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Abstract. In a series of papers, the equilibrium configurations of highly rotating fluid bodies have been 
derived. The deformation of these inhomogeneous self-gravitating fluid, of arbitrary internal structure 
are due to centrifugation potential. These level surfaces are expressed in terms of fourth-order sectorial 
harmonics. 

In this paper, the main equations of the problem - such as the surface of the distorted body, the 
gravitational potential at an arbitrary point and the disturbing potential - have been expanded to the 
fourth-order in terms of the even-order sectorial harmonics. 

1. Introduction 

Previous investigators expressed the distortion on the figures of equilibrium, due 
to any disturbing forces, by the individual surface zonal harmonics considering 
only the corresponding harmonics up to the required degree of approximation. 
The expression of an equipotential surface is expanded in a series of surface 
spherical harmonics and it is well-known that any surface spherical harmonic of 
the two angular variables and may also be expanded in a series of zonal, sectorial 
and tesseral harmonics (MacRobert, 1948). 

It is clear that all the previous investigators, for simplicity, considered only the 
zonal harmonic terms, but ignored the sectorial and tesseral harmonic terms. 
Darwin (1910: Vol. III, pp. 145-149, Equation (35), while deriving the centrifugal 
disturbing potential of two fluid masses, found that one of the terms was a sectorial 
harmonic of first-order. In considering the limit solution in a closed form for a 
Roche model density distribution for the case of purely rotational distortion, Kopal 
(1960) expanded the radius-vector of an equipotential surface in terms of sectorial 
harmonics of the co-latitude up to the second-order terms (cf. Kopal, 1960, 
Section 11-6, Equation, (6.25); also when he treated the problem of interaction 
between rotation and tides of two compressible fluid bodies, he expanded the 
second and fourth sectorial harmonics in a series of zonal harmonics and vice 
versa (cf. Kopal, 1960, Section IV-I, Equations (1.38)-(1.39)). 

In this investigation we are interested in dealing with the distortion of rapidly 
rotating configuration of self-gravitating compressible fluid bodies of arbitrary 
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structure, by a new approach (cf. Kopal, 1978, Chapter 11.2, pp. 36 and 78; El- 
Shaarawy, 1975, Chapters 4 and 5), the distortion will be expressed in sectorial 
harmonics of the co-latitude up to the second-order terms (cf. Kopal, 1960, 
rotational deformation. 

2. Expansion of an Equipotential in Sectorial Harmonics 

The associated Legendre function, of degree n and order m, of the first kind, is 
given (cf. Hobson, 1931; Chapter III, p. 93, Equation (7)) as 

d” P:(cos 0) = (- 1)” sin 0 ___ 
dcos 8” 

P,(cos e) = 

= (-1)” 
(2n!) 

sinm 0 x 
2” . n!(n - m)! 

(2.1) 

x COS”-me 
i 

-(n-m)(~---1!COS”-m-2e+ . 
2. (2n - 1) I 

.. 9 (24 

where P,(cos 13) is a Legendre polynomial of degree IZ, while the tesseral surface 
harmonics are given in the form 

Pgycos e) cos mcp, 1 sin m cp; 

except if m = ~1, when they are termed sectorial surface harmonics (Hobson, 19311 
pp. 90-95). If we do so, in Equation (2.2), we obtain 

(2n)! P:(cos 0) = (- 1)” 2” sin” 0 , (2.4) 

The radius-vector Y’ of a spheroidal equipotential surface may be defined as 

r’ = a 1 + 2 fn(a)P,(B’, cp’) 
1 = n=O I 

wheref,(a) are the radial part, which are responsible for such type of deformation, 
and P,(W, 40’) are the surface harmonics of order n. This radius-vector can be 
expanded, without any loss of generality, in a series of sectorial harmonics in the 
co-latitude as follows: If we substitute by cos 0 instead of sin 19 in r.h.s. of Equa- 
tion (2.4), we can rewrite it as 

P:(COS e) = (-1)” 2” ., o! (1 - cos2 p2, 
. . 

In the case of purely symmetrical rotation distortion of a fluid body, in hydro- 
static equilibrium, only the even order functions are needed. The expansion of 
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(p”) as a linear function of Legendre polynomials (MacRobert, 1948, Chapter V, 
p. 96) is 

n(n - 2) . * .2 
p’r = (2n + 1)(2?2 - 1) . * . (n + 1) 

(2n + l)P,,(p) + . . . 

+ + . . . &o(P) 1 (2.7) 

where p = cos 0. 
By using these two formulae (Equations (2.6) and (2.7)), we can express 

P:(cos 0) as a linear function of Legendre polynomial P,,(cos e), or vice versa. 
If we return to Equation (2.5), so by substituting the sectorial harmonics instead 

of Legendre polynomials (P,,(cos 13)), we may also express the radius-vector (r’) 
as a series of sectorial harmonics, in the form 

i 

r 

r’ = a 1 + c fj(U)P~(COS 0’) cw 
j=O 

so that 

(Y’)” = urr { 1 + ,$7)P$(cos O.)[’ . (2.9) 

Expanding the r.h.s. of Equation (2.9) up to quantities of fourth-order in surficial 
distortion; substituting the value of the zero amplitude fo(a) (using the successive 
approximation up to fourth order), and if we put (n + 3) instead of n, for any 
value of IZ, Equation (2.9) becomes 

{ 

4 

(qI+3 = ,/1+3 1 + (n + 3) ~ [X2j + (n + 2)X;i $ 
j=O 

+ (n + 2)(n + 1)X$, + (n + 2)(M + l)nX’;,]P$(cos 0’) , (2.10) 

where i = 4( l)O; for n 2 2, 

(Y’)2-” = &” 
1 

1 + (2 - n) ,i, [X, - (n - 1)x;, + 

+ ?Z(n - 1)Xzj - n(n - l)(n + l)X’$j]Pg(COS 0’) 
> 

; (2.11) 

and lastly, for n = 2 

lim(r’/a) = lim (r”a) - ’ X 

f7+2 (2 -n) 

= ,F,, [X2, - X,; + 2X;, - bX’~,]P~(cos 0’) , (2.12) 



220 M. RAHGAT El.-SHAAKAWY 

where fo(a), up to the fourth order is given by 

(2.11) 

and the expressions Xi’s, for j = 0,2,4, 6, and 8 can be written in the form 

x0 = if? - 2f2f6 - 2.f; t -G = $fifh, 

x;; = 2 -f& 
31 

x=;n, 

X2= - ;fz+$+$+6f~ , 
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(2.14) 

3. Interior and Exterior Potentials 

The total potential of our configuration arising from its mass are the interior (U), 
and the exterior (V). It is well-known that the interior potential for yt > 2 is given 
by (cf., e.g., Kopal, 1973; Section 3, p. 155, Equations (3.17)-(3.30)) 

u= Ii r”U,, (3.1) n=O 

where 

un=+Jgi (r’)2-nPn(~~~ 7) sin 0’ de’ dp’ da, 
I 

IZ # 2; 

a0 0 0 
(3.2) 

and for n = 2 

~~=~~~~ijli(loe~‘)P,(cos~)sinR’dn.d.’}do: (3.3) 

a0 0 0 

Also the exterior potential, for any value ~1, is 
r 

v= lx (I-)-(~+wn ) (3.4) n=O 

where 

(r’)“+3P,t(cos 7) sin 8’ de’ dp’ da, (3.5) 
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and 

where 

00 

m. = 4-r pa2 da ; 

m. being the mass interior to ao, and lJo is independent of 0 and cp 

dm’ = prr2 dr’ sin 0’ de’ dq’ , 

and 

cos y = cos 19 cos 8’ + sin 8 sin 19’ cos( cp - cp’) . 

One can obtain (T’)“+~ l(n + 3) from Equation (2.10) in the form 

(r’)“f3 
___ = a~+3jo Lgz)Pj (COS cl’) ) 
n-t3 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

where (n,j) = 0,2,4,6, and 8. Inserting Equation (3.11) into Equation (3.5) we 
find that 

“0 

V, = G i /- p~iu”“A!?j(a) da} x 
j=o 

0 

TT 277 

X 
III 

P;(cos O’)P,(cos 7) sin 0’ do’ dq’ 
I 

da , (3.12) 

0 0 

Similarly, it is possible to substitute for {(~‘)‘~~/(2 - n)}, using Equation (2.11) we 
can find that 

02--n = a(2--r7) i Gj(a)f’$(cos 0’) . 
2-n j=o 

Inserting Equation (3.13) into Equation (3.2) we obtain 
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“I 

U, = G f$ 
;=o I 

p k {a’2-“‘Gj(a) da} X 

00 

X Pi(cos B’)P,(cos 7) sin 0’ de’ dq’ da . (3.14) 

From both Equations (3.12) and (3.14), it is found that it is necessary to evaluate 
the double integral 

77 277 

I= 
II 

Pj(cos B’)P,(cos 7) sin 0’ de’ dp’ . (3.15) 

0 0 

In order to evaluate this double-integral, we can use the additional theorem for 
expanding the surface spherical harmonic (P,,(cos 7)) as a function of zonal, 
tesseral and sectorial harmonics (MacRobert, 1948, p. 138) 

” (n-m)! 
P,(cos 7) = P,(cos e)P,,(cos e’) + 2 Ix 

m=l (n+m)! 
cos m(p - cp’) x 

x PF(cos B)PT(cos e’) , 

where the angle ($ and cos y are defined before (Equation (3.10)). 
For m = ~1, Equation (3.16) becomes 

(3.16) 

P,(COS 7) = P,(COS ~)P,(cos et) + 2 
__ cos n(cp - cp’) x 
(2n)! 

x P:(COS e)p:(cos et) . 

Substituting by (3.17) in (3.15) we obtain 

z=z,+1,, 

where 
27-r 7i 

II = P,(cos e) 
i I 

dp’ P~(COS ey,(c0s et) sin 8’ de’ 

0 0 

and 

I2= 2 ~ P::(cos e) 
(2n)! 

cos n(cp - cp’) dq’ P$(cos e’) x 

(3.17) 

(3.18) 

(3.19) 

x P::(cos e’) sin 0’ de’ . (3.20) 



We are now in a position to evaluate II, by putting 

11 = 2%-P,(cos ey, 1 

and 
15 

(3.21) 

III = 
J 

P$(cos B’)P,,(cos 0’) sin 0’ de’ , (3.22) 

we may evaluate this integral using Equation (2.6), in sectorial harmonics, and 
using the orthogonality condition of Legendre polynomials (MacRobert, 1948, 
Chapter V; Rainville, 1960; Theorem 63, p. 174) 

111 = --&(-1)“‘2n! forj=n 

i 
=0 I j<n 

The substitution of Equation (3.23) into Equation (3.21), gives 

I, = &(-l) ‘%z!P,,(cos e> . 

Turning to the second integral, I, (Equation (3.20)), we can put 

I,= 2 - P::(cos e) . 12, . 122 , 
(2n)! 

(3.23) 

(3.24) 

(3.25) 

where 
2rr 

12~ = cos n(cp - p’) dq’ , 

(3.26) 
?T 

f2,, = 
I 

Pj(cos B’)P::(cos ey sin 8’ de’ , 

0 

The evaluation of Z,, is straightforward from the orthogonality property, 

I22 = 0 1 j#n, (3.27) 

=(-1)“(2n)! f & 
I 

for 
j=n; 

and the evaluation of Z,, requires the use of simple trigonometrical formulae; 
integrating them and using the limits 

I,,+O. (3.28) 
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Therefore, from Equations (3.27) and (3.28), it follows that 

z,=o. 

From both Equations (3.24) and (3.29) we obtain 
* 27r 

z= 

il 

Pj(cos B’)P,(cos 7) sin 8’ de’ d# = 

0 0 

L&4)./2. n!P,(cos e) j = n ) 

= 0 ! j<n; 

(3.29) 

(3.30) 

where P,O(cos 13) is a Legendre polynomials of degree n, but since we require only 
sectorial harmonics, we can apply the transformations for changing Legendre 
polynomials into sectorial harmonics, this will be done in Paper II. 

Inserting Equation (3.30) in both Equations, (3.2) and (3.5) we find that 

“0 

v&9 = 2n + 1 .!!f?it (- l)n”(n!)PO,(cos 13) j- p$ {ant3F,,(a)> da , 

0 

(3.31) 

we can put 

F,(a) = (- 1)“‘2n! p $ {anf3~~(a)> da . 

Equation (3.4) then becomes 

= Fdu) V(r)=4nG x -r 
n=O (2n + 1) 

-(“+l)po,(COS 0) . (3.33) 

Similarly, 

u&9 = (2n + 1) 
4pG(-l) ““n!P~(cos l9) x 

01 

x 
i 

p$ {a2-“G,(a)} da ; 

00 

and 

E,(a) = (- l)““(n!) j! p$ (a2-“G,(a)) da 

fl0 

(3.32) 

(3.34) 

(3.35) 
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Therefore, Equation (3.1) becomes 

U(r) = 4z-G i = n=* (2n + 1) W~&os 0) . (3.36) 

The amplitudes of the interior (E,(a)) and the exterior (F,(a)) potentials can 
be evaluated as follows: Inserting Equation (2.11) into Equation (3.35), for R = 0 
we have 

a1 

,?&(a) = 
I 

p$ [a2(i + X0 + X6)] da , (3.37) 

a0 

and for n>O 

E,(a) = (-l)““(n!) 7 a p; {a’-[X, - (n - 1)x; + 

a0 

-t n(n - 1)X:: - n(n - l)(n + 1)X/i]} da . (3.38) 

Substituting for n = 0,2,4,6, and 8; and for the X,is from Equation (2.14), we 
have 

(3.40) 

(3.41) 

(3.42) 



ROTATIONAL DISTORTION OF STARS 227 

and 

Similarly, by an insertion of Equation (2.10) into Equation (3.32), we get 
For n=O 

(3.44) 

for n>O 

F,,(a) = (- q’yn!) j p; (a”+“[& 4 (n ~1. 2)X,: i 

0 

+ (r-z + 2)(n + 1)X:: + n(n + 2)(n f 1)X::]} da , (3.45) 

where XA’ are still defined by Equation (2.14). Confining our attention to IZ = 0, 
2, 4, 6 and 8, WC obtain, retaining only quantities of fourth order or less, 

% 

Fe(a) = 
I 

pa2 da , (3.46) 

0 

(3.47) 

(3.48) 

(3.49) 
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4. Total Potential 

It is required to define the total potential, i.e., the sum of the potential arising 
from the total mass of the configuration, the internal and external potentials, and 
the disturbing potential which distorts this configuration. 

The distortion of our body is due to centrifugal force arising from the axial 
rotation, and we found that the disturbing potential is given by 

V’(r’) = &v2~‘3 sin2 0 (4.1) 

but from Equation (2.4), for y1= 2, 

P$(cos 0) = 3 sin2 0. (4.2) 

Substituting Equation (4.2) into Equation (4.I), the disturbing potential, in a 
series of sectorial harmonics is given as 

V’(r’) = ~w2(P)P~(cos e) (4.3) 

or more generally, 

V’(f) = 2 D,,Y”‘P;(cos e) 7 (4.4) 
,,=o 

where 

Do=O, D2 = $v2(1 + Sf;) , 

Dg=O, (4.5) 

and 

D 
’ 

-lw2 -3fz 
6 a6 25025 ’ 

The potential of a self-gravitating configuration is the sum of the potentials 
(3.33), (3.36) and (4.4). I nserting (r’) instead of (Y), we find it to be given by 

r 

+ 2 D,,r’“P~(cos 0) , 
n=O (4.6) 



or 

where 

and 
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(4.7) 

$z(r’, 0) = C D,r’“P”,(cos 0) . 
n=2 

(4.9) 

We may expand the r.h.s. of Equation (4.6) or (4.7) in a Neumann series of 
the form 

$(r’, 0) = ZO ~~(a)pO,(cos 0) + i B,(a)P;(cos e) , 
n=2 

(4.10) 

where 
77 

%(a> = y 1 $l(r’, e)P:(cos e) sin 8 de, (4.11) 
0 

or 

CY&) = 4rrG 
(r’)“&(a) + (r’)-(a+l)Fn(a) 

. (2n + 1) I 
(4.12) 

Similarly 
77 

B,(u) = 
2n+1 1 

2 (-1)“(2n)l i 
$2(r’, e)P:(cos e) sin 8 de, (4.13) 

0 

or 

B,(a) = D,r’” , (4.14) 

where the coefficients D, are defined by Equation (4.5). 
Over an equipotential surface the total potential must be constant. It is satisfied 

only if all terms of the r.h.s. of Equation (4.6) or Equation (4.7) factored by 
P,(cos 0) and P;(cos f3), for y1> 0, vanish, and this happens only if both 

a,(a) = 0 and P,(a) =O, for n>O. (4.15) 

So the only remaining term is czo(u): the constant values which defines the required 
potential for an equipotential level surface of mean radius a. 
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