a concept. When selective induction is uncertain and incremental, a formative 
representation of  a concept C may profitably be represented as multiple sub-hypo- 
theses. For each sub-hypothesis, we store its probability u of  membership in C, along 
with the error e in u. Sub-hypotheses are usefully expressed as rectangle r, but the 
prototype representation may also be worthwhile. In fact, both of  these representa- 
tions are important depending on context, so we retain both. To avoid ambiguity 
with the prototype of  the ultimate concept C, we call a prototypical member of  r its 
centroid c. Let us refer to the quadruple R = (r, u, e, c) as a region. As illustrated 
in Figure 8, a partition of  feature space gives the region set R = JR}. A region set 
is a concise expression of  the utility function, which is the hypothesis. An inductive 
system may perform various operations on regions, including differentiation 
(splitting reactangles r), generalization (merging rectangles r), reorganization (of R), 
and revision (altering the values of  p and e); see (Rendell, 1985a). 

Regions represent sub-hypotheses as rectangles and centroids, each for several 
reasons. First, there are a number of  advantages of  rectangles. Incremental learning 
demands progressively refined knowledge, and rectangles facilitate modification, 
since they can be split to form smaller rectangles or aggregated to form larger ones, 
as just suggested. Rectangles are easy to express, and convey meaning well. Further, 
the size of  r in a region R = (r, u, e, c) indicates the rate of  change of  u near c (if 
many small rectangles appear in some neighborhood, the utility changes rapidly 
there). But centroids c may also be important,  the precise reason depending on the 
particular application. For instance, c may be the best representation of  a sub- 
concept for class recognition, since similarity can be defined as a distance in feature 
space. Another use of  the centroid is to determine the utility u as a continuous 
function of  features; this vector e, along with the u value of  a region R,  define one 
datum in curve fitting: u may be an evaluation function as in Rendell (1983a). 

There are other important aspects of  a region set R = [ R }. The complement 1 - u 
of  the utility u gives the proport ion of  exceptions within a rectangle; this concise 
information may be used to decide when to add or create a feature (i.e. when to 
change the bias). R is intermediate between data and a binary decision, which allows 
continual revision of  the utility function, yet permits a tentative binary decision at 
any time. A region R is economical and effective: the probability u is a summary of  
many training examples, each of  which has some influence, but none of  which may 

. overwhelm the learning. The utility u and its error e are expressed as single numbers. 
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The next section develops these and related ideas about economy. 

Definition 14. Regions and sub-hypotheses 

The hypothesis is the utility function. A region R is a piece of  information about the 
utility function: a local implicit disjunction or neighborhood with a uniform utility 
and error. A region set R = [ R } is a discrete function composed of  regions; it may 
represent both a binary function (the logical form of  the desired concept), and also 
a continuous function (the very detailed form). Hence R is intermediate in generality. 
A region set codes the hypothesis; a region codes a sub-hypothesis. These structures 
aid time efficiency and cognitive economy. 

2.3 Speed and cognitive economy: representations, methods and principles 

Considerations of  economy involve both storage and time, and arise both during 
performance (hypothesis use) and during learning (hypothesis formation). These 
aspects are related; for example fewer hypotheses and sub-hypotheses to store means 
fewer to consider during use, and also fewer to access during incremental learning. 
In this section, we examine various sources of  economy, we compare their 
manifestations in learning systems for selective induction, and finally we propose 
some general principles for efficient and effective induction. 

2.3.1 The optimal discrimination criterion 

Regions or utility classes should not proliferate without good reason. The various 
rectangle sizes and shapes in Figure 8 suggest that a flexible strategy is required to 
accommodate different domain  characteristics. Suppose we begin with one large 
rectangle; how do we know when and how to subdivide it? The answer is quite 
straightforward: ~ we are interested in discriminating utility u in order to differentiate 
the quality of  competing objects during task performance. Therefore we would like 
to discover maximally dissimilar utility classes. 

The basic criterion. We might employ various algorithms, but to simplify, suppose 
we repeatedly split rectangles in two. In this case we measure and compare the 
probabilistic utility u for two tentative subrectangles. Figure 9 depicts one example 
for a set of  n = 287 data, g = 17 of  which are positive examples of  a concept. Various 
insertions of  a tentative boundary result in different values for the utilities u~ = g~/nl 
and U 2  = g2/n2 of  the two subrectangles (where gl -F g2 = g = 17, and nl + n2 = , 
n = 287). The best dichotomy is the one that produces the greatest dissimilarity in 
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Figure 9. A simplified view of the optimal discrimination criterion (without consideration of error). For 
various ways of splitting the data, the probability quotient or information content is computed to find 
the best one (see text). Here the most discriminating choice is (c). 

utility. In  o ther  words ,  the best  occurs where  H1/U2 is m a x i m u m  (if ul is the larger 
o f  the two utilities). Equivalent ly ,  we can  maximize  the dissimilari ty measure  d = 
I log ul - log uz i. Not ice  tha t  d = 0 means  equal  utilities. In Figure 9 the largest  
value o f  d is 2.2, so the cor responding  d i cho tomy  (c) would  be retained.  
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Accounting for uncertainty. While this dissimilarity measure d is a good  one, we cat'  
improve it. I f  ul and u2 are the two probabilities for  a tentative d ichotomy,  and e 

and ez their error factors, then d = I log ul - log uz I - log(e~e2). Notice that  d 
can be negative if the error factors  are greater than 1. The most  obvious  source o f  

error  is related to the sample size n, a l though there are other sources o f  r a n d o m  and. 

systematic error (Rendell, 1983a). To split a rectangle, compute  d for  a number  o f  

choices. I f  the largest d is positive, retain the corresponding split. Repeat  the process 
until addit ional ref inement is unwarran ted  by the data  (until d _< 0). Larger  values- 

o f  d mean  more  assured dissimilarity. A formal  derivation o f  our  cri terion d is based 
on  statistical analysis (Rendell, 1981). Rendell (1977) introduced this approach  in 
PLS1 to discover locally opt imal  evaluat ion functions.  

Similar measures. Our  probabil i ty-based dissimilarity d is much  like the informat ion-  
theoretic measure in Quin lan ' s  ID3 (1983, pp. 467 ff.); see also (Watanabe,  1969, pp.  

27 ff.). One can verify that,  in terms o f  u = g / n ,  the in format ion  criterion for 
dichotomies d '  = - u log u - (1 - u )  log (1 - u )  - [ I /n ]  ~ [gi log ui + (ni - gi) 

log (1 - ui)]. Table 2 shows some compar isons  between d and d ' .  Notice that  the 
two measures are quite similar, except that  d accounts  for  errors, which is especially 

impor tan t  for  small or  non - r andom samples. Either measure can be considered a 
componen t  in the overall credibility/z o f  an  hypothesis.  

Table 2. Values o f  similar criteria for intelligent discrimination. Shown are the inductive criterion d for 
PLS 1 (with and without correction for error e), and the criterion d '  for ID3 (larger is better throughout ,  

and  a zero or negative value means  no splitting is justified). Splitting governed by utility dissimilarity d 

or d ' lessens our ignorance of  the utility or probability o f  success in a task. In (a) the values correspond 

to Figure 9. Notice that  d and d '  produce the same result. In (b) the vatues listed are variations o f  the 

first entry o f  group (a). Notice that  the last entry o f  (b) beats any entry in (a); however the bias o f  the 
representation language prohibits this case. The last group (c) shows the effect o f  a small sample o f  20 

data. The pure informat ion criterion d '  fails to account for the lack o f  confidence associated with a small 
sample, while d naturally covers all cases. 

gl nl g2 nz d (no e) d d '  

10 80 7 207 1.9 1.5 
(a) 3 120 14 167 1.7 1.4 

12 97 5 190 2.2 1.9 

1 80 16 207 2.6 2.3 
(b) 5 80 12 207 0.1 - 0.3 

10 80 7 207 1.9 1.5 
15 80 2 207 4.3 3.9 

2 8 6 12 1.0 - 0 . 2  
(c) 4 8 4 12 0.6 - 0 . 6  

6 8 2 12 2.2 1.0 

0.019 

0.012 
0.026 

0.014 
0.000 
0.019 
0.074 

0.046" 
0.020 
0.256 



A GENERAL FRAMEWORK FOR INDUCTION 217 

Summary. Earlier we saw that the probabilistic information for a sub-hypothesis or 
region is concisely represented, and now we see the same for a set of  regions. When 
used for iterative induction, our scheme for intelligent discrimination minimizes the 
number of  sub-hypotheses or regions, since splitting occurs only when justified. 
Despite the compression, the critical information remains. In terms of  our credibility 
/~ for hypotheses, only those hypotheses (region sets) arise which are believed 
discriminative. 

Intelligent discrimination appears in slightly different forms in two learning 
systems which may seem unrelated on first sight (PLS I and ID3). Their statistical and 
information criteria are largely independent of  the particular algorithm used for 
discrimination; in fact Rendell (1985a) has used d for generalization and 
reorganization of  hypotheses. In the following section we examine other 
commonalities in systems for induction. 

2.3.2 A unifying view of systems for selective induction 

Construct&g dec&ion trees is selective &duction. Some learning systems represent a 
concept as a decision tree (Quinlan, 1983). A system which builds a decision tree 
chooses one of  k attributes xi (i < k), and the system labels the resulting branches 
with values of  xi (Watanabe, 1969). Every level in the tree corresponds to a different 
attribute, so the depth of  the tree is at most k, although we just saw that splits make 
sense only if the value of  the discrimination criterion d is large enough. 

Imagine the construction of  a decision tree from an initial node representing the 
whole universe. Suppose that attribute xi is selected and that xi has c values. 
Depending on the particular algorithm, as many as c branches result (note that we 
do not need to discriminate all values, especially if subsets of  them are similar 
according to our criterion d). Next, some other attribute xj is selected and a new level 
of  the tree is formed; this process continues until the attributes are exhausted or until 
d no longer discriminates training examples. 

What is the relationship between a decision tree and a region set? Both represent 
a single concept. But more specifically, if the attributes are interval or binary, then 
branches at one level of  tree correspond to partitions in one dimension of  feature 
space. Branching on every attribute value corresponds to exhaustive partitioning in 
one dimension. New levels in the tree correspond to partitioning in new dimensions. 
A decision tree retains the discriminatory ranking of  attributes; a region set retains 
probability and error. Neither of  these differences is inherent, but some others are. 
A region set does not require that an attribute be considered only once (this permits 
more refined discrimination; see Figure 8). A region set facilitates incremental 

"learning. 

Comparing learning systems & important. As well as comparing representations and 
algorithmic components,  we can relate overall aspects of  performance such as speed. 
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ID3 and PLS1 are both efficient (O(knm), where k is the number of attributes, n is 
the number of  data, and m is the ultimate number of classes). In contrast, some ~ 
algorithms are relatively slow, as O'Rorke (1982) has shown. The quantification we 
began in Section 1.4 to measure the conceptual knowledge acquisition can be 
extended to allow a cost/benefit analysis. This should be done cautiously, since there. 
are many factors - but sometimes the differences are so marked that any doubts 
disappear. 

Consider the advantages of comparing learning systems. If  we juxtapose systems,- 
commonalities and differences in their elements become obvious. By comparing ID3 
and PLS1, we have seen striking similarities in their discrimination criteria, and 
useful differences in their concept representation. We should ask why these 
similarities arise, which components are responsible, and whether improvement is 
possible. In what ways is Quinlan's (1986) recent development of ID3 like the error 
treatment of  Rendell's (1977) PLS1 (see Table 2)? Comparison of systems may also 
suggest improvements at points of dissimilarity. "Somparitive study can increase our 
ability to understand, to apply, and to develop representations and methods. 

A region set is a node in aprobabilistic version space. Continuing with our effort to 
unify learning systems for selective induction, let us consider how we might construct 
version spaces to manage noise. As we have been seen earlier in this paper, version 
spaces are desirable because they economically represent whole sets of hypotheses as 
subspace boundaries (see Figure 1). 

The common conception of version spaces is that they are hampered by their 
apparent inability to accommodate errors (Mitchell, 1978; Quinlan, 1983). But let us 
consider this question more carefully. In a normal version space, the nodes in the 
lattice are binary hypotheses (Figure 1). Indirectly, Figure 3 suggests a probabilistic 
version space, since it shows a sub-hypothesis r paired with potential information u 
= Pr(C I r) about the probability that r is part of the desired concept C. In essence, 
Figure 3 depicts a region (r, u, . . . )  as a single node. But a region is a component 
of  the utility function u(x) expressed as a region set R = { R ). It is this function u 
which ultimately represents C. Hence, we need a version space in which the nodes 
are region sets, as shown in Figure 10, a derivative of  Figure 3, in which the training 
instances have been converted to probabilities. 

The region set R is precisely the hypothesis representation which PLS1/2 
manipulates in its probabilistic concept formation. The structure imposed, however, 
is somewhat more complex than a simple lattice. While the generalization and 
specialization operators may transform one hypothesis into another by following 
branches in a lattice, reorganization operators can hop to a different part of  the 
lattice. Further, associated with descriptions r of sub-hypotheses are probabilistic" 
quantities such as u and e, and these additionally complicate the space. Revision 
operators altering u and e also jump to another part of the lattice. See (Rendell, 
1985a). 
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Figure 10. A portion of a probabilistic version space for a concept C. Instead of being a rigid hypothesis, 
each node in the lattice is a set of flexible sub-hypotheses (i.e. a set of regions). A sub-hypothesis expresses 
the probability u that a rectangle r implies C. The whole set of sub-hypotheses (region set) expresses the 
degree or probability of class membership as a function u of attributes. 

Data-driven operations make PLS 1/2 more efficient than Figures 3 and 10 suggest. 
See (Rendell, 1986). 

Inducing utility functions is conceptual clustering. As another  topic in our discussion 
of  inductive schemes, let us consider unsupervised learning, or clustering. The 
clustering problem is the problem of  aggregating objects when a teacher does not 
present training examples as members  of  specific classes (Watanabe,  1972). Since 
induction is arbi trary without some imposed criterion, clustering must employ 
something other than just the objects. The bias or model chosen often takes the fo rm 
of  a feature space description, and algorithms are frequently based on Euclidean 
distance in the space. Since features are arbitrary, however, the proper  definition of  
distance is not generally known. Hence "external  cri teria" are sometimes imposed 
(Anderberg, 1973, pp. 194 ft.).  Rendell (1977) suggested the external criterion d 
based on task utility u, which is like another  feature except that  utility is not simply 
the property of  a single object,  but rather of  the the whole data environment.  

. Another  kind of  external criterion is based on the description language. In fact we 
have seen that as soon as we describe an object,  we begin to constrain the classes 
which can be expressed. We may  limit not only the object description, but also the 

-concept  description (as in Figure 3). Thus we return to one of  our  earlier themes: 
powerful  induction is both data- and model-driven. When clustering is constrained 
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not only by the description of  individual objects, but also by their relationships to 
other objects, and by a restricted set of  concept descriptions, it is sometimes called 
conceptual clustering (Michalski and Stepp, 1983). 

How does this relate to our situation? Since the formation of  concepts as region 
sets creates probability classes, this induction is clustering (see Figures 8 & 9). Since 
this clustering depends both on the environment (utility), and on limited concept 
forms (rectangles), it is conceptual clustering (Rendell, 1977). Except for the fact that 
ID3 produces binary classes, it could also be doing conceptual clustering: like PLSI,  
ID3 is guided by probabilistic utility, and the hypotheses of ID3 are biased by implicit 
disjunction. 

Unsupervised learning is like supervised learning. As a closing remark, we begin by 
noticing once again that concept formation is the creation of  a utility function u. The 
data for u are given in one of two ways: the data are positive and negative training 
examples (then u is 1 or 0); or the data may be noisy (then u is in the range [0, 1]). 
In either case the learning is supervised. In certain other cases, though, the data may 
not be so clearly distinguished. For example, when the data result from guided 
search, it is not always obvious how to assign values to u (see Rendell, 1983a). Here 
the value of  u, even for the data, becomes partially subjective. Now, suppose that 
we remove all traces of objective evidence. Then we have the clustering problem, or 
unsupervised learning, and the learner must supply u entirely subjectively (e.g. by 
analogy). This distinction between supervised and unsupervised learning is not quite 
the usual one. 

Summary. We have seen that there are many commonalities among inductive systems 
which are superficially distinct. Common aspects include concise representation, 
maximal discrimination, and concerted use of model and data. When we describe, 
analyze, or compare learning systems, we should carefully distinguish their abstract 
elements. Components such as the inductive criterion d are not bound to particular 
representations or algorithms; nor are external manifestations the ultimate 
conceptions (Kanal & Chandrasekaran, 1972; Holte, 1986). We should focus on the 
essence: precisely what is responsible for the efficacy and efficiency of powerful 
methods? We have begun to answer some of these questions, but many more remain. 
We also reiterate that careful  comparison of various systems will continue to 
consolidate and sharpen our understanding and implementation. Despite various 
ideas such as utility functions, probabilistic version spaces, and information-based 
clustering and discrimination, essential principles are still formative. 

2.3.3 Some emerging principles for power 

Ideally, an effective and efficient induction method should be incremental, it should 
converge quickly to accurate or optimal concepts, and the method should permit 
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. concise expression of  concepts. Let us summarize some of  the more important means 
for power. 

Synergic belief or credibility. In situations of  real-world complexity, a desired 
. concept emerges only after many sources of  knowledge have been polled. This may 
be a complex process involving several stages and hypotheses, and a powerful 
inductive system must accommodate and unify the various sources and elements. 
Integrated hypothesis assessment may be formulated using belief or credibility/~. # 
may be rigid and binary, but the real-world demands refined comparison, so/z is 
multi-valued and probabilistic. Ideally the probability would be objective, a product 
of  extensive observation - but complexity is so extreme that only small samples can 
be used, and only a few hypotheses can be tested. Hence /~ becomes a largely 
subjective probability constraining hypotheses formation. (See Section 1.2 for a 
general treatment, and Section 2.2 ff. for details.) 

Multiple and flexible constraints or biases. Hypothesis constraint may be achieved 
by language limitation and other methods. The constraint or bias speeds the inductive 
process but may also vitiate it, so the ideal learning system A should select its own 
bias. The selection should be based on measurement or self-assessment, and this is 
facilitated using our probabilistic representation. If  sub-hypotheses (regions R) 
cannot discriminate utilities properly, then the bias producing these R must be 
inadequate. (See Sections 1.3, 1.4 and 2.2 ff.) 

Use of  probability to manage and even to exploit uncertainty. We have seen the use 
of  probability on at least two levels: the credibility/z assesses the quality of  an 
hypothesis H, and the utility u assesses the quality o f  an object x. Associated with 
each of  # and u is its second order probability or confidence. If our learning system 
A is unsure of /z ,  it retains several hypotheses H with high/~ values. A manages 
uncertainty in u by recording its error e; moreover A discriminates sub-hypothesis r 
only i fu  and e warrant it. Hence A converts the undesirable lack of  confidence into 
a desirable cognitive economy (Sections 2.2 & 2.3). 

Full but controlled use of  every datum to induce and to assess hypotheses. These 
values of  probability u and error e are computed using every single object x 
encountered. No one datum can errantly overwhelm the system, yet each one updates 
A's knowledge. The added knowledge improves the utility function u(x), and the 
same information can improve the assessment ~ of  the function u. The utility 
function u is the hypothetical concept. (See Section 1.2 about the use of  data in a 
definition of  #, 1.3.2 about induction as the discovery of  credible utility functions, 
and 2.2 and 2.3 about the use of  data for the discrimination and clustering of  utility.) 
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Intelligent discrimination, implicit disjunction, and mutual data support. We have 
also seen that a powerful system A can maximize discrimination and minimize storage 
by extracting appropriate information from the data (Section 2.3.1). In selective 
induction, the data are compressed into concepts by implicit disjunction (Figure 2 
and Section 2.1). A may use scarce information simultaneously to compress data ,  
manage noise, to improve accuracy, and to form concepts. This mutual data support 
is important. 

Representation of  whole sets of  hypotheses using boundaries. Mutual data support 
involves cognitive economy for formation of sub-hypotheses. This same sort of 
economy appears at the higher level of complete hypothesis formation. Mitchell's 
candidate elimination for binary version spaces is economical because concise 
boundaries represent whole sets of hypotheses (boundaries gradually converge). 
Using a sort of probabilistic version space, PLS1 is similarly economical because 
tentative boundaries represent the restricted set of  partially confirmed hypotheses 
(boundaries provisionally converge, with increasing assurance; see Figures 1, 3 & 10, 
and Section 2.2 ff.). 

Concerted use of  data and model. Running throughout this paper is another 
important theme: effective and efficient concept formation in a powerful system A 
relies on synergic use of both data and model, i.e. of both observation and bias. This 
idea appears in many forms, for example in conceptual clustering. (The general 
notions are examined beginning in Section 1.3, and specific forms appear later, e.g. 
in Section 2.3.2.) 

Mediating structures. Successful inductive systems tend to employ information 
structures which mediate data objects and the ultimate knowledge form. One of these 
is the region set R which records and improves a concise form of the concept or utility 
function. Learning systems often attempt to improve the hypothesis H itself, whereas 
our scheme A acquires knowledge efficiently in R, and compresses it only temporarily 
for task performance. In other words, A does not directly search the original space 
of hypotheses for a credible H, but rather searches an easier space {R] for 
components (sub-hypotheses) from which H is constructed. This notion of mediating 
structures is important; see (Rendell, 1985a; Holte, 1986). 

Invariance and extension. Throughout this present paper we have looked beyond 
surface differences in learning systems to extract fundamental ingredients for 
powerful induction (see also Holte, 1986). By developing and unifying notions such 
as cognitive economy from cognition and computational complexity from computer 
science, we may form a concise and powerful theory for practical induction. Many, 
if not all of these notions, extend to the most difficult cases of structure formatiort 
(Rendell 1985b). 
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3. Conclusions 

Practical problems of  induction involve two basic issues: efficacy and efficiency 
(power). The first major  part of  this paper was an extensive examination of  a general 
framework to facilitate this power. We considered means to represent, to create, and 
to test hypotheses as credible versions of  a desired concept. Various sources of  
knowledge contribute to an overall measure of  the quality of  an hypothesis, its 
credibility t~. /z is largely a belief, a subjective probability, although objective 
measures may also be used sparingly. We considered components and examples of/z. 

We developed a measure for the difficulty F of  an induction problem, and we saw 
that r '  also measures the bias strength or degree of  constraint placed on the learning 
system. Since the original problem difficulty remains constant, we can compute the 
amount  of  induction left to the system by subtracting the effect of  various biases. 
The remainder is the knowledge the system attains on its own. Such computations 
give us an idea of  such things as the inherent difficulty of  a problem, and the quality 
of  a learning system. 

Our general analysis of  induction seems to capture the basic requirements for 
powerful induction, such as the capability for noise-resilient incremental learning. 
Importantly,  the problem of  induction/s the problem of  discovering a function which 
expresses the utility of  an object relative to the purpose of  induction. This utility 
function u is the concept, u may be Boolean (for rigid, binary concepts), or u may 
be multi-valued (for flexible probabilistic concepts). The regularity of  the utility 
function determines the difficulty of  the induction. 

This brings us to the second major part of  this paper, which was an extensive study 
of  induction in cases where the utility functions are quite regular (this "selective 
induction" requires implicit disjunction). We examined several learning approaches 
and systems for selective induction, and we found that there are more similarities 
than commonly supposed. These include maximal discrimination of  utility and 
means for speed and cognitive economy. We also suggested some improvements such 
as probabilistic version spaces. 

As a result of  our study we have extracted some incipient principles for powerful 
induction. These include a systematic method for the efficient and effective creation 
of  hypotheses using optimal sub-hypotheses; other schemes for inductive power are 
summarized in the previous section. Perhaps the most important contribution of  this 
paper is some schemes for attacking the general problem of  practical induction, 
schemes which may extend to the most difficult cases. These abstractions look 
beyond the superficial differences among learning systems: toward concise, in- 
variant, and fundamental laws. 
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