
Machine Learning, 25,237-263 (1996)
(£) 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On the Limits of Proper Learnability of Subclasses
of DNF Formulas*

KRISHNAN PILLAIPAKKAMNATT AND VIJAY RAGHAVAN
Department of Computer Science
Vanderbih University
Nashville, TN 37235

raghavan @ vuse.vanderbilt.edu

Editor: Thomas Hancock

Abstract. Bshouty, Goldman, Hancock and Matar have shown that up to %/logn term DNF formulas can
be properly learned in the exact model with equivalence and membership queries. Given standard complexity-
theoretical assumptions, we show that this positive result for proper learning cannot be significantly improved
in the exact model or the PAC model extended to allow membership queries. Our negative results are derived
from two general techniques for proving such results in the exact model and the extended PAC model. As a
further application of these techniques, we consider read-thrice DNF formulas. Here we improve on Aizenstein,
Hellerstein, and Pitt's negative result for proper learning in the exact model in two ways. First, we show that
their assumption of NP ~ co-NP can be replaced with the weaker assumption of P ~ NP. Second, we show that
read-thrice DNF formulas are not properly learnable in the extended PAC model, assuming RP 5& NP.

Keywords: Models of learning--exact, PAC; proper learning

1. I n t r o d u c t i o n

1.1. The D N F problem

D N F formulas are representat ions of Boolean funct ions in Dis junct ive Normal Form. The
quest ion of whether D N F formulas are efficiently learnable is a central open p rob lem in

learning theory. In Valiant 's model of probably approximate ly correct (PAC) learning
(Valiant, 1984), some partial results have been obtained. For example , Pitt and Valiant
(1988) have shown that for any k > 2, k- term DNF formulas are not PAC learnable as
k- term D N F formulas , unless RP = NP. On the other hand, it has been shown that for
any constant k, k- te rm D N F formulas are learnable as k -C NF formulas (Valiant, 1984),
and k- term D N F formulas are learnable as k-terra D N F formulas when the learner is also
al lowed to ask membersh ip queries (Bshouty, et al., 1993, Berggren, 1993). But none of
these results answer the quest ion "Can arbitrary D N F formulas be learned with po lynomia l ly

larger D N F hypotheses or if membersh ip queries are al lowed in the learning process?"

A n g l u i n and Khar i tonov (1991) consider whether D N F formulas can even be predicted,
i.e., PAC-learned with efficiently computab le hypotheses from any class. They give a result
which can be interpreted as posit ive or negative, depending on one ' s point o f view: they
show that (if certain cryptographic assumpt ions hold) D N F formulas can either be predicted
without member sh ip queries or cannot predicted even if member sh ip queries are allowed.

* This work was supported by an NSF grant, CCR-9212011

238 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

That is, membership queries essentially do not help in predicting DNF formulas under
arbitrary distributions. The best positive result known for specific distributions is Jackson's
membership-query based algorithm (Jackson, 1994) for predicting DNF formulas under the
uniform distribution.

Angluin's model of exact learning (Angluin, 1988) places more stringent requirements on
learning than the PAC model; therefore negative results should be easier to obtain in the exact
model. Nevertheless, the question of whether DNF formulas can be exactly learned using
equivalence and membership queries is open. It is easy to see that membership queries alone
will not suffice; using purely information-theoretical arguments, Angluin developed the
technique of "approximate fingerprints" (Angluin, 1990) to show that equivalence queries
alone will not suffice either.

1.2. Subclasses of DNF formulas

Recognizing the hardness of settling the question of learnability of general DNF formulas
in either of these models, researchers have studied the learnability of some subclasses of
DNF formulas, placing restrictions on the class of hypotheses available to the learner. The
classes of monomials, monotone DNF formulas, Horn sentences, k-DNF formulas, read-k-
sat-j DNF formulas, read-twice DNF formulas, and k-term DNF formulas ((Angluin, 1988,
Valiant, 1984, Angluin, Hellerstein & Karpinski, 1993, Aizenstein & Pitt, 1991, Aizenstein
& Pitt, 1992, Hancock, 1991, Hancock, 1992, Berggren, 1993, Pillaipakkamnatt & Ragha-
van, 1995)) have all been shown to be learnable exactly and efficiently with equivalence and
membership queries. Moreover, all of these classes can be learned properly, i.e., using only
hypotheses that come from the target class of the unknown concept to be learned. Of these
classes, monomials and k-DNF formulas can be properly learned with equivalence queries
alone; the others provably need both equivalence and membership queries for efficient
proper learning.

On the negative side, Aizenstein, Hellerstein, and Pitt (1992) have shown (assuming
NP ~ co-NP) that read-thrice DNF formulas are not exactly learnable as read-thrice
DNF formulas, given both equivalence and membership queries. The requirement that
equivalence queries can use only read-thrice DNF hypotheses is crucial to this result (see
(Aizenstein, Hellerstein & Pitt, 1992) for an excellent discussion of such representation de-
pendent results). If the hypotheses may come from the larger class of DNF formulas, then
exactly learning read-thrice DNF formulas is just as hard as learning general DNF formulas
(Angluin & Kharitonov, 1991).

An interesting question that arises out of the proper learnability of k-term DNF formulas
is the following: is there a limiting number of terms k* (where k* could be a function of n,
the number of variables) such that DNF formulas with fewer than k* terms can be properly
learned in the PAC or exact sense, but DNF formulas with more than k* terms cannot be
learned? It seems unlikely that the limiting number k* will be obtainable in any precise
sense. Thus, a reasonable line of enquiry is to establish upper and lower bounds on k*.

On the positive side, Bshouty, Goldman, Hancock, and Matar (1993) have shown that up
to l x / ~ n term DNF formulas can be properly learned with equivalence and membership
queries. (Berggren's linear time algorithm (Berggren, 1993) for learning k-term DNF

P R O P E R L E A R N A B I L I T Y OF SUBCLASSES OF DNF FORMULAS 239

formulas translates to a weaker lower bound on k* of f~(loglogr~) Blum and Rudich log log log 'r~ "
(1992) have shown that O(log n) term DNF formulas are exactly learnable with equivalence
and membership queries, but their algorithm does not appear to be transformable to a proper
learning algorithm). So the question is, can we hope to properly learn k-term DNF formulas
for k "significantly" larger than v/i-~g n? We use complexity-theoretical arguments to show
that the answer to this question is "No."

1.3. Our results

We build on the technique of Aizenstein, Hellerstein, and Pitt (1992) to prove the following
negative results:

1. If P ¢ NP, then ha-term DNF formulas cannot be properly and exactly learned with
equivalence and membership queries, for any fixed constant c~ > 0.

2. If NP is not contained in DTIME(n°(l°gn)), then 2 t°x/i-gg-ff-term DNF formulas over
n variables cannot be exactly and properly learned with equivalence and membership
queries.

3. If there exists some constant e > 0 such that NP is not contained in DTIME(2 n+), there
exists a constant c > 0 such that DNF formulas with more than log c n terms cannot be
properly and exactly learned with equivalence and membership queries.

These negative results use progressively stronger assumptions to get better upper bounds
on the limit of proper learnability of DNF formulas. Specifically, the last negative result
shows that the lower bound of x/]-o--g n terms is the best possible up to a constant exponent.

Next, we address proper PAC-learnability with membership queries. Here we generalize
the method used by Pitt and Valiant (1988) and Kearns, Li, Pitt, and Valiant (1987) to get
negative results. This method relies on the assumption that RP ;~ NP and uses the difficulty of
finding hypotheses from a concept class C consistent with carefully constructed sample data
to prove that C is hard to learn in the PAC sense. It has been observed (Aizenstein, 1993) that
there are technical difficulties in generalizing the method to get negative results for PAC-
learning when membership queries are allowed; roughly, the problem is that answering
membership queries on points outside of the sample data used in the method destroys the
reduction involved. Nevertheless, we show that the technique of Aizenstein, Hellerstein,
and Pitt can be fruitfully combined with the RP 7~ NP technique to address PAC-learnability
with membership queries. We use this new combined technique to show that (if RP ¢ NP)
n-term DNF formulas cannot be properly PAC-learned even if membership queries are
allowed.

As another application of the techniques for proving negative results, we consider read-
thrice DNF formulas, the class considered by Aizenstein, Hellerstein, and Pitt. First, we
show that (unless P = NP) read-thrice-DNF formulas cannot be properly learned with
equivalence and membership queries. This is an improvement on the earlier hardness result
which depends on the stronger assumption that NP ¢ co-NR Second, we show that (if RP

240 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

NP) then read-thrice DNF formulas cannot be properly learned in the PAC model with
membership queries. This last result is not directly deducible from the earlier result.

We note here that our techniques for obtaining negative results can be extended in a
relatively straightforward manner to accommodate other kinds of queries. With such an
extension, one can sharpen the results given above. Specifically, all the non-learnability
results for k-term DNF formulas in the exact and PAC models hold if the learner is allowed
all of subset, superset, equivalence, and membership queries; the negative results for read-
thrice DNF formulas hold if the learner is allowed subset, equivalence, and membership
queries. Out of space considerations, here we develop our techniques for negative results
only for the combination of equivalence and membership queries. The interested reader is
referred to (Pillaipakkamnatt, 1995) for extensions to other queries. These negative results
for proper learning with an extended set of queries are to be contrasted with the positive ones
in B shouty, Cleve, Kannan, and Tamon's (1994) recent paper. They show that every concept
class can be exactly (but not necessarily properly) learned by a randomized algorithm
which uses subset and superset queries. In essence, non-proper subset and superset queries
allow the learner to simulate an NP-oracle, thus overcoming the fundamental computational
obstacle used in our techniques for negative results.

The rest of the paper is organized as follows. Section 2 contains definitions relevant to the
rest of the paper. Definitions specific to the remaining sections are developed later. Section 3
is an outline of general techniques that can be used to show hardness results. The remaining
sections are applications of the general techniques--section 4 contains hardness results for
proper exact learning of DNF formulas; section 5 contains the corresponding results in the
PAC model. Finally, section 6 contains the results for read-thrice DNF formulas.

2. Definitions and Terminology

2.1. Preliminaries

Let V be a set of Boolean variables. An assignment/3 is a mapping V ~ { True, False}.
The set of 2 IVI possible assignments (instances, vectors) is called the instance space on V.
A Boolean concept c on V is a subset of the instance space. It is convenient to view such a
concept as a Boolean function in the most natural way: c(/3) = True if and only if/3 is an
instance of the concept.

Let C = Un~lCn be a class of Boolean concepts, where each Cn, n > 1 is a set of
concepts defined over a set Vn of n Boolean variables. A representation ~ for the class C
is a 3-tuple (Tr, R, p) in which:

1. 7r is the alphabet of the representation.

2. R C_ 7r* is the set of strings on 7r that represent concepts in C.

3. p : R --+ C is a surjective (onto) function that maps strings in R to concepts in C, i.e.,
for each c E C, there exists at least one string h in R which satisfies p(h) = e.

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 241

Frequently, the representation itself defines the concept class. Thus, for example, the
"class of k-term DNF formulas" should be interpreted as the set of Boolean functions that
can be represented as DNF formulas with no more than k terms.

2.2. Models of learning

Angluin models the learning process using a minimally adequate teacher (Angluin, 1988)
in the following way: The teacher picks some concept c E C. An exact learner or learning
algorithm .A works with a representation T~ = (Tr, R, p) for a class ~ , where ~ _~ C. The
goal of the learner A is to output a string h E R such that p(h) = c. That is, the concept
e is the unknown target concept that .A attempts to learn: if .A is a true learning algorithm
for C, it will eventually output such a string, regardless of which concept c is picked from
C. The class of concepts 7-/used by .,4 is called its hypothesis class. The algorithm A
may acquire information about the target concept e by asking the teacher two kinds of
queries--equivalence queries and membership queries.

An equivalence query, EQ(h), where h E R, effectively asks, "Is p(h) = c?" If p(h) = c,
the teacher answers "Yes"; otherwise, the teacher answers "No" and gives a counterexample
g such that c(g) ~ p(h)(fl).

A membership query, MQ(fl), effectively asks if the assignment/3 is an instance of the
unknown concept c; the teacher answers "Yes" if c(g) = True and "No" otherwise.

We say that the class C = Un_>l cn of concepts is (efficiently) learnable in the exact
model in representation 7~ = Qr, R, p) for the hypothesis class 7-(~_ C if there exists a
learning algorithm Ac,n and a 2-variable polynomial PO such that for any unknown target
concept c E Cn:

1. .Ac,~ uses membership queries and equivalence queries of the form EQ(h), where
h E R, and

2. If 1 is the length of the shortest representation of c in ~ (i.e., l = min {Ihl : h E
R and p(h) = e}), then .Ac,~ uses at most p(l, n) time and outputs a string h E 7~
such that p(h) = e.

In Valiant's model of learning (Valiant, 1984), the learning algorithm is required to achieve
only approximate identification. Let c E C,~ be the unknown concept to be learned. In the
extended model of probably, approximately, correct (PAC) learning, a learning algorithm .A
obtains information about the unknown concept c from two sources: membership queries
and sample queries.

The response to a sample query EX0 is a random example (/3, b) of the unknown concept c,
where/3 is an assignment chosen randomly according to some fixed, but arbitrary probability
distribution D over the instance space and b = c(/3).

We say that the class C = Un_> 1Cn of concepts is learnable in the extended PAC model in
the representation ~ = (Tr, R, p) for hypothesis class 7-[~ C if there exists an algorithm
.Ac,~, and a 4-variable polynomial P0 such that for any unknown target concept c E Cn
and for any distribution D over the instance space, Ac,7~ takes as input an error parameter
e, 0 < e < 1, and a confidence parameter ~, 0 < 3 _< 1, and satisfies the following:

242 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

1. .Ac,n uses only membership and sample queries, and

2. Ac ,n outputs a string h C ~ such that Prob(~-]~:c(~)¢p(h)(Z) D(fl) > e) < ~, and

3. If I is length of the shortest representation of c in R, .Ae,n uses at most p(l, n,, ,! ½)
total time.

For both exact and PAC-learning, we assume that the time complexity of a learning
algorithm A is measured in a uniform cost RAM model augmented to allow for queries
in the following way. Membership and sample queries are each charged a single unit of
time and an equivalence query EQ(h) costs Ihl units of time. In both models, the cost of
outputting the final hypothesis h must be accounted for in the running time of the algorithm.

2.3. Proper learning

In this paper, we are interested in representation-dependent or proper learning. That is,
we have a "natural" representation 7-~ - Qr, R, p} which defines a target class C and we
are concerned with whether C can be efficiently learned in the representation ~ for the
hypothesis class 7-/= C in either the exact or PAC model.

As an example of a class that is properly learnable, consider the class of read-once Boolean
formulas (Angluin, Hellerstein & Karpinski, 1993), i.e., the class of Boolean functions that
can be represented as Boolean formulas in which each variable occurs at most once. The
statement "the class of read-once Boolean formulas is properly learnable in the exact model
(with a minimally adequate teacher)," means that there exists a polynomial time exact
learning algorithm that uses membership queries and equivalence queries only of the form
EQ(h), where h is a string representing a read-once Boolean formula.

We consider the proper learnability of read-thrice DNF formulas in this paper. A read-
thrice DNF formula is a DNF formula in which each Boolean variable occurs at most three
times.

We also consider the proper learnability of DNF formulas that have at most ra terms.
Here we are interested in enforcing the constraint that the hypotheses used by the learning
algorithm never have more terms than the unknown DNF formula to be learned. The natural
way to do this becomes clear when we examine the following equivalent definition of normal
learnability of DNF formulas in the exact model.

Let Dm,,~ be the set of DNF formulas with at most m terms defined over the set V,~ =
{vl, v2 , . . . , v~} of n Boolean variables. Let Rm,,~ be the set of strings in the conventional
representation of ~Dm,~ (which uses some alphabet of n characters to represent the variables
in V~, the symbol + to denote disjunction etc.) Assume that the two Boolean functions that
evaluate all assignments to True and all assignments to False are represented in Rm,n as
the special 0-term DNF formulas T and F respectively. The class 79 = •n>l Urn>0 Dm,,~ is
learnable in the exact model if there exists an algorithm .AT) and two polynomial functions
P0 and q0 such that for each e C Din,n:

I. .A9 uses only membership queries and equivalence queries of the form EQ(h), where

h E Rq(m,n),n, and

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 243

2 . . A 9 uses at most p(m, n) time and outputs a string h c Rq(m,n),n such that h -= c, i.e.,
h and c are equivalent representations of the same Boolean function.

In the above definition of learnability of DNF formulas, the learner is allowed to hypoth-
esize any DNF formula h such that the number of terms in h is polynomial in the number
of terms in the target formula. That is, we allow a polynomial "blow up." We say that the
class of m-term DNF formulas is properly learnable in the exact model if the polynomial q
in the definition above satisfies q(m, n) = m, i.e., the learning algorithm is allowed to use
only hypotheses with no more terms than appear in a shortest representation of the unknown
concept to be learned. We are interested in the limit of proper learnability of m-term DNF
formulas, i.e., the most number of terms (expressed as a function of n) that will permit
proper learnability. This motivates the following definition.

The class ~Df0 : [-Jn>l (-JO<_m<_f(n) ~)m,n is properly learnable in the exact model if
there exists an algorithm .A and a polynomial function P0 such that for each c E 79
where 0 _< m _< f (n) :

1. .,4 uses only membership queries and equivalence queries of the form EQ(h), where
h E Rm,n, and

2 . . A uses at most p(m, n) time and outputs a string h c R,~,n such that h - e.

Similar definitions can be worked out for the proper learnability of the classes 79 and 79f0
in the extended PAC model. Note that all these definitions imply the following "inclusion"
property: If D I 0 is properly learnable (in either model), then for any function g 0 that
satisfies g(n) _< f (n) for all n, 79g0 is also properly learnable. Contrapositively, to show
that 79f0 is not properly learnable, it suffices to consider a class 79g0 where g(n) _< f (n)
for all n, and show that Dg0 is not properly learnable.

Since we are interested only in proper learning in this paper, we shall henceforth omit
all references to the hypothesis class for both exact and PAC learning algorithms. Further,
since all concept classes examined in this paper have natural representations, we also omit
formal definitions of the representation for these classes in the paper.

3. General Techniques

The general technique for proving hardness results for proper learning in the exact model
can be summarized as follows: Let C be a class of Boolean formulas and f a Boolean
formula that is not necessarily in C. If C can be properly learned in the exact model and
there exists a polynomial time algorithm to decide if any given formula e in C is equivalent
to f , then the question "Can f be represented in C?" can be answered in polynomial time.
If it can also be shown that the problem of deciding if f is representable in C is NP-Hard,
then we will have effectively shown that P = NP. In other words, if P ~ NP, there exists no
algorithm for learning the class C exactly and properly.

This technique can be seen as strengthening the technique of Aizenstein, Hellerstein, and
Pitt (1992) in a fairly obvious way: the latter technique does not require that the formula f
be testable in polynomial time for equivalence with any given formula c in C. Instead, a non-
deterministic guess is used to find an assignment x such that f (x) ~ e(x). Consequently

244 K, PILLAIPAKKAMNATT AND V. RAGHAVAN

the hardness result achievable using the latter technique needs the stronger assumption that
NP ¢ co-NP. Interestingly, there is a more subtle reason for preferring the former "P
NP" technique whenever possible and it is this. As will be seen, hardness results using the
P ~ NP technique are "scalable" in the following sense: we can replace the assumption
"P ~ NP" with a stronger assumption like "NP is not contained in DTIME(nl°gn) ' ' to get
a stronger negative result. In contrast, the assumption "NP ¢ co-NP" does not scale so
nicely.

We now formalize the "P ~ NP" technique.

Definition 1 Let C = U n > l Cn and ~ : Un_>l fn be classes of Boolean formulas such
that for each n > 1, Cn and Un are sets of formulas over a set Vn of n Boolean variables.
The class 5 r is testable with respect to C if there exists an algorithm A j: and a polynomial
function t(), such that if.A~: is given formulas c E Cn and f E f ' n as input, .A~ halts in at
most t (n, tel, I f I) units o f time and outputs one of the following:

1. "No," and an assignment x to the n Boolean variables such that f (x) ~ c(x).

2. "Yes," and a formula c t E Cn such that f - : c t (i.e., f and c ~ represent the same Boolean
function).

Note carefully that this definition of testability is a little weaker than the requirement
mentioned in the introductory remarks to this section; in particular, item 2 of the definition
does not require the formula e I to be logically equivalent to the formula c input to Aj : : it
is possible that c ~ f but .A,~: outputs "Yes" and e ~ E Cn such that c ' = f . In other words,
the ability to test any f E .Un lot equivalence against any c E Cn, though sufficient to prove
testability, is not quite necessary. This hair-splitting makes a difference only in Section 6,
where the hardness proof for read-thrice DNF formulas is made technically easier because
of the weakening of the definition of testability.

We use the following problem of deciding whether a formula can be represented in C.

REP(C): Representability of formulas in C

Instance: A set V = {vl, v 2 , . . . , v,~} of n Boolean variables and a formula f over V.

Question: Is there a formula f ' E C~, such that f~ = f ?

We say that REP(C) E P for a class .,v of Boolean formulas if there exists an algorithm
.A such that if .,4 is given any formula f E 5rn as input, .A decides if there exists a c c Cn
such that f - c in time at most polynomial in If[and n. We say REP(C) is NP-Hardfor
class f" if for each problem H in NP, H is polynomial-time reducible to whether f E 5 r is
representable in C.

As in (Aizenstein, Hellerstein & Pitt, 1992), the technical requirement of polynomial-
time recognizability of C (but not 5 r) is a necessary pre-condition for the following theorem.
A class C = U n > l Cn of Boolean formulas is polynomial-time recognizable if there exists
a polynomial time algorithm such that, given a formula h and an integer n, the algorithm
decides if h is an element of Cn. The classes for which we prove hardness results have
simple polynomial time algorithms for recognition. Hence, this requirement will not be
explicitly mentioned in our later applications of this general technique.

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 245

THEOREM 1 Let C = Un>_l Cn be a polynomial-time recognizable class of Boolean
formulas and PO a polynomial function such that for each c E G , Icl <_ p(n). Let
Y = Un>l Fn be a class of Boolean formulas that is testable with respect to C. I fC is
properly learnable in the exact model, then REP(C)cP for the class Y.

Proof: Suppose there exists an algorithm .Ac that properly learns C in the exact model.
Let q0 be a polynomial function such that .Ac uses no more that q(n,p(n)) time for any
target concept c E Cn. We create a new algorithm .An such that if.An is given any formula
f E Yn as input, .ATz decides if there exists a c E Cn such that f - c in time at most
polynomial in Ifl and n. The algorithm -An runs .Ac to simulate the learning of f as
follows.

If .Ac makes a membership query with assignment fl, .An returns the evaluation f (g) .
If.Ac makes an equivalence query with a hypothesis h, .An checks if h E Cn. Since C is

polynomial time recognizable, this can be done in time polynomial in Ihl and n. If h ~ Cn
then .An outputs that there is no f / E C,~ such that f _~ f f and halts. If h is in Cn, then
-An runs the testing algorithm .A~ with inputs h and f . Again, this can be done in time
polynomial in Ihl, If t, and n since Y is testable with respect to C. If A ~ outputs "Yes"
and a certificate h' E Cn such that f --= h ~, then .An halts after outputting that f can be
represented in Cn. On the other hand, if .A~ outputs "No" and an assignment/3 such that
h(/3) ¢ f(/3), then clearly f ~ h..AT~ returns the assignment/3 as a counterexample to
Ac.

Finally, if algorithm .Ac exceeds q(n, p(n)) units of time, .An halts and outputs that f is
not representable in the class Cn.

To prove the correctness of.ATz, first suppose that f is representable in the class Cn. Now
.Ac must always ask equivalence queries with hypotheses from Cn, and within q(n, p(n))
steps output a representation c of f in Cn. At least when this happens (and perhaps even
sooner) the testing algorithm .Aj: has no choice but to output"Yes" and (possibly a different)
representation d of f in G~. So .AR will make the correct decision if f is indeed representable
in C~.

Next, suppose that f is not representable in Cn. Now one of the following must happen:
(i) .Ac always hypothesizes formulas in Cn--since f cannot be represented in Cn, the testing
algorithm .Ay has no choice but to output "No" for each hypothesis h from Ac and give
an assignment/3 such that h(fl) ¢ f(/3) (ii) .Ac produces a hypothesis h ~ C~ as input to
an equivalence query. In the first case, .An will correctly decide that f is not representable
in Cn when Ac eventually exceeds q(n, p(n)) units of time; in the second case, .AT~ makes
the correct decision right away.

All the steps involved, including the simulation of Ac and potentially a polynomial
number of runs of .A~- and a polynomial number of tests for recognizing that hypotheses
used by .Ae are indeed in Cn, can be carried out in time polynomial in If] and n. Therefore,
we can conclude that REP(C) E P for Y. •

COROLLARY 1 Let C = [.Jn> l Cn be a class of polynomial-time recognizable Boolean
formulas and PO a polynomial function such that for each e C Cn, [e[< p(n). l f there
existX a class f = [-)n> l Fn that is testable with respect to C and REP(C) is NP-Hard for
class Y, then C cannot be properly learned in the exact model unless P = NP.

246 K. P ILLAIPAKKAM NATT AND V. RAGHAVAN

Proof: If C is properly learnable in the exact model, then by Theorem 1, REP(C)EP for
~ . If in addition REP(C) is NP-Hard for .T, then by the definition of NP-Hardness, all
problems in NP can be solved in polynomial time. []

Our technique for proving hardness results in the PAC model is similar to the ones used
by Pitt and Valiant (1988) and Kearns, Li, Pitt, and Valiant (1987) that are built on the
assumption that RP ¢ NP. The difference is that these other techniques apply to proving
hardness results in the PAC model, whereas we want to prove hardness in the extended PAC
model where membership queries are allowed. We solve the problem by combining the P

NP technique of rllaeorem 1 with the ideas behind these RP ¢ NP techniques.
The general idea for proving negative results in the extended PAC model can be sum-

marized as follows: Let C be a class of Boolean formulas and f a Boolean formula not
necessarily in C. If (i) C can be learned in the extended PAC model, and (ii) there exists
some set X S of examples of f which can be computed in polynomial time such that the
existence of any concept in C that agrees with f over X f is sufficient to guarantee that
there exists a formula in C equivalent to f , then the decision problem of whether f can
be represented in C is in RE In addition, if it can be shown that this decision problem is
NP-Hard, then we will have effectively shown that RP = NE

In applying the technique to the extended PAC model, our earlier requirement of testability
of f with respect to C has essentially been replaced with a requirement of f ' s "compress-
ibility" into a set X I with respect to C. Formally,

Definition 2 Let C := U,~>I Cn and .T" = Un_>l .Tn be classes of Boolean formulas such
that for each n >_ 1, Cn and 5rn are sets of Boolean formulas over a set V~ of n Boolean
variables. The class .T is compressible with respect to C if there exists an algorithm A s
and a polynomial function P 0 such that given input f E .Tn, .47 outputs in time p(n, If[)
a set Xy of assignments with the following property: If there exists a formula 9 C Cn such
that for all x E X f , 9(x) = f (x) then there exists a formula 9' E Cn such that g ' -= f .

Note that the definition implies that X f must be of size at most a polynomial in If] and
n.

We say that REP(C) C RP for a class jr of Boolean formulas if there exists a randomized
algorithm .4 such that if .4 is given any formula f E f 'n then

3 1. If there exists c E Cn such that f - c then .4 outputs "Yes" with probability at least
and "No" with probability at most 1, and

2. If there exists no c E Cn such that f - c then -4 outputs "No".

Moreover, .4 halts in time at most polynomial in Ifl and n.

We have the following general result for proper learnability in the extended PAC model:

THEOREM 2 Let C = Un>l cn be a polynomial-time recogn&able class of Boolean for-
mulas and r 0 a polynomial function such that for all c E C,~, Icl _< r(n). Let.T = Un>l .T',~
be a class of Boolean formulas that is compressible with respect to C. If C is properly learn-
able in the extended PAC model, then REP(C)ERP for the class .T.

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 247

Proof: Suppose there exists an algorithm -Ac that properly learns C in the extended PAC
model. Let s 0 be a polynomial function such that for any target concept c E Cn, Ac uses
no more that s(n, r(n), l /e , 1/6) time, for error parameter e and confidence parameter ft.
We now create a randomized algorithm .Are such that if .Are is given any formula f ~ .Fn,
then, in time polynomial in Ill and n, -A outputs (i) "No", if there exists no c E Cn such
that f -- c (ii) "Yes" with probability at least 3, if there exists c E Cn such that f ---- c. The
algorithm .Are runs .Ac to simulate the learning of f as follows.

Using the fact that 5 c is compressible with respect to C, .Are first computes a set X I of
assignments in time polynomial in Ifl and n. Next, a distribution D is dcfined over the
set of all assignments as follows: for each element x E X f , D(x) = ~ and for all IXiI
other assignments y, D(y) = 0. That is, the distribution is uniform over X S and 0 (zero)
elsewhere. Finally, the parameters e -- 1 IxsL+l and (5 = ¼ are given as input to Ac.

If Ac makes a membership query with an assignment/3, .Are returns the evaluation f(/3).
If-Ac makes a sample query, Are returns an assignment/3 randomly chosen according to dis-
tribution D along with its evaluation f(/3). If at any point Ae exceeds s(n, r(n), 1/e, 1/(5)
units of time, Are terminates Ae, outputs that f is not representable in C,~ and halts. If Ac
terminates and outputs a hypothesis h, Are first checks if h c Cn. Since C is polynomial
time recognizable, this check can be done in polynomial time. If h ¢ Cn, ATe outputs that
f is not representable in Cn and halts. If h E Cn, then .Are checks if h(x) = f (x) for all
assignments x c XI . Again, this check can be done in polynomial time since [XI[is at
most a polynomial in Ill and n. If h and f agree on the evaluation of all the assignments
in Xy, the representation question of f is answered in the affirmative, else .Are outputs that
f is not representable in Cn.

If f is representable in the class Cn, then there exists at least one formula in Cn that agrees
1

with f on the evaluation of all the assignments in Xs. Since e = iXsl+l, (5 = ¼, and D

is uniform over X S and 0 elsewhere, with probability at least 1 - (5 = 3, .Ac outputs a
hypothesis g that has error rate no greater than e, i.e., g agrees with f on all the assignments
in X I . Even i f9 is not equivalent to f , the compressibility of~- with respect to C is enough
evidence for .AT-e to correctly conclude that f is representable in Cn. In other words, if f is
representable in Cn, then .Are will correctly answer "Yes" with probability at least _3 4"

If f is not representable in C, then no such formula 9 exists. In such a case, .Ate does one
of the following: (i) it uses more than s(n, r (n) , l /e , 1/~) time, (ii) it outputs a hypothesis
h qL Cn, or (iii) it outputs a hypothesis h that does not agree with f on the evaluation of all
assignments in XS. In all three cases the failure of algorithm .Ac will be detected by .Are.
Therefore, .Are always correctly answers "No" if f is not representable in C~.

Finally, the total time taken by algorithm .Are (including the simulation of .Ac, the com-
putation of XI , the test to check if the hypothesis h E Cn and testing whether a hypothesis
of .Ac agrees with f on all the examples in X I) is at most a polynomial in Ifl and n.
Therefore, .Are is a randomized polynomial time algorithm for REP(C) for formulas in 5 c.

Note that the algorithm .Are is not necessarily able to produce a formula f l E Cn equivalent
to f even if it decides that f can indeed be represented in C~. In contrast, the proof of
Theorem 1 in the exact model yields an algorithm that can produce such a representation.

248 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

COROLLARY 2 Let C = U~>I Cn be a class of polynomial-time recognizable Boolean
formulas and r 0 a polynomi~ function such that for each c E Cn,]c I < r(n). If there
exists a class 5 r = Un>l f n of Boolean formulas that is compressible with respect to C
and REP(C) is NP-Hardfor ~, then C is not properly learnable in the extended PAC model
unless RP = NP

Proof: IfC is properly learnable in the extended PAC model, then by Theorem 2, REP(C)ERP
for the class ~ . If in addition REP(C) is NP-Hard for F , then by the definition of NP-
Hardness, all problems in NP can be solved in randomized polynomial time. Thus, if C is
properly PAC learnable with membership queries then RP=NP. []

4. Proper Exact Learnability of m-term DNF Formulas

Problem:

Instance:

Let 7)m,n denote the class of DNF formulas over n variables that have at most m terms. We
use D60 to denote the class U,~_>I "/)4~(n),n of DNF formulas. Using the general technique
of the previous section we first prove that under the assumption that P ¢ NP, the class
79¢0 , where ¢(n) = 13n --£-, is not properly learnable in the exact model. Next, we improve
on this by proving a general result which has the following flavor: m-term DNF formulas
over n variables are hard to learn exactly and properly, assuming NP is not contained in
DTIME(f (m, n)). Here f (m , n) is a functional inverse of m with respect to n- - i t s precise
definition will become clear later. This general result shows the "scalable" aspect of our
technique for exact and proper learning. By using stronger assumptions than P ¢ NP, we
can get stronger negative results.

All our reductions in this and the next 2 sections are from the following problem, which is a
variant of the exact cover problem. Actually, Garey and Johnson (Garey & Johnson, 1979)
cite a slightly different version as being NP-complete. (The requirement below that each
element of X occur in "exactly 3" sets in C is replaced with "at most 3" in Garey and
Johnson.) However, it is not too difficult to prove that our variant is also NP-complete (see
(Pillaipakkamnatt & Raghavan, 1994) for a proof).

Exact Cover by 3-Sets Where Each Element Occurs 3 Times (X3C3)

A set X such that IX] = 3q and a collection C of 3-element subsets of X
such that each element of X occurs in exactly 3 sets of C.

Question: Does there exist C ' c_ C such that each element of X appears in exactly one
set of Cr?

THEOREM 3 X3C3 is NP-Complete.

At this stage, it is convenient to introduce the following notation, used in the rest of the
paper. Let V be a set 0f Boolean variables. For any assignment fl : V --+ {False, True},
b c {False, True} and x E V, the assignment/3x~b is the assignment obtained by setting
the value of the variable x to b and setting all other variables to the values in/3. Let False be
the assignment that assigns False to all variables in V, i.e., Vv E V, False(v) = False. We
view a term t of a DNF formula as a set of literals since this facilitates addition and deletion
of literals to obtain new terms.

P R O P E R L E A R N A B I L I T Y O F S U B C L A S S E S O F D N F F O R M U L A S 249

THEOREM 4 There exists a class ~ of Boolean formulas testable with respect to De(),
where ¢(n) = 13n -~-, such that REP(D¢O) is NP-Hard for ~.

Proof : We use a reduction from X3C3. The class .U = {9<x,c> : (X, C) is an instance of
X3C3 } contains only DNF formulas and is defined as follows. Let (X, C) be an instance of

X3C3, where X = {Xl, X 2 , . . . , X3q} and C = { e l , e 2 , . . . , C3q }. The formula 9 = 9(x,c)
is defined over the set of variables V = X U C. When viewed as a function, 9 evaluates an
assignment/3 to True if and only if/3 is one of the assignments in the following list:

1. F a l s e

2. For each xi c X , F a l s e x ~ T~e

. For each c~ E C, the four assignments where at least two of the three x ' s in c~ are
assigned True. That is, i f c~ = {z j , xk, xl} the assignments:

(i) Falsezj . T~e,~ ~- True,xz*-- True
(ii) F a l s e ~ ~ T~e,~k ~ T~e
(iii) F a l s e ~ k ~ True,~l ~ T~e
(iv) F a l s e ~ j ~ T r u e , x ~ +-- T r u e

4. For each ei E C, Falsee~,__ T ~

5. For each ei E C, the four assignments where ci and at least two of the three x ' s in ci
are assigned True. That is, if ci = {x j , xk, xt} the assignments:

(i) Falsec~ ~ True,~j ~ T~,e,x~ ~ True,~,-- T~e
(ii) Falsee~,__ True,xj ~ T k ~ True
(iii) False¢~ +__ T k +-- T~,~,~z ~- 7V,,e
(iv) Falsec~ ,__ Tru~,~j ~ T~,e,~z*-- T~,e

The formula 9 evaluates no more than 30q + 1 assignments to True. (The assignment
F a l s e is one, assignments in items 3 and 5 add at most 24q more since there are 3q sets in
C, assignments in item 2 add 3q more since there are 3q elements in X , and assignments in
item 4 add another 3q more.) Therefore this is a polynomial transformation. Fix the DNF
formula representation of 9 = g(x,c) by simply making each of the above list of at most
30q + 1 assignments a term in the natural way. To complete the proof of the theorem, it
suffices to show that:

1. U is testable with respect to De(), where ¢ (n) = 13n --~--, and

2. I f 9 = g<x,c) is any formula in 5r6q, then 9 can be represented as a 13q-term DNF
formula if and only if (X, C> has an exact cover.

To prove (1), we develop an algorithm, .A, such that if .A is given formulas h E ~)13q,6q
and 9 = 9(x,c) E -P6q as input, .A halts in t ime polynomial in Ihl, 191 and q and outputs (i)
"No" and an assignment x such that h(x) • g(x) or (ii) "Yes", if h - 9- Since both h and
g are of size polynomial in q, it suffices to show that .4 needs only a polynomial in q units
of time.

250 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

Now, 9 = h if and only if both 9 :=~ h and h ~ 9 hold. Let P be the set of at most
30q + 1 assignments that 9 evaluates to True. To test if 9 =~ h holds, ,,4 simply checks if
all of the assignments in P are evaluated to True by h as well. Clearly, this can be done
in time polynomial in q and a counterexample, if one exists, can be found. Next, observe
that h ~ 9 if and only if for every term t in h, the set Q(t) of assignments evaluated to
True by t satisfies Q(t) c P. Therefore, .4 can test if h ~ g by considering each term t
of h, generating the assignments in Q(t) and checking if every such assignment generated
is in P . Algori thm .it stops the generation of Q(t) for any term t when either all of the
assignments in Q(t) have been generated or A finds an assignment in Q(t) that is not in P .
In the latter case, such an assignment is a certificate that h ~ 9 and therefore that h ~ g.
Since h has at most 13q terms and ,4 generates at most IP] + 1 _< 30q + 2 assignments per
term, A runs in time polynomial in q.

We prove (2) through a series of claims. Let 9 = 9(x,c) be a formula in F6q and let
V = X t5 C. Let Z denote the term {7 : v E V}. We define the sets $1 and S~ of terms
over literals that correspond to variables in V as follows:

Sa = { Z - { Y j , x k , ~ l } : ci = { x j , x k , x t } is a s e t in C}.

(z u - (z u { z z , z j }) - :

ci = {xj , xk, xt } is a set in C}.

CLAIM 1 The set S = $1 U $2 contains exactly the prime implicants of 9.

Proof" It can be verified that each term in S is indeed an implicant of 9. We prove that
each term in S is a prime implicant. Assume to the contrary that for some term t in S, there
exists t ~ c t such that t' is an implicant of g. It is sufficient to consider the case where
t ~ = t - {x} for some literal x in t.

Case 1: t E $1.
No positive assignment of g (i.e., none of the at most 30q + 1 assignments) satisfies more
than three variables from X. Since t is in $1, it contains one literal per variable in V, except
for three missing literals that correspond to variables in X . Thus, x cannot be a literal that
corresponds to a variable in X , lest t p be satisfied by an assignment that satisfies more than
three variables from X . But if x corresponds to a variable in C, then t r would be satisfied

by an assignment that satisfies exactly one variable in C and one variable in X . No such
assignment exists in our set of positive assignments. Hence, each term in $1 is a prime
implicant.
Case 2: t E $2.
Deleting any literal in t that corresponds to a variable in C produces a term that is satisfied
by an assignment that satisfies two variables from C. No such assignment exists in our
function g. Hence, it is sufficient to consider the case where literal x corresponds to a
variable in X . I f t is a term of the form Z - {~i}, and x corresponds to a variable in X ,
then t' is satisfied by an assignment that satisfies one variable in C and one variable in X .
Hence t t is not an implicant o fg . For a term t of the form (Z U {x D xk }) - {~i, Y:j, xk, ~Z },
any assignment that satisfies t satisfies at least two variables and at most three variables in

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 251

X, If x is a negated literal, then t ' is satisfied by an assignment that satisfies more than
three variables in X. If x is a positive literal, then t / is satisfied by an assignment that
satisfies exactly one variable in X and one variable in C. Thus, every term in Sz is a prime
implicant.

Finally, we need to show that g has no other prime implicants. The crucial observation
here is this. Any implicant t of 9 is satisfied by at least one assignment in P. Now t
must contain at least 6q - 4 complemented literals, lest it be satisfied by some assignment
not in P. (All assignments in P set at least 6q - 4 variables to False.) Similarly, there
must be some ci = {x j , xk , x t} in C such that t has all the negated literals over the
variables in Y = V - {ci, x j , xk, x t} , lest it satisfy some assignment not in P. Now, the
projection of 9 obtained by setting all the variables in Y to false is precisely the formula
-d~ + x j x k + xkx t + x l x j + x j xkxz , all five terms of which are prime implicants of the
projection. Therefore, t must be a superset of one of the five corresponding terms in $1 US2.

[]

Since ISI = 15q, 9 can be actually be represented using 15q or fewer terms.

CLAIM 2 I f t X , C) has an exact cover, then 9 can be represented using 13q terms.

Proof: Let C' C C be an exact cover of (X, C). Let S~ = { Z - {~j, ~k, ~z } : {xj, xk, xt }
is a set in C'} . Now IS~{ = I C ' l = q, since X contains 3q elements and each set in C '
contains exactly 3 elements. Consider the DNF formula f = Vtes[t V Vt~s~ t. By

Claim 1, f evaluates a subset of the positive assignments of 9 to True. In particular, all
assignments in items 1,3,4 and 5 of the definition of 9 are evaluated correctly using the
terms in $2. Since C I is an exact cover of X, for each x c X, there exists c C C ~ such
that x E c. Thus, for each assignment in item 2 of the definition of g, there exists a
term in S~ that evaluates/3x to True. The number of terms in f is [S~I + IS21 = 13q.

[]

CLAIM 3 I f ff can be represented as a D N F formula f with at most 13q terms, then there
exists an exact cover for (X , C).

Proof: Suppose there exists a DNF formula f with at most 13q terms such that f --= 9-
Without loss of generality, assume that f contains a set of prime implicants from S. (Since
every term t of f is an implicant of 9 and therefore a superset of one of the prime implicants
in S, we can replace each term t in f by a term t' E S such that t I C_ t. The resultant
formula will still be equivalent to 9.)

Now, all terms in $2 must be in f , lest some assignment in part 4 or 5 of the definition of 9
be not evaluated to True by f . These account for 12q terms. The remaining at most q terms
must be a set S t C $1. Every prime implicant in $1 is satisfied by exactly 3 assignments in
item 2 of the list of assignments satisfied by 9. Moreover, only the prime implicants in $1 can
evaluate these assignments to True. Since there are 3q such assignments, it follows that there
must be at least q terms in S~ and C ' = {{x, y, z} : Z - {~j, ~k, xt } C S i } contains q sets
ofpairwise disjoint sets. By the definition of $1, C C C and therefore C ~ is an exact cover.

[]

From the proof of the claim above, 9 requires at least 13q terms to be represented as a
DNF formula, and if (X, C) has an exact cover, then 9 can be represented with exactly 13q

252 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

terms. Since the number of variables over which 9 is defined is n = 6q, the number of
13n (if <X, C) has an exact cover). terms in 9 is 13q : --6"-

Since 5 r is testable with respect to D¢0 , ¢(n) = L~_, and, by Claims 2 and 3, there exists
an exact cover for (X, C} if and only if 9 : 9(x,c) E YZaq can be represented as a DNF
formula with exactly 13q terms, the theorem follows. •

COROLLARY 3 I f P ~ NP, then ~ - t e r m DNF formulas over n variables are not properly
learnable in the exact model.

Proof: Immediate from Corollary 1 and Theorem 4. []
13n By the definition of proper learnability, m(n)oterm DNF formulas, for any re(n) > --g-,

are also not properly and exactly learnable unless P = NP. We now give a general hardness
result for m(n)- term DNF formulas, which is particularly useful for functions re(n) that are
o(n). In what follows, we adopt the following definition of a functional inverse: f - 1 (n) is
the least non-negative integer j such that f (j) > n. (If no such integer exists then f - 1 (n) is
infinity.) Following standard practice, we use the shorthand notation poly(f(n)) to denote
functions that are at most a polynomial in f (n) .

A technical requirement needed to prove the following theorem is that the real function
f (n) be efficiently computable in the following weak sense. A total function f : 7~ -+ 7~
is computable in pseudo-polynomial time if there exists an algorithm .Ay that, when given
integers n and N as input, can decide if f (N) > n in time polynomial in n and N.

THEOREM 5 I f f O is computable in pseudo-polynomial time and D I O is property learn-
able in the exact model, then UP C_ DTIME (poly(max(n, f - l (L~_)))) .

Proof : Let U = {91x,c) : (X, C} is an instance of X3C3} be a class of DNF formulas,

where for each instance (X, C) of X3C3, the formula glx,c) is as defined below.

Let (X, C) be any arbitrary instance of X3C3, with X = {xl , x 2 , . . . , X3q} and C =
{Cl, c 2 , . . . , C3q}. Let g be the Boolean formula defined in Theorem 4 over the set of
variables V = X U C. Let f 0 be a real function that is computable in pseudo-polynomial
time. In what follows, assume that the range of f 0 is not bounded from above by any fixed
integer c, otherwise f - l (n) = cxz, for n > c, and the theorem is trivially true for such a
function f 0 . Compute f - l (1 3 q) as follows. By iterating through integer values j > 0,
determine the least j such that f (j) > 13q.

Let N = max(6q, f - l (1 3 q)) . I f N > 6q, then create a set of N - 6q new variables
Y = {Yl, Y2, - - -, YN-6q }; if N = 6q, let Y = 0. We define g~x,c) over the set of variables

V p = X U C t3 Y as follows.
For any assignment/3, 9~x,c)(/3) = True if and only if 9(/3) = True and for all y E Y,

/3(y) = False.
Given any instance (X, C) of X3C3 with I XI = I CI = 3q, we can compute a DNF formula

g ' in time polynomial in N = max(6q, f - l (1 3 q)) . As in the proof of Theorem 4, <x,c>
fix the DNF formula glx,c> by making terms out of the at most 30q + I assignments.

(However, now the number of literals in 91x,c> may be more, since N is potentially larger
than 6q.)

We claim that:

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 253

1. 5 r is testable with respect to [-Jq>l ~)13q,max(6q,f-l(13q))"

/
2. If 9 ~ = 9(x,c) is any formula in .~'max(6q,f-l(13q)) then 91 can be represented as a

13q-term DNF formula if and only if (X, C) has an exact cover.

To prove (1), it suffices to give an algorithm, .4, such that if .4 is given formulas h c
~)13q,max(6q,f-x(13q)) and 91 = 9~x,c> E ~'max(6q,f-1(13q)) as input, .4 halts in time

polynomial in N = max(6q, f -1 (13@) and outputs (i) "No" and an assignment x such
that h(x) ~ 91(x) or (ii) "Yes", if h -= gl.

If N = 6q, then .4 proceeds as in the proof of Theorem 4. So, suppose that N =
f - l (1 3 q) > 6q and h is defined over the set of variables X t2 C U Y, where Y ~ 9. To
check if gl =4, h, test (as in Theorem 4) if the set P of at most 30q + 1 assignments that
91 evaluates to True are evaluated to True by h as well. If not, one of the assignments in
_P is a counterexample. To check if h ~ 91, check if all the terms of h contain negated
literals corresponding to all the variables in Y. I f any particular term t does not contain a
literal ~, where y C Y, then any assignment formed by setting y to True and satisfying the
remaining literals in t is a counterexample that satisfies h but not g' . Finally, if all the terms
in h contain negated literals corresponding to all the variables in Y, then consider the DNF
formula h' obtained from h by deleting all the literals corresponding to variables in Y. At
this point, we can assert that h ~ g' if and only if h' ~ g, where g is the original formula
of Theorem 4 obtained from g' by deleting all literals corresponding to variables in Y. By
the proof of Theorem 4 testing if h' ~ g can be done in time polynomial in q. Clearly, all
of the above tests can be done in time polynomial in N since we are assuming that N > 6q
and h and g' have only O(q) terms over N variables.

To prove (2), note that, by Theorem 4, it suffices to prove that 9' can be represented as
a 13q-term DNF formula if and only if 9 can be represented as a 13q-term DNF formula.
The " i f ' part follows by noting that any DNF formula for 9 can be transformed to a DNF
formula for 91 by simply appending a set of negated literals corresponding to variables in
Y to every term of 9. The "only if" part follows by noting that any implicant of gl must
contain all the negated literals corresponding to variables in Y. Therefore, stripping off the
negated literals corresponding to variables in Y from every term of a DNF representation
of 91 gives a DNF representation of 9.

By Theorem 1 and (1) above, the existence of a polynomial time exact and proper learning
algorithm for ~)13q,N for every q > 0 implies that recognizing if 9' can be represented
in ~)13q,N is in DTIME(poly(N)). Since the transformation to gl can be done in time
polynomial in N, X3C3 is NP-hard, and (2) above holds, we can conclude that if there
exists a polynomial time exact and proper learning algorithm for :Dlaq,N, then all problems
in NP can be solved in DTIME(poly(N)). The theorem now follows by putting n = 6q.

Of interest are the following corollaries, which illustrate how Theorem 5 can be used to
get stronger results with stronger assumptions.

COROLLARY 4 If P ~ NP, then ha-term DNF formulas over n variables cannot be properly
learned in the exact model for any fixed constant a > O.

254 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

Proof: It suffices to consider a _< 1 since the result follows from Theorem 4 for a > 1.
For any constant a , 0 < a _< 1, let c be any integer such that ~ < a. Put f (n) =
in Theorem 5. Now f (n) is certainly computable in pseudo-polynomial time. Since
f-a(13.......nn) = [(. ~) c] is in poly(n), the corollary follows. []

A reasonable assumption is that NP is not contained in DTIME(n°0°g'~)). This assump-
tion leads to the following.

COROLLARY 5 I fNP is not contained in DTIME(n°O°gn)), then 21x/ig-~-term DNF for-
mulas over n variables cannot be properly learned in the exact model.

Proof: Put f (n) = 2 ~ in Theorem 5. Again f (n) is computable in pseudo-polynomial

time and f-1(13_____~n)= [(.~) log(! -~)] is in nO(logn). The corollary follows. []

Since NP is definitely contained in DTIME(2 p°ty(n)) the next corollary uses the strongest
assumption that is still plausible.

COROLLARY 6 If there exists some constant e > 0 such that NP is not contained in
DTIME(poly(2 n`)) then there exists a constant c > 0 such that log c n-term DNF formulas
over n variables cannot be properly learned in the exact model.

Proof: If such an e > 0 does exist, let c > ! be any integer. Now f (n) = (log n) c is

computable in pseudo-polynomial time and f -1 (13n) = 13, 1 - - I2 (~) l i so(poly(2n ')) . By

Theorem 5, logC(n)-term DNF formulas cannot be learned in the exact model. []

The positive result of Bshouty, Goldman, Hancock, and Matar (1993) shows that the
1 It is open if this can be improved further. constant c of the last corollary is greater than 7"

This last corollary is not so much a negative result as it is an indication that improved positive
results for proper leamability of DNF formulas must necessarily imply a corresponding
improvement in what is known about the smallest DTIME class in which NP is contained.

5. Proper PAC Learnability of m - t e r m DNF Formulas

We now turn to proper PAC learnability of m-term DNF formulas. It must be mentioned
that the results in this section imply the results for proper exact learnability if all the
complexity-theoretical assumptions of this section hold. However, the assumptions in this
section involve the relationship of randomized time (RTIME) to NP and are stronger than
the corresponding assumptions about DTIME of the previous section. So we have taken
the "safe" route by proving the results for PAC and exact learnability independently.

THEOREM 6 There exists a class Y of Boolean formulas compressible with respect to
De(), where ¢(n) = 13n --K-, such that REP(D¢O) is NP-Hard for Y .

Proof: The reduction is from X3C3. Let the class .7- of DNF formulas is exactly the class
defined in Theorem 4. It suffices to show that the class Y is compressible with respect to
De0, since REP(C) is NP-hard for Y (Theorem 4).

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 255

We now show that Y is compressible with respect to ~¢(). We create an algorithm .A such
that if ..4 is given as input a formula g = 9(x,c) E Y6q then it outputs, in time polynomial
in Ig[and q, a set Xg with the following property: if there exists a formula h E ~913q,6q
such that for all x E X 9, g(x) = h(x), then there exists a formula f E D13q,6q such that
f = g- Since 191 is itself polynomial in q, it suffices to show that A runs in time polynomial
in q.

Let P be the set of at most 30q + 1 assignments that g evaluates to True. We define the
set X a of assignments as follows.

X9 = {flv,--~ : v E V, b E { True, False), ~ E P }

The number of assignments in Xg is at most (30q ÷ 1)(6q + 1) = O(q2). Therefore X 9
can be computed in polynomial time and is of polynomial size. It remains only to show
that if there is a DNF formula h of at most 13q terms such that h and g agree with the
assignments in X 9 then there is a DNF formula of at most 13q terms that is equivalent to 9.

Let h be a 13q term DNF formula consistent with the set Xg of examples. For each term
t in h such that t satisfies none of the positive examples in X 9, delete t from h. Clearly, h
is still consistent with Xg, and has 13q or fewer terms. I f t is a term in h that has 6q - 4
or fewer titerals, then t can be deleted, since (i) none of the positive assignments in Xg has
more than 4 variables set to True (it) when a positive assignment contains 4 variables set
to True, exactly one variable of the form ci is set to True and (iii) none of the positive
assignments satisfy exactly one variable of the from ci and xj . Thus, each remaining term
has at least 6q - 3 literals. Moreover, no term t contains more than three positive literals
corresponding to variables in X. For each term t in h, if t is a superset of any of the prime
implicants defined in the proof of Theorem 4; then replace t with a prime-implicant. Again,
if h was consistent with Xg before, it is still consistent with all assignments in X 9. If each
term in h is a prime-implicant of g, we are done.

If to the contrary, there exists a term t in h that is not a prime implicant, we show that h
is not consistent with the set Xg of examples. At this juncture, each term in h has 6q - 3 or
more literals. If term t has two or more positive literals of the form c~, or t does not contain
literals corresponding to two or more variables of the the form ci, then by the construction
o f X 9, one of the following is true: (i) it is satisfied by an assignment in Xg that is a negative
example (it) none of the assignments that satisfy t are in Xg. If the former is true, then we
contradict the assumption that h is consistent with Xg. If the latter is true, then t should
have been deleted at an earlier step. Thus t can contain at most one literal of the form ci.

If t contains one literal of the form ci then it must be a term of length exactly 6q, lest it
be satisfied by an assignment that satisfies exactly ci and a variable of the form xj (all such
assignments are negative examples). But this would make t an implicant of g, contrary to
our assumption.

If t is missing a literal corresponding to a variable of the form ci and is not a prime
implicant of 9, then t must contain at least 2 positive literals of the form x j and xk, lest it be
satisfied by a negative example in Xg. I f x j and xk do not belong in the set c~ of C, then t
is satisfied by a negative example, contrary to our assumption that h is consistent with X 9.
But this would make t a prime implicant of g (t would be in $2).

256 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

Finally, consider the case where all literals corresponding to variables in C are negated.
Since t cannot be satisfied by any assignment that satisfies two variables xj and xk, where xj
and xk do not belong together in any set ci in C, t must be an implicant of h, which would
contradict our assumption that all such implicants were replaced by prime implicants.

COROLLARY 7 I f RP 7~ NP, then !_~_term DNF formulas over n variables are not properly
learnable in polynomial time in the extended PAC model.

Proof: Immediate from Corollary 2 and Theorem 6. []

It is possible to get stronger negative results by using assumptions stronger than RP
NE The proof of the following theorem is substantially similar to the proof of Theorem 5;
so we omit the proof and the corresponding corollaries.

THEOREM '7 I f Z)fO is properly learnable in the extended PAC model and f O is com-
putable inpseudo-polynomial time, then NP C RTIME(poly(max(n, f -1(!~_)))) .

6. Read-Thrice DNF Formulas

We strengthen the result in (Aizenstein, Hellerstein & Pitt, 1992) to show that read-thrice
DNF formulas are hard to learn, given the weaker assumption that PT~NP. In addition we also
show that, under the assumption that RP¢NP, read-thrice DNF formulas are not properly
learnable in the PAC model. Let 7)3 r, denote the class of read-thrice DNF formulas. We
have Theorem 8 to help prove the hardness of learning 793 u in the exact model.

The basic idea behind the reduction in the following theorem is this: if the formula
9 in the proof of Theorem 4 is representable as a 13q term DNF formula, then each
variable in this representation occurs exactly 13q - 4 times. Therefore, we generate a
set {Vl, V2, . . . , V(13q--4)} of 13q -- 4 variables for each variable v over which g is de-
fined. We replace each occurrence of variable v with a unique copy, creating a read-
once DNF formula. In order to "force the equivalence" of all copies, we add the formula
VlU 2 q- v2~ 3 + ... q- V13q_4U1, for each variable v. Since each variable vi occurs three times,
we have a read-thrice DNF formula. On the other hand, if 9 cannot be represented as a 13q-
term DNF formula, then at least one variable occurs more than 13q - 4 times, and hence the
new formula cannot be represented as a read-thrice DNF formula. This reduction is similar
to the ones in (Angluiin & Kharitonov, 1991) and (Aizenstein, Hellerstein & Pitt, 1992).
Finally, we show that the class of read-thrice DNF formulas obtained by this reduction is
testable with respect to any read-thrice DNF formula.

THEOREM 8 There exists a class J= such that f is testable with respect to 793~ and
REP(79au) is NP-Hard for ~.

Proof: The reduction is once again from X3C3. We define f" = {glx ,c) : (X, C) is an

instance of X3C3} as follows. Let (X, C} be the given instance of X3C3. Consider the
DNF formula g over the set V = X U C of 6q variables as defined in Theorem 4. We define

t V t the DNF formula g3u = 9(x,c) over a set of O(q 2) variables in the following manner.

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 257

The set V' contains 13q - 4 copies of each variable v C V. That is, V ' = {vi : v E
V~I < i < 1 3 q - 4 } . For a l l y E V, we l e t V l = v. Thus, V C V '. For the sake of
convenience let ~313q_ 3 also denote Vl. Since there are 13q - 4 copies of each variable in
V, the number of variables in V r is 6q(q3q - 4)=O(q2). For any v C V, and integers i and
j , 1 < i , j <_ 13q - 4, we say vi and vj are synonyms. The DNF formula g3t, is expressed
as the disjunction of terms in S1 U $2 U 83, where S1 and $2 are as defined in Theorem 4,
and

$3 = U {vi i i+l}.
vE V, l <_i<13q-4

We claim the following:

' is any formula in -~6q(13q--4), then g3/z can be represented as a read- 1. I f g3~ = g(x~c)

thrice DNF formula if and only if the instance <X, C) of X3C3, with IXI = ICI = 3q,
has an exact cover.

2. ~ is testable with respect to 7931z.

The total number of terms in $1 U $2 tj $3 is 15q + (13q - 4)6q = O(q2). Hence this is
a polynomial transformation. Therefore, proving items (1) and (2) above would suffice to
prove the theorem.

To prove (1), note that by Claims 2 and 3 in Theorem 4, any given instance (X, C / of
X3C3, with IXI = ICI = 3q, has an exact cover if and only if the formula g = g(x,c>
defined in Theorem 4 can be expressed as a 13q-term DNF formula over 6q variables. Thus,
it suffices to prove that 93~ can be expressed as a read-thrice DNF formula if and only if g
can be expressed as a 13q-term DNF formula.

As a first step, we characterize all the prime implicants of g3~- The set $3 expresses the
"equivalence" of all synonymous variables. Each term in $1 U $2 U $3 is a prime implicant
of 93~- It is easily shown that for each prime implicant t C $1 tA $2 - $3, the term t p
obtained by replacing any variable vi E t (or its complement gl) by vj (correspondingly
~j), where vi and vj are synonyms, is also a prime implicant of g3u. Denote by S[and S~
the set of all prime implicants obtained by such substitutions to prime implicants in S1 and
$2 respectively. Also, for all pairs vi and v3 of distinct synonyms, the terms vigj and givj
are prime implicants of g3u- Call this set of prime implicants S~. To see that the terms in
S ' = S~ U S~ U S~ are, in fact, the only prime implicants of g3u, assume that t is any prime
implicant of g3u. If t contains v~ and gj for some v c V and distinct 1 _< i, j < 13q - 4,
then t = vi~j since v~gj is a prime implicant in S~. Otherwise, consider the term t r obtained
by replacing each v~ in t, 1 < i < 13q - 4, v E V, with v. The term t ~ must be a prime
implicant of g. Hence, t ' c S1 [-J $2 and, by construction of S[and S~, t E S[U S~.

Next, we claim the following about g itself.

CLAIM 4 9 can be represented as a DNF formula in which each variable v E V occurs
in exactly 13q - 4 terms if and only i f (X , C} has an exact cover.

Proof:
~ : By Claim 2, if (X, C) has an exact cover, then g has a minimal DNF representation
that contains 13q terms. The proof of Claim 2 shows that of these 13q terms, 12q of them

258 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

are the terms in the set $2 and q terms are from the set S1. Since each element xu C X ,
1 < u < 3q, occurs in exactly 3 sets of C and there are exactly 3q sets in C, it is easy to
count the number of occurrences of each variable Xu in the terms of set $2. Each variable x~
occurs (either as a positive literal or as a negative literal) in all terms of Sz except in 3 terms
of the form {Z - {W//, x~,, xr , ~-7~} U {xr, x s } : c~ is a set in C}, where Z = { F : v E V}.
Thus, the terms in $2 account for 12q - 3 occurrences of each variable on the form x~,. To
count the number of variables of the form x~ in the remaining q terms that express g, note
that since (X, C) has an exact cover (say C) , each x~ occurs in only one set of C ~ and
is thus, by definition of S1, missing from only one term. Thus there are q - 1 additional
occurrences of variable x,,, yielding a total of 13q - 4 occurrences. To count the number
of occurrences of each of the variables of the form c~ E V, 1 < i < 3q, note that each
such variable occurs in all but 4 terms of $2, and in all terms of remaining q terms from
$1. Thus, each variable of the form ci also occurs exactly 13q - 4 times, i f (X, C) has an
exact cover.

: Note that irrespective of whether or not (X, C) has an exact cover, 9 cannot be expressed
with fewer than 13q terms. From Claim 3 we can conclude that if (X, C) does not have
an exact cover, then 9 requires at least 13q + 1 terms to be represented as a D N F formula,
and must include all terms in $2. Thus, there are at least q + 1 terms from S1. But this
would require more than 13q - 4 occurrences of each variable of the form ci, 1 < i < 3q.

[]

CLAIM 5 g3~ is representable as a read-thrice D N F formula over V r i f and only i f 9 can
be represented as a 13q-term D N F formula over V.

Proof:
~ : Let f be a 13q-term DNF formula that represents 9- We can assume that f is a subset
of $1 U $2. Consider the DNF formula f ' obtained by replacing the i th occurrence of each

variable v C V in f with its synonym vi. That is,

f ' = U {vi : t h e i thoeeurrence of v is in t}

t e l

By Claim 4 and the fact that each variable v E V has 13q - 4 copies in V ~, the formula
f~ is a read-once DNF formula on V ' . Now add all terms in Sa to f~. Since these terms
add two more occurrences of each variable in V' , f l is now a read-thrice DNF formula.
We claim that f~ is a DNF representation of g3~,. Clearly f ' ~ gau. Further, consider an
assignment fl over V ~ such that g3#(/3) = True. If fl satisfies any term in 5'3, then fl also
satisfies f q If fl falsifies all terms in Sz, then it must satisfy some term in S1 U $2, and
hence some term t in f . Moreover, for each variable v E V, we must have /3(v j) = / 3 (v) ,
for all 1 _< j _< 13q - 4. This implies that the term t ~ in f / t h a t corresponds to t in f is also

satisfied by/3. We thus have g3u =:> f ' .

~ : Let f l be a read-thrice DNF formula equivalent to g3#. We can assume that f ' is a
minimal set of prime implicants of 93~- For each variable v E V, let V~ C V I denote the
set of all synonyms of v. We claim that for each vi C V~, there exist v j , vk E Vv, with

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 259

distinct i, j and k, such that viVj and "~ivk are terms in f t . Consider an assignment/3 to
the variables in V that satisfies exactly five variables in V - {v} and falsifies all other
variables in V. Such an assignment falsifies g (by the definition of g, no assignment that
satisfies more than 4 variables satisfies g), as does the ass ignment /3w- T,-~c. Now consider
the ass ignment /3 ' to V ' defined as /3 ' (w~) = /3(w), for all w E V, 1 < u < 13q - 4.
That is, for each w C V, we assign the value of w to each of the 13q - 4 variables in V ~
associated with w. The assignment/3~ does not satisfy gau, since it does not satisfy any
term in $1 U $2 tO $3. But the ass ignment/3 p does. It is easy to see that the only v i ~-- T r u e

b t prime implicants in g3t~ that are satisfied y/3v~_ T ~ e are of the form v i i i , and hence there
must he at least one such term in f t . Using a similar line of reasoning but starting with the
assignment ~/=/3v.__ T , ~ , it can be shown that there must be at least one term of the form
~ v k in f~. Moreover, note that vj must be distinct from vk, otherwise the assignment that
satisfies all variables except vi and vk falsifies f~, but not gau. Thus, two occurrences of
each variable vi are used in representing pr ime implicants in S~.

Delete all prime implicants of the form vi~j, for all v C V, from f~. The DNF formula
f~ is read-once and all the prime implicants in it are from S~ tO S~. We construct a D N F
formula f on V as follows: for each term t ~ in f~ add the term t to f , where each literal
in t ' that corresponds to a variable vi in V ~ is replaced with the corresponding literal
from variable v in V. Thus, there are at most 13q - 4 occurrences of each variable
v E V in f . We claim that f is a DNF representation of g. By the definition of S~
and S~, each term in f is a prime implicant of g, and hence f ~ g. Now consider any
assignment/3 that satisfies g. Extend/3 to /3 ' over the set V ' by set t ing/3 ' (vi) = / 3 (v) , for
all v E V, 1 < i < 13q - 4. Since/3 satisfies some term in $1 U $2,/3~ satisfies gau.
Thus, /3 r satisfies some term t in f r _= 93~ such that t E S~ U S~. By our construction
of f , this implies that some term in f is satisfied by /3 itself, since all synonyms are
assigned the same value. Hence, g ~ f . The claim then follows from Claims 2, 3 and 4.

[]

We now show that (2) is satisfied by 5V--that is, ~ is testable with respect to read-thrice
DNF formulas. To do this, we construct an algorithm, A3u, such that A3u takes as input a
read-thrice DNF formula h over 6q(13q - 4) variables and g3p C ~6qO3q-4) and outputs in
time polynomial in t hl, 191 and Iql either (i) "No" and an assignment x such that 9(x) ~ h(x)
or (ii) "Yes" and a read-thrice DNF formula h ~ over 6q(13q - 4) variables such that h ~ - g.

Let T r u e denote the assignment that sets all variables in V ~ to True. For any v C V,
let T r u e v denote the assignment over V ~ that sets all synonyms of v to False and the
remaining variables in V ~ to True. That is, T r u e V (v i) = False, for all 1 < i < 13q - 4,
and T r u e r (u) = True for all u E V ' - {Vl, v2, ..., Vlaq-4 }.

Algori thm .A3t, creates a new formula h ~ from h as follows. For each term t in h: (i) i f t is
of the form vi~jz , where vi and vj are distinct synonyms of some v E V, and z is some set of

literals, A3t~ replaces t with v i i i ; (ii) if t is of the form VilVi2...vik z, where vi~, vi2, ..., vi~
are synonyms of some v E V, and z contains no synonyms of v, .,43~ replaces t with vi~ z.
(iii) if t is of the form ~i~ vi: . . .vi~ z, where vi~, vi2, ..., vi~ are synonyms of some v E V,
and z contains no synonyms of v, A3t, replaces t with vi~ z. All other terms are retained.

If h~ (True) = True, then .A3u outputs "No" and T r u e . If there exists a v ~ V such
that h ' (T r u e ~) = True, then Asu outputs "No" and T r u e v. I f there exists a v ~ V

260 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

and an i, 1 < i < 13q - 4, such that ht(Wruev~+_False) -= False, then A3u outputs
"No" and Wl'uevi..-False. If there exists a v E V and an i, 1 < i < 13q - 4, such that
h ' (T r u e V ~ T r u e) = False, then ¢43u outputs "No" and True~,._True. Otherwise, .A3u
creates h" from h ~ by replacing every synonym vi, 1 < i < 13q - 4, of every variable
v E V with v, and then deleting all terms of the form v~..A3u then invokes the equivalence
testing algorithm .4 in the proof of Theorem 4 with h" and g as inputs. If .A outputs "No"
and an assignment/3 over V, then .A3u outputs "No" and the assignment/3 ~ over V ~ formed
by replicating the assignment to each v E V to all its synonyms. That is,/3'(v~) = /3 (v) for
all v E V and 1 < i < 13q - 4. I f .A outputs "Yes" then ,,43/~ outputs "Yes" and the DNF
formula h r modified as follows: delete from h ~ all terms of the form vi~j for some v, i and
j , and add all terms in $3.

We now show that ,A3p " is correct. Note that g3u(True) -~ g3u (True v) = False for all
v E V. Also note that for any assignment/3 returned by A3u such that h'(/3) ¢ g3u(/3)
it also holds that h(/3) ¢ 93~(/3). As a first step we show that if A~ u invokes A, then
for each v E V and 1 < i _< 13q - 4, there exist 1 _< j , k < 13q - 4 (both j and
k distinct from i) such that vi~j and ~ivk are terms in hC Assume to the contrary that
there exists some vi such that there is no term of the form vi~j in h' . Since, at this point,
h ' (T r u e v) = False and h ' (T r u e ~ 7 - ~) = True, there must be a term t in h ' of the
form v~z, where z is a set of positive literals that do not correspond to synonyms of v. But
such a term (and hence h ') would be satisfied by T r u e , which is a contradiction. Now
assume that there is no term of the form ~ivk in hC Again, we know that h~(True) = False
and h~ (Truev~F~ t ~) = True. Therefore, there must be a term t in h ~ of the form ~iz,
where z is a set of positive literals that-do not correspond to synonyms of v. But such a
term (and hence h ~) would be satisfied by T r u e ~, which is a contradiction.

Thus, when h" is created, h ~ contains at most one occurrence of each synonym variable
v~ in a term that is not of the form v ~ j or ~ v k . There are, therefore, at most 13q - 4
occurrences of each variable v E V in h". Clearly, if.,4 responds with a "Yes", A3~ outputs
a read-thrice DNF formula equivalent to 93u. I f A responds with an assignment/3 such that
h"(/3) ¢ 9(/3), then it is easy to verify that the assignment/3' satisfies h'(/3) ¢ 93,(/3')-

Finally, note that all steps in A3u can be carried out in time polynomial in Ih[, and q.

COROLLARY 8 If P ~ NP, then the class of read-thrice DNF formulas is not properly
learnable in the exact model.

Proof : Follows directly from Theorem 8 and Corollary 1. []

Next we consider the learnability of read-thrice DNF formulas in the extended PAC model.
We have the following theorem.

THEOREM 9 There exists a class .~ of Boolean formulas compressible with respect to :D3t~
such that REP(:D3u) is NP-Hard for :F.

Proof : We show that the class 5 r as defined in the preceding theorem is compressible with
respect to read-thrice DNF formulas. This, in conjunction with the fact that REPCD3u) is
NP-hard for f , proves the theorem.

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 261

CLAIM 6 Y is compressible with respect to D3u.

Proof: To show that ~- is compressible, we give an algorithm .A such that if .A is given as
input a formula g3u = g~x,c) E ~'6q(13q-4), ,Z outputs in time polynomial in q a set Xg3, of

assignments such that if there exists a read-thrice DNF formula f over 6q(13q- 4) variables
that is consistent with g3u over all assignments in Xg~,, then there exists a read-thrice DNF
formula f ' over 6q(13q - 4) variables such that g3~ =- ft .

Consider the set Xg of assignments over V defined in the proof of Theorem 6. Extend
each assignment in Xg to the set V ' by replicating the assignment to all synonyms. That
is, X~ = {/3' :/3'(vi) = 13(v), fl c X g , v ¢ V, 1 < i < 13q - 4}. As in Theorem 8, let
T r u e be the assignment that satisfies all variables in W, and for any v c V, let T r u e v
denote the assignment over V ' that sets all synonyms of v to False and the remaining
variables in V ' to True. Let P ' = { T r u e ~ F a Z s ~ : v E V, 1 < i < 13q - 4}. For all
v E V, letQV _~ { T r u e ~ , ~ T ~ e : 1 < i < 13q- -4} . Finally, we defineXg~x,c) =

Xg~, = {True} U Xg U P ' t2 Uvev QV. The number of assignments in Xg is at most
(30q + 1)(6q + 1) (from the proof of Theorem 6, the number of assignments in P ' is
(6q)(13q - 4), the number of assignments in Uvcv Q~ is (6q)(13q - 4). Thus, the total
number of assignments in Xg~, is at most O(q2).

We now show that there exists a read-thrice DNF formula f over V' that is consistent
with 93u over the evaluation of assignments in Xo~" only if g3u can be represented as a
read-thrice DNF formula.

Let f be a read-thrice DNF formula consistent with g3/~ over the evaluation of assignments
in Xg~ . We create a read-thrice DNF formula f ' with no more terms than f as follows: For
each term t in f of the form v ~ j z , where vi and vj are synonyms and z is any conjunction
of literals, add vi~j to f ' . The formula thus obtained is still consistent with g3tz over the
evaluation of all assignments in X g a . Next, for each term in f of the form vivjz (or
correspondingly Ui~jz), where vi and vj are synonyms and z is any conjunction of literals,
add viz (Viz) to f ' . The formula thus obtained is consistent with g3~ over all assignments
in Xg~ . Finally, delete all terms in f ' that are not satisfied by any assignment in X93" that
satisfies g3~,-

The argument in the proof of Theorem 8 that shows .T" is testable with respect to read-
thrice DNF formulas can be repeated to show that for each variable vi c V ~, there exist vj
and vk such that vi~j and V~vk are terms in f ' , lest it not be consistent with g3u over X g 3 .
Thus, there is only one remaining occurrence of each variable in V'. Now, delete all two
literal terms in f~ and replace them with the terms in $3. The formula f ' thus obtained
is still consistent with Xg~ . I f there exists a term t in f ' of length greater than 2 that is
not a superset of any of the terms in S~ t2 S~, then clearly f was not consistent with X 9.
Replacing each term t in f ' with a subset t ' that is a prime implicant of g3u and arguing
on the lines of Theorem 6 shows that f ' is a read-thrice DNF formula equivalent to 93~-

COROLLARY 9 I f RP ~: NP, then the class of read-thrice DNF formulas is not properly
learnable in the extended PAC model.

Proof: Follows directly from Theorem 9 and Corollary 2. []

262 K. PILLAIPAKKAMNATT AND V. RAGHAVAN

7. Conclusions

We have presented general techniques to prove that certain classes of Boolean formulas
cannot be efficiently learned when an exact (or PAC) learning algorithm is restricted to
hypotheses from the class itself. We have applied these techniques to show that h a - t e r m

DNF formulas over n Boolean variables, for any fixed constant a > 0, cannot be properly
learned in the exact model unless P = NP and in the extended PAC model unless RP =
NP. Using a very strong assumption about the containment of NP in DTIME classes, we
also show that there exists a fixed constant c > 0 such that lof t n-term DNF formulas
cannot be learned properly in the exact model. Finally, we have improved the result in
(Aizenstein, Hellerstein & Pitt, 1992) to show that read-thrice DNF formulas are not learn-
able properly in the exact model unless P = NP and in the extended PAC model unless RP
= NP.

One common feature of this technique and the techniques in (Pitt & Valiant, 1988),
(Kearns, et al., 1987) and (Aizenstein, Hellerstein & Pitt, 1992) is that all of them rely
solely on the apparent hardness of finding a representation in a concept class that agrees
with given data. These techniques do not exploit the fact that a learning algorithm has no
knowledge of the data at all and must somehow elicit it using queries. On the other hand,
Angluin's technique of approximate fingerprints (Angluin, 1989)relies solely on this "lack
of knowledge" to devise an adversary that will confound any purported efficient learning
algorithm that uses only equivalence queries. Recently, this technique was generalized to
give a characterization of polynomial-query learnability with equivalence and membership
queries (Hellerstein, et al., 1995). However, Angluin's technique and its generalization do
not exploit the limited computational resources--in particular time--available to the learn-
ing algorithm. Perhaps there is a way to combine these disparate techniques to form a
stronger technique to attack the problem of learning DNF formulas in the normal sense.

References

Angluin, D., Hellerstein, L. & Karpinski, M. (1993). Learning Read-Once Formulas with Queries. Journal of
the ACM, pages 185-210.

Aizenstein, H., Hellerstein, L. & Pitt, L. (1992). Read-Thrice DNF is Hard to Learn With Membership and
Equivalence Queries. Proceedings of the 33rd Annual IEEE Symposium on the Foundations of Computer
Science, pages 523-532.

Aizenstein, H. (1993). On the Learnability of Disjunctive Normal Form Formulas and Decision Trees. Phi)
thesis, University Of Illinois at Urbana-Champaign.

Angluin, D. & Kharitonov, M. (1991). When Won't Membership Queries Help? Proceedings of the ACM
Symposium on Theory of Computing, pages 444-454.

Anghiin, D. (1988). Queries and Concept Learning. Machine Learning, 2:319-342, 1988.
Anghiin, D. (1989). Equivalence Queries and Approximate Fingerprints. Proceedings of the Second Annual

Workshop on Computational Learning Theory, pages 134-145.
Angluin, D. (1990). Negative Results for Equivalence Queries. Machine Learning, 5:121-150.
Aizenstein, H. & Pitt, L. (1991). Exact Learning of Read-twice DNF Formulas. Proceedings of the 32ndAnnual

IEEE Symposium on the Foundations of Computer Science, pages 170-179.
Aizenstein, H. & Pitt, L. (1992). Exact Learning of Read-k Disjoint DNF and Not-So-Disjoint DNF. Proceedings

of the Fifth Annual Workshop on Computational Learning Theory, pages 71-76.
Berggren, U. (1993). Linear Time Deterministic Learning of k-term DNF. Proceedings of the Sixth Annual

Workshop on Computational Learning Theory, pages 37--40.

PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 263

Blum, A. & Rudich, S. (t992). Fast Learning of/z-term DNF Formulas with Queries. Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, pages 382-389.

Bshouty, N., Cleve, R., Kannan, S. & Tamon, C. (1994). Oracles and Queries that are Sufficient for Exact
Learning. Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, pages
130-139.

Bshouty, N., Goldman, S., Hancock, T. & Matar, S. (1993). Asking Questions to Minimize Errors. Proceedings
of the 6th Annual ACM Conference on Computational Learning Theory, pages 41-50.

Garey, M. & Johnson, D. (1979). Computers andlntractability. W.H. Freeman and Company, New York.
Hancock, T. (1991). Learning 2#DNF Formulas and ktt Decision Trees. Proceedings of the Fourth Annual

Workshop on Computational Learning Theory, pages 199-209.
Hancock, T. 1992. The Complexity of Learning Formulas and Decision Trees that Have Restricted Reads. PhD

thesis, Harvard University, Center for Research in Computing Technology, Aiken Computation Laboratory.
TR-15-92.

Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V. & Wilkins, D. (1995). How Many Queries are Needed to
Learn? Proceedings of the 27th Annual ACM Symposium on the Theory of Computing.

Jackson, J. (1994). An Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform
Distribution. Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science.

Kearns, M., Li, M., Pitt, L. & Valiant, L. (1987). On the Learnability of Boolean Formulae. Proceedings of the
ACM Symposium on Theory of Computing, pages 285-295.

Pillaipakkamnatt, K. (1995). Proper Learnability of Boolean Formulas in Disjunctive Normal Form. PhD thesis,
Vanderbilt University.

Pillaipakkamnatt, K. & Raghavan, V. (1994). X3C3 is NP-Complete. Technical Report TR-94-62, Department
of Computer Science, Vanderbilt University, Nashville, TN.

Pillaipakkamnatt, K. & Raghavan, V. (1995). Read-Twice DNF Formulas are Properly Learnable. Information
and Computation (to appear).

Pitt, L. & Valiant, L. (1988). Computational Limitations on Learning from Examples. Journal of the ACM,
35(4):965-984.

Valiant, L. (1984). A Theory of the Learnable. Communications of the ACM, 27(11):1134-1142, 1984.

Received July 5, 1994
Accepted February 10, 1995
Final Manuscript March 1, 1995

