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Abstract. Bshouty, Goldman, Hancock and Matar have shown that up to %/logn term DNF formulas can 
be properly learned in the exact model with equivalence and membership queries. Given standard complexity- 
theoretical assumptions, we show that this positive result for proper learning cannot be significantly improved 
in the exact model or the PAC model extended to allow membership queries. Our negative results are derived 
from two general techniques for proving such results in the exact model and the extended PAC model. As a 
further application of these techniques, we consider read-thrice DNF formulas. Here we improve on Aizenstein, 
Hellerstein, and Pitt's negative result for proper learning in the exact model in two ways. First, we show that 
their assumption of NP ~ co-NP can be replaced with the weaker assumption of P ~ NP. Second, we show that 
read-thrice DNF formulas are not properly learnable in the extended PAC model, assuming RP 5& NP. 
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1. I n t r o d u c t i o n  

1.1. The D N F  problem 

D N F  formulas  are representat ions of  Boolean  funct ions  in Dis junct ive  Normal  Form. The 
quest ion of  whether  D N F  formulas  are efficiently learnable  is a central  open p rob lem in 

learning theory. In  Valiant 's  model  of  probably  approximate ly  correct  (PAC) learning 
(Valiant, 1984), some partial  results have been  obtained.  For example ,  Pitt  and Valiant 
(1988) have shown that for any k > 2, k- term DNF  formulas  are not  PAC learnable as 
k- term D N F  formulas ,  unless  RP = NP. On the other hand,  it has been  shown that for 
any constant  k, k- te rm D N F  formulas  are learnable  as k -C NF  formulas  (Valiant, 1984), 
and k- term D N F  formulas  are learnable  as k-terra D N F  formulas  when  the learner is also 
al lowed to ask membersh ip  queries (Bshouty, et al., 1993, Berggren,  1993). But  none  of  
these results answer  the quest ion "Can arbitrary D N F  formulas be learned with po lynomia l ly  

larger D N F  hypotheses  or if  membersh ip  queries are al lowed in the learning process?" 

A n g l u i n  and Khar i tonov (1991) consider  whether  D N F  formulas  can even be predicted, 
i.e., PAC-learned with efficiently computab le  hypotheses from any class. They give a result  
which can be interpreted as posit ive or negative, depending  on one ' s  point  o f  view: they 
show that ( if  certain cryptographic assumpt ions  hold) D N F  formulas  can either be predicted 
without  member sh ip  queries or cannot  predicted even if member sh ip  queries are allowed. 

* This work was supported by an NSF grant, CCR-9212011 
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That is, membership queries essentially do not help in predicting DNF formulas under 
arbitrary distributions. The best positive result known for specific distributions is Jackson's 
membership-query based algorithm (Jackson, 1994) for predicting DNF formulas under the 
uniform distribution. 

Angluin's model of exact learning (Angluin, 1988) places more stringent requirements on 
learning than the PAC model; therefore negative results should be easier to obtain in the exact 
model. Nevertheless, the question of whether DNF formulas can be exactly learned using 
equivalence and membership queries is open. It is easy to see that membership queries alone 
will not suffice; using purely information-theoretical arguments, Angluin developed the 
technique of "approximate fingerprints" (Angluin, 1990) to show that equivalence queries 
alone will not suffice either. 

1.2. Subclasses of DNF formulas 

Recognizing the hardness of settling the question of learnability of general DNF formulas 
in either of these models, researchers have studied the learnability of some subclasses of 
DNF formulas, placing restrictions on the class of hypotheses available to the learner. The 
classes of monomials, monotone DNF formulas, Horn sentences, k-DNF formulas, read-k- 
sat-j DNF formulas, read-twice DNF formulas, and k-term DNF formulas ((Angluin, 1988, 
Valiant, 1984, Angluin, Hellerstein & Karpinski, 1993, Aizenstein & Pitt, 1991, Aizenstein 
& Pitt, 1992, Hancock, 1991, Hancock, 1992, Berggren, 1993, Pillaipakkamnatt & Ragha- 
van, 1995)) have all been shown to be learnable exactly and efficiently with equivalence and 
membership queries. Moreover, all of these classes can be learned properly, i.e., using only 
hypotheses that come from the target class of the unknown concept to be learned. Of these 
classes, monomials and k-DNF formulas can be properly learned with equivalence queries 
alone; the others provably need both equivalence and membership queries for efficient 
proper learning. 

On the negative side, Aizenstein, Hellerstein, and Pitt (1992) have shown (assuming 
NP ~ co-NP) that read-thrice DNF formulas are not exactly learnable as read-thrice 
DNF formulas, given both equivalence and membership queries. The requirement that 
equivalence queries can use only read-thrice DNF hypotheses is crucial to this result (see 
(Aizenstein, Hellerstein & Pitt, 1992) for an excellent discussion of such representation de- 
pendent results). If the hypotheses may come from the larger class of DNF formulas, then 
exactly learning read-thrice DNF formulas is just as hard as learning general DNF formulas 
(Angluin & Kharitonov, 1991). 

An interesting question that arises out of the proper learnability of k-term DNF formulas 
is the following: is there a limiting number of terms k* (where k* could be a function of n, 
the number of variables) such that DNF formulas with fewer than k* terms can be properly 
learned in the PAC or exact sense, but DNF formulas with more than k* terms cannot be 
learned? It seems unlikely that the limiting number k* will be obtainable in any precise 
sense. Thus, a reasonable line of enquiry is to establish upper and lower bounds on k*. 

On the positive side, Bshouty, Goldman, Hancock, and Matar (1993) have shown that up 
to l x / ~ n  term DNF formulas can be properly learned with equivalence and membership 
queries. (Berggren's linear time algorithm (Berggren, 1993) for learning k-term DNF 
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formulas translates to a weaker lower bound on k* of f~( loglogr~ ) Blum and Rudich log log log 'r~ " 
(1992) have shown that O(log n) term DNF formulas are exactly learnable with equivalence 
and membership queries, but their algorithm does not appear to be transformable to a proper 
learning algorithm). So the question is, can we hope to properly learn k-term DNF formulas 
for k "significantly" larger than v/i-~g n? We use complexity-theoretical arguments to show 
that the answer to this question is "No." 

1.3. Our results 

We build on the technique of Aizenstein, Hellerstein, and Pitt (1992) to prove the following 
negative results: 

1. If P ¢ NP, then ha-term DNF formulas cannot be properly and exactly learned with 
equivalence and membership queries, for any fixed constant c~ > 0. 

2. If NP is not contained in DTIME(n°(l°gn)), then 2 t°x/i-gg-ff-term DNF formulas over 
n variables cannot be exactly and properly learned with equivalence and membership 
queries. 

3. If there exists some constant e > 0 such that NP is not contained in DTIME(2 n+), there 
exists a constant c > 0 such that DNF formulas with more than log c n terms cannot be 
properly and exactly learned with equivalence and membership queries. 

These negative results use progressively stronger assumptions to get better upper bounds 
on the limit of proper learnability of DNF formulas. Specifically, the last negative result 
shows that the lower bound of x/]-o--g n terms is the best possible up to a constant exponent. 

Next, we address proper PAC-learnability with membership queries. Here we generalize 
the method used by Pitt and Valiant (1988) and Kearns, Li, Pitt, and Valiant (1987) to get 
negative results. This method relies on the assumption that RP ;~ NP and uses the difficulty of 
finding hypotheses from a concept class C consistent with carefully constructed sample data 
to prove that C is hard to learn in the PAC sense. It has been observed (Aizenstein, 1993) that 
there are technical difficulties in generalizing the method to get negative results for PAC- 
learning when membership queries are allowed; roughly, the problem is that answering 
membership queries on points outside of the sample data used in the method destroys the 
reduction involved. Nevertheless, we show that the technique of Aizenstein, Hellerstein, 
and Pitt can be fruitfully combined with the RP 7~ NP technique to address PAC-learnability 
with membership queries. We use this new combined technique to show that (if RP ¢ NP) 
n-term DNF formulas cannot be properly PAC-learned even if membership queries are 
allowed. 

As another application of the techniques for proving negative results, we consider read- 
thrice DNF formulas, the class considered by Aizenstein, Hellerstein, and Pitt. First, we 
show that (unless P = NP) read-thrice-DNF formulas cannot be properly learned with 
equivalence and membership queries. This is an improvement on the earlier hardness result 
which depends on the stronger assumption that NP ¢ co-NR Second, we show that (if RP 
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NP) then read-thrice DNF formulas cannot be properly learned in the PAC model with 
membership queries. This last result is not directly deducible from the earlier result. 

We note here that our techniques for obtaining negative results can be extended in a 
relatively straightforward manner to accommodate other kinds of queries. With such an 
extension, one can sharpen the results given above. Specifically, all the non-learnability 
results for k-term DNF formulas in the exact and PAC models hold if the learner is allowed 
all of subset, superset, equivalence, and membership queries; the negative results for read- 
thrice DNF formulas hold if the learner is allowed subset, equivalence, and membership 
queries. Out of space considerations, here we develop our techniques for negative results 
only for the combination of equivalence and membership queries. The interested reader is 
referred to (Pillaipakkamnatt, 1995) for extensions to other queries. These negative results 
for proper learning with an extended set of queries are to be contrasted with the positive ones 
in B shouty, Cleve, Kannan, and Tamon's (1994) recent paper. They show that every concept 
class can be exactly (but not necessarily properly) learned by a randomized algorithm 
which uses subset and superset queries. In essence, non-proper subset and superset queries 
allow the learner to simulate an NP-oracle, thus overcoming the fundamental computational 
obstacle used in our techniques for negative results. 

The rest of the paper is organized as follows. Section 2 contains definitions relevant to the 
rest of the paper. Definitions specific to the remaining sections are developed later. Section 3 
is an outline of general techniques that can be used to show hardness results. The remaining 
sections are applications of the general techniques--section 4 contains hardness results for 
proper exact learning of DNF formulas; section 5 contains the corresponding results in the 
PAC model. Finally, section 6 contains the results for read-thrice DNF formulas. 

2. Definitions and Terminology 

2.1. Preliminaries 

Let V be a set of Boolean variables. An assignment/3 is a mapping V ~ { True, False}. 
The set of 2 IVI possible assignments (instances, vectors) is called the instance space on V. 
A Boolean concept c on V is a subset of the instance space. It is convenient to view such a 
concept as a Boolean function in the most natural way: c(/3) = True if and only if/3 is an 
instance of the concept. 

Let C = Un~lCn be a class of Boolean concepts, where each Cn, n > 1 is a set of 
concepts defined over a set Vn of n Boolean variables. A representation ~ for the class C 
is a 3-tuple (Tr, R, p) in which: 

1. 7r is the alphabet of the representation. 

2. R C_ 7r* is the set of strings on 7r that represent concepts in C. 

3. p : R --+ C is a surjective (onto) function that maps strings in R to concepts in C, i.e., 
for each c E C, there exists at least one string h in R which satisfies p(h) = e. 
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Frequently, the representation itself defines the concept class. Thus, for example, the 
"class of k-term DNF formulas" should be interpreted as the set of Boolean functions that 
can be represented as DNF formulas with no more than k terms. 

2.2. Models of learning 

Angluin models the learning process using a minimally adequate teacher (Angluin, 1988) 
in the following way: The teacher picks some concept c E C. An exact learner or learning 
algorithm .A works with a representation T~ = (Tr, R, p) for a class ~ ,  where ~ _~ C. The 
goal of the learner A is to output a string h E R such that p(h) = c. That is, the concept 
e is the unknown target concept that .A attempts to learn: if .A is a true learning algorithm 
for C, it will eventually output such a string, regardless of which concept c is picked from 
C. The class of concepts 7-/used by .,4 is called its hypothesis class. The algorithm A 
may acquire information about the target concept e by asking the teacher two kinds of 
queries--equivalence queries and membership queries. 

An equivalence query, EQ(h), where h E R, effectively asks, "Is p(h) = c?" If p(h) = c, 
the teacher answers "Yes"; otherwise, the teacher answers "No" and gives a counterexample 
g such that c(g) ~ p(h)(fl).  

A membership query, MQ(fl), effectively asks if the assignment/3 is an instance of the 
unknown concept c; the teacher answers "Yes" if c(g) = True and "No" otherwise. 

We say that the class C = Un_>l cn of concepts is (efficiently) learnable in the exact 
model in representation 7~ = Qr, R, p) for the hypothesis class 7-( ~_ C if there exists a 
learning algorithm Ac,n  and a 2-variable polynomial PO such that for any unknown target 
concept c E Cn: 

1. .Ac,~ uses membership queries and equivalence queries of the form EQ(h), where 
h E R, and 

2. If 1 is the length of the shortest representation of c in ~ (i.e., l = min {Ihl : h E 
R and p(h) = e}), then .Ac,~ uses at most p(l, n) time and outputs a string h E 7~ 
such that p( h ) = e. 

In Valiant's model of learning (Valiant, 1984), the learning algorithm is required to achieve 
only approximate identification. Let c E C,~ be the unknown concept to be learned. In the 
extended model of probably, approximately, correct (PAC) learning, a learning algorithm .A 
obtains information about the unknown concept c from two sources: membership queries 
and sample queries. 

The response to a sample query EX0 is a random example (/3, b) of the unknown concept c, 
where/3 is an assignment chosen randomly according to some fixed, but arbitrary probability 
distribution D over the instance space and b = c(/3). 

We say that the class C = Un_> 1Cn of concepts is learnable in the extended PAC model in 
the representation ~ = (Tr, R, p) for hypothesis class 7-[ ~ C if there exists an algorithm 
.Ac,~, and a 4-variable polynomial P0  such that for any unknown target concept c E Cn 
and for any distribution D over the instance space, Ac,7~ takes as input an error parameter 
e, 0 < e < 1, and a confidence parameter ~, 0 < 3 _< 1, and satisfies the following: 
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1. .Ac,n uses only membership and sample queries, and 

2. Ac ,n  outputs a string h C ~ such that Prob(~-]~:c(~)¢p(h)(Z) D(fl) > e) < ~, and 

3. If I is length of the shortest representation of c in R, .Ae,n uses at most p(l, n,, ,!  ½) 
total time. 

For both exact and PAC-learning, we assume that the time complexity of a learning 
algorithm A is measured in a uniform cost RAM model augmented to allow for queries 
in the following way. Membership and sample queries are each charged a single unit of 
time and an equivalence query EQ(h) costs Ihl units of time. In both models, the cost of 
outputting the final hypothesis h must be accounted for in the running time of the algorithm. 

2.3. Proper learning 

In this paper, we are interested in representation-dependent or proper learning. That is, 
we have a "natural" representation 7-~ - Qr, R, p} which defines a target class C and we 
are concerned with whether C can be efficiently learned in the representation ~ for the 
hypothesis class 7-/= C in either the exact or PAC model. 

As an example of a class that is properly learnable, consider the class of read-once Boolean 
formulas (Angluin, Hellerstein & Karpinski, 1993), i.e., the class of Boolean functions that 
can be represented as Boolean formulas in which each variable occurs at most once. The 
statement "the class of read-once Boolean formulas is properly learnable in the exact model 
(with a minimally adequate teacher)," means that there exists a polynomial time exact 
learning algorithm that uses membership queries and equivalence queries only of the form 
EQ(h), where h is a string representing a read-once Boolean formula. 

We consider the proper learnability of read-thrice DNF formulas in this paper. A read- 
thrice DNF formula is a DNF formula in which each Boolean variable occurs at most three 
times. 

We also consider the proper learnability of DNF formulas that have at most ra terms. 
Here we are interested in enforcing the constraint that the hypotheses used by the learning 
algorithm never have more terms than the unknown DNF formula to be learned. The natural 
way to do this becomes clear when we examine the following equivalent definition of normal 
learnability of DNF formulas in the exact model. 

Let Dm,,~ be the set of DNF formulas with at most m terms defined over the set V,~ = 
{vl, v2 , . . . ,  v~} of n Boolean variables. Let Rm,,~ be the set of strings in the conventional 
representation of ~Dm,~ (which uses some alphabet of n characters to represent the variables 
in V~, the symbol + to denote disjunction etc.) Assume that the two Boolean functions that 
evaluate all assignments to True and all assignments to False are represented in Rm,n as 
the special 0-term DNF formulas T and F respectively. The class 79 = •n>l Urn>0 Dm,,~ is 
learnable in the exact model if there exists an algorithm .AT) and two polynomial functions 
P0  and q0 such that for each e C Din,n: 

I. .A9 uses only membership queries and equivalence queries of the form EQ(h), where 

h E Rq(m,n),n, and 
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2 . . A 9  uses at most p(m, n) time and outputs a string h c Rq(m,n ),n such that h -= c, i.e., 
h and c are equivalent representations of the same Boolean function. 

In the above definition of learnability of DNF formulas, the learner is allowed to hypoth- 
esize any DNF formula h such that the number of terms in h is polynomial in the number 
of terms in the target formula. That is, we allow a polynomial "blow up." We say that the 
class of m-term DNF formulas is properly learnable in the exact model if the polynomial q 
in the definition above satisfies q(m, n) = m, i.e., the learning algorithm is allowed to use 
only hypotheses with no more terms than appear in a shortest representation of the unknown 
concept to be learned. We are interested in the limit of proper learnability of m-term DNF 
formulas, i.e., the most number of terms (expressed as a function of n) that will permit 
proper learnability. This motivates the following definition. 

The class ~Df0 : [-Jn>l (-JO<_m<_f(n) ~)m,n is properly learnable in the exact model if 
there exists an algorithm .A and a polynomial function P0  such that for each c E 79 . . . .  
where 0 _< m _< f (n ) :  

1. .,4 uses only membership queries and equivalence queries of the form EQ(h), where 
h E Rm,n, and 

2 . . A  uses at most p(m,  n) time and outputs a string h c R,~,n such that h - e. 

Similar definitions can be worked out for the proper learnability of the classes 79 and 79f0 
in the extended PAC model. Note that all these definitions imply the following "inclusion" 
property: If D I 0  is properly learnable (in either model), then for any function g 0  that 
satisfies g(n) _< f (n)  for all n, 79g0 is also properly learnable. Contrapositively, to show 
that 79f0 is not properly learnable, it suffices to consider a class 79g0 where g(n) _< f ( n )  
for all n, and show that Dg0 is not properly learnable. 

Since we are interested only in proper learning in this paper, we shall henceforth omit 
all references to the hypothesis class for both exact and PAC learning algorithms. Further, 
since all concept classes examined in this paper have natural representations, we also omit 
formal definitions of the representation for these classes in the paper. 

3. General Techniques 

The general technique for proving hardness results for proper learning in the exact model 
can be summarized as follows: Let C be a class of Boolean formulas and f a Boolean 
formula that is not necessarily in C. If  C can be properly learned in the exact model and 
there exists a polynomial time algorithm to decide if any given formula e in C is equivalent 
to f ,  then the question "Can f be represented in C?" can be answered in polynomial time. 
If it can also be shown that the problem of deciding if f is representable in C is NP-Hard, 
then we will have effectively shown that P = NP. In other words, if P ~ NP, there exists no 
algorithm for learning the class C exactly and properly. 

This technique can be seen as strengthening the technique of Aizenstein, Hellerstein, and 
Pitt (1992) in a fairly obvious way: the latter technique does not require that the formula f 
be testable in polynomial time for equivalence with any given formula c in C. Instead, a non- 
deterministic guess is used to find an assignment x such that f (x)  ~ e(x). Consequently 
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the hardness result achievable using the latter technique needs the stronger assumption that 
NP ¢ co-NP. Interestingly, there is a more subtle reason for preferring the former "P 
NP" technique whenever possible and it is this. As will be seen, hardness results using the 
P ~ NP technique are "scalable" in the following sense: we can replace the assumption 
"P ~ NP" with a stronger assumption like "NP is not contained in DTIME(nl°gn) ' '  to get 
a stronger negative result. In contrast, the assumption "NP ¢ co-NP" does not scale so 
nicely. 

We now formalize the "P ~ NP" technique. 

Definition 1 Let C = U n > l  Cn and ~ : Un_>l fn  be classes of  Boolean formulas such 
that for each n > 1, Cn and Un are sets of  formulas over a set Vn of n Boolean variables. 
The class 5 r is testable with respect to C if there exists an algorithm A j:  and a polynomial 
function t(), such that if.A~: is given formulas c E Cn and f E f ' n  as input, .A~ halts in at 
most t (n, tel, I f I) units o f  time and outputs one of the following: 

1. "No," and an assignment x to the n Boolean variables such that f (x)  ~ c(x). 

2. "Yes," and a formula c t E Cn such that f - :  c t (i.e., f and c ~ represent the same Boolean 
function). 

Note carefully that this definition of  testability is a little weaker than the requirement 
mentioned in the introductory remarks to this section; in particular, item 2 of the definition 
does not require the formula e I to be logically equivalent to the formula c input to Aj : :  it 
is possible that c ~ f but .A,~: outputs "Yes" and e ~ E Cn such that c '  = f .  In other words, 
the ability to test any f E .Un lot equivalence against any c E Cn, though sufficient to prove 
testability, is not quite necessary. This hair-splitting makes a difference only in Section 6, 
where the hardness proof for read-thrice DNF formulas is made technically easier because 
of  the weakening of  the definition of  testability. 

We use the following problem of  deciding whether a formula can be represented in C. 

REP(C): Representability of formulas in C 

Instance: A set V = {vl, v 2 , . . . ,  v,~} of  n Boolean variables and a formula f over V. 

Question: Is there a formula f '  E C~, such that f~ = f ?  

We say that REP(C) E P for a class .,v of Boolean formulas if there exists an algorithm 
.A such that if .,4 is given any formula f E 5rn as input, .A decides if there exists a c c Cn 
such that f - c in time at most polynomial in If[ and n. We say REP(C) is NP-Hardfor 
class f" if for each problem H in NP, H is polynomial-time reducible to whether f E 5 r is 
representable in C. 

As in (Aizenstein, Hellerstein & Pitt, 1992), the technical requirement of  polynomial- 
time recognizability of  C (but not 5 r )  is a necessary pre-condition for the following theorem. 
A class C = U n > l  Cn of Boolean formulas is polynomial-time recognizable if there exists 
a polynomial time algorithm such that, given a formula h and an integer n, the algorithm 
decides if h is an element of  Cn. The classes for which we prove hardness results have 
simple polynomial time algorithms for recognition. Hence, this requirement will not be 
explicitly mentioned in our later applications of  this general technique. 
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THEOREM 1 Let C = Un>_l Cn be a polynomial-time recognizable class of Boolean 
formulas and PO a polynomial function such that for each c E G ,  Icl <_ p(n). Let 
Y = Un>l Fn be a class of Boolean formulas that is testable with respect to C. I fC is 
properly learnable in the exact model, then REP(C)cP for the class Y.  

Proof: Suppose there exists an algorithm .Ac that properly learns C in the exact model. 
Let q0  be a polynomial function such that .Ac uses no more that q(n,p(n)) time for any 
target concept c E Cn. We create a new algorithm .An such that if.An is given any formula 
f E Yn as input, .ATz decides if there exists a c E Cn such that f - c in time at most 
polynomial in Ifl and n. The algorithm -An runs .Ac to simulate the learning of f as 
follows. 

If .Ac makes a membership query with assignment fl, .An returns the evaluation f (g ) .  
If.Ac makes an equivalence query with a hypothesis h, .An checks if h E Cn. Since C is 

polynomial time recognizable, this can be done in time polynomial in Ihl and n. If h ~ Cn 
then .An outputs that there is no f /  E C,~ such that f _~ f f  and halts. If h is in Cn, then 
-An runs the testing algorithm .A~ with inputs h and f .  Again, this can be done in time 
polynomial in Ihl, If t, and n since Y is testable with respect to C. If A ~  outputs "Yes" 
and a certificate h' E Cn such that f --= h ~, then .An halts after outputting that f can be 
represented in Cn. On the other hand, if .A~ outputs "No" and an assignment/3 such that 
h(/3) ¢ f(/3), then clearly f ~ h..AT~ returns the assignment/3 as a counterexample to 
Ac. 

Finally, if algorithm .Ac exceeds q(n, p(n)) units of time, .An halts and outputs that f is 
not representable in the class Cn. 

To prove the correctness of.ATz, first suppose that f is representable in the class Cn. Now 
.Ac must always ask equivalence queries with hypotheses from Cn, and within q(n, p(n)) 
steps output a representation c of f in Cn. At least when this happens (and perhaps even 
sooner) the testing algorithm .Aj: has no choice but to output"Yes" and (possibly a different) 
representation d of f in G~. So .AR will make the correct decision if f is indeed representable 
in C~. 

Next, suppose that f is not representable in Cn. Now one of the following must happen: 
(i) .Ac always hypothesizes formulas in Cn--since f cannot be represented in Cn, the testing 
algorithm .Ay has no choice but to output "No" for each hypothesis h from Ac and give 
an assignment/3 such that h(fl) ¢ f(/3) (ii) .Ac produces a hypothesis h ~ C~ as input to 
an equivalence query. In the first case, .An will correctly decide that f is not representable 
in Cn when Ac eventually exceeds q(n, p(n)) units of time; in the second case, .AT~ makes 
the correct decision right away. 

All the steps involved, including the simulation of Ac and potentially a polynomial 
number of runs of .A~- and a polynomial number of tests for recognizing that hypotheses 
used by .Ae are indeed in Cn, can be carried out in time polynomial in If] and n. Therefore, 
we can conclude that REP(C) E P for Y. • 

COROLLARY 1 Let C = [.Jn> l Cn be a class of polynomial-time recognizable Boolean 
formulas and PO a polynomial function such that for each e C Cn, [e[ < p(n). l f  there 
existX a class f = [-)n> l Fn that is testable with respect to C and REP(C) is NP-Hard for 
class Y,  then C cannot be properly learned in the exact model unless P = NP. 
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Proof: If C is properly learnable in the exact model, then by Theorem 1, REP(C)EP for 
~ .  If in addition REP(C) is NP-Hard for .T, then by the definition of NP-Hardness, all 
problems in NP can be solved in polynomial time. [] 

Our technique for proving hardness results in the PAC model is similar to the ones used 
by Pitt and Valiant (1988) and Kearns, Li, Pitt, and Valiant (1987) that are built on the 
assumption that RP ¢ NP. The difference is that these other techniques apply to proving 
hardness results in the PAC model, whereas we want to prove hardness in the extended PAC 
model where membership queries are allowed. We solve the problem by combining the P 

NP technique of rllaeorem 1 with the ideas behind these RP ¢ NP techniques. 
The general idea for proving negative results in the extended PAC model can be sum- 

marized as follows: Let C be a class of Boolean formulas and f a Boolean formula not 
necessarily in C. If  (i) C can be learned in the extended PAC model, and (ii) there exists 
some set X S of examples of f which can be computed in polynomial time such that the 
existence of any concept in C that agrees with f over X f  is sufficient to guarantee that 
there exists a formula in C equivalent to f ,  then the decision problem of whether f can 
be represented in C is in RE In addition, if it can be shown that this decision problem is 
NP-Hard, then we will have effectively shown that RP = NE 

In applying the technique to the extended PAC model, our earlier requirement of testability 
of f with respect to C has essentially been replaced with a requirement of f ' s  "compress- 
ibility" into a set X I  with respect to C. Formally, 

Definition 2 Let C := U,~>I Cn and .T" = Un_>l .Tn be classes of Boolean formulas such 
that for each n >_ 1, Cn and 5rn are sets of Boolean formulas over a set V~ of n Boolean 
variables. The class .T is compressible with respect to C if there exists an algorithm A s  
and a polynomial function P 0  such that given input f E .Tn, .47 outputs in time p(n, If[) 
a set Xy of assignments with the following property: If there exists a formula 9 C Cn such 
that for all x E X f ,  9(x) = f (x )  then there exists a formula 9' E Cn such that g '  -= f .  

Note that the definition implies that X f  must be of size at most a polynomial in If] and 
n.  

We say that REP(C) C RP for a class jr of Boolean formulas if there exists a randomized 
algorithm .4 such that if .4 is given any formula f E f 'n  then 

3 1. If there exists c E Cn such that f - c then .4 outputs "Yes" with probability at least 
and "No" with probability at most 1, and 

2. If there exists no c E Cn such that f - c then -4 outputs "No". 

Moreover, .4 halts in time at most polynomial in Ifl and n. 

We have the following general result for proper learnability in the extended PAC model: 

THEOREM 2 Let C = Un>l  cn be a polynomial-time recogn&able class of Boolean for- 
mulas and r 0 a polynomial function such that for all c E C,~, Icl _< r( n ). Let.T = Un>l  .T',~ 
be a class of Boolean formulas that is compressible with respect to C. If C is properly learn- 
able in the extended PAC model, then REP(C)ERP for the class .T. 
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Proof: Suppose there exists an algorithm -Ac that properly learns C in the extended PAC 
model. Let s 0 be a polynomial function such that for any target concept c E Cn, Ac uses 
no more that s(n, r(n), l /e ,  1/6) time, for error parameter e and confidence parameter ft. 
We now create a randomized algorithm .Are such that if .Are is given any formula f ~ .Fn, 
then, in time polynomial in Ill and n, -A outputs (i) "No", if there exists no c E Cn such 
that f -- c (ii) "Yes" with probability at least 3, if there exists c E Cn such that f ---- c. The 
algorithm .Are runs .Ac to simulate the learning of f as follows. 

Using the fact that 5 c is compressible with respect to C, .Are first computes a set X I  of 
assignments in time polynomial in Ifl and n. Next, a distribution D is dcfined over the 
set of all assignments as follows: for each element x E X f ,  D(x) = ~ and for all IXiI 
other assignments y, D(y) = 0. That is, the distribution is uniform over X S and 0 (zero) 
elsewhere. Finally, the parameters e -- 1 IxsL+l and (5 = ¼ are given as input to Ac. 

If  Ac makes a membership query with an assignment/3, .Are returns the evaluation f(/3). 
If-Ac makes a sample query, Are returns an assignment/3 randomly chosen according to dis- 
tribution D along with its evaluation f(/3). If  at any point Ae exceeds s(n, r(n), 1/e, 1/(5) 
units of time, Are terminates Ae, outputs that f is not representable in C,~ and halts. If  Ac 
terminates and outputs a hypothesis h, Are first checks if h c Cn. Since C is polynomial 
time recognizable, this check can be done in polynomial time. If h ¢ Cn, ATe outputs that 
f is not representable in Cn and halts. If  h E Cn, then .Are checks if h(x) = f (x)  for all 
assignments x c XI .  Again, this check can be done in polynomial time since [XI[ is at 
most a polynomial in Ill and n. If  h and f agree on the evaluation of all the assignments 
in Xy, the representation question of f is answered in the affirmative, else .Are outputs that 
f is not representable in Cn. 

If  f is representable in the class Cn, then there exists at least one formula in Cn that agrees 
1 

with f on the evaluation of all the assignments in Xs.  Since e = iXsl+l, (5 = ¼, and D 

is uniform over X S and 0 elsewhere, with probability at least 1 - (5 = 3, .Ac outputs a 
hypothesis g that has error rate no greater than e, i.e., g agrees with f on all the assignments 
in X I .  Even i f9  is not equivalent to f ,  the compressibility of~-  with respect to C is enough 
evidence for .AT-e to correctly conclude that f is representable in Cn. In other words, if f is 
representable in Cn, then .Are will correctly answer "Yes" with probability at least _3 4" 

If  f is not representable in C, then no such formula 9 exists. In such a case, .Ate does one 
of the following: (i) it uses more than s(n, r (n) ,  l /e ,  1/~) time, (ii) it outputs a hypothesis 
h qL Cn, or (iii) it outputs a hypothesis h that does not agree with f on the evaluation of all 
assignments in XS. In all three cases the failure of algorithm .Ac will be detected by .Are. 
Therefore, .Are always correctly answers "No" if f is not representable in C~. 

Finally, the total time taken by algorithm .Are (including the simulation of .Ac, the com- 
putation of XI ,  the test to check if the hypothesis h E Cn and testing whether a hypothesis 
of .Ac agrees with f on all the examples in X I )  is at most a polynomial in Ifl and n. 
Therefore, .Are is a randomized polynomial time algorithm for REP(C) for formulas in 5 c. 

Note that the algorithm .Are is not necessarily able to produce a formula f l  E Cn equivalent 
to f even if it decides that f can indeed be represented in C~. In contrast, the proof of 
Theorem 1 in the exact model yields an algorithm that can produce such a representation. 
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COROLLARY 2 Let C = U~>I Cn be a class of polynomial-time recognizable Boolean 
formulas and r 0 a polynomi~ function such that for each c E Cn, ]c I < r(n). If there 
exists a class 5 r = Un>l  f n of Boolean formulas that is compressible with respect to C 
and REP(C) is NP-Hardfor ~,  then C is not properly learnable in the extended PAC model 
unless RP = NP 

Proof: IfC is properly learnable in the extended PAC model, then by Theorem 2, REP(C)ERP 
for the class ~ .  If  in addition REP(C) is NP-Hard for F ,  then by the definition of NP- 
Hardness, all problems in NP can be solved in randomized polynomial time. Thus, if C is 
properly PAC learnable with membership queries then RP=NP. [] 

4. Proper Exact Learnability of m-term DNF Formulas 

Problem: 

Instance: 

Let 7)m,n denote the class of DNF formulas over n variables that have at most m terms. We 
use D60 to denote the class U,~_>I "/)4~(n),n of DNF formulas. Using the general technique 
of the previous section we first prove that under the assumption that P ¢ NP, the class 
79¢0 , where ¢(n) = 13n --£-, is not properly learnable in the exact model. Next, we improve 
on this by proving a general result which has the following flavor: m-term DNF formulas 
over n variables are hard to learn exactly and properly, assuming NP is not contained in 
DTIME(f (m,  n)). Here f ( m ,  n) is a functional inverse of m with respect to n- - i t s  precise 
definition will become clear later. This general result shows the "scalable" aspect of our 
technique for exact and proper learning. By using stronger assumptions than P ¢ NP, we 
can get stronger negative results. 

All our reductions in this and the next 2 sections are from the following problem, which is a 
variant of the exact cover problem. Actually, Garey and Johnson (Garey & Johnson, 1979) 
cite a slightly different version as being NP-complete. (The requirement below that each 
element of X occur in "exactly 3" sets in C is replaced with "at most 3" in Garey and 
Johnson.) However, it is not too difficult to prove that our variant is also NP-complete (see 
(Pillaipakkamnatt & Raghavan, 1994) for a proof). 

Exact Cover by 3-Sets Where  Each Element Occurs 3 Times (X3C3) 

A set X such that IX] = 3q and a collection C of 3-element subsets of X 
such that each element of X occurs in exactly 3 sets of C. 

Question: Does there exist C '  c_ C such that each element of X appears in exactly one 
set of Cr? 

THEOREM 3 X3C3 is NP-Complete. 

At this stage, it is convenient to introduce the following notation, used in the rest of the 
paper. Let V be a set 0f Boolean variables. For any assignment fl : V --+ {False, True}, 
b c {False, True} and x E V, the assignment/3x~b is the assignment obtained by setting 
the value of the variable x to b and setting all other variables to the values in/3. Let False be 
the assignment that assigns False to all variables in V, i.e., Vv E V, False(v)  = False. We 
view a term t of a DNF formula as a set of literals since this facilitates addition and deletion 
of literals to obtain new terms. 
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THEOREM 4 There exists a class ~ of Boolean formulas testable with respect to De(), 
where ¢(n )  = 13n -~-, such that REP(D¢O) is NP-Hard for ~. 

Proof :  We use a reduction from X3C3. The class .U = {9<x,c> : (X,  C)  is an instance of  
X3C3 } contains only DNF formulas and is defined as follows. Let  (X, C) be an instance of 

X3C3, where X = {Xl, X 2 , . . . ,  X3q} and C = { e l ,  e 2 , . . .  , C3q }. The formula 9 = 9(x,c) 
is defined over the set of  variables V = X U C.  When viewed as a function, 9 evaluates an 
assignment/3 to True if  and only if/3 is one of  the assignments in the following list: 

1. F a l s e  

2. For each xi  c X ,  F a l s e x ~  T~e 

. For each c~ E C,  the four assignments where at least two of  the three x ' s  in c~ are 
assigned True. That is, i f  c~ = {z j ,  xk,  xl}  the assignments:  

(i) Falsezj . T~e,~ ~- True,xz*-- True 
(ii) F a l s e ~  ~ T~e,~k ~ T~e 
(iii) F a l s e ~  k ~ True,~l ~ T~e 
(iv) F a l s e ~ j  ~ T r u e , x ~  +-- T r u e  

4. For each ei E C,  Falsee~,__ T ~  

5. For each ei E C,  the four assignments where ci and at least two of  the three x ' s  in ci 
are assigned True. That is, if  ci = {x j ,  xk,  xt} the assignments:  

(i) Falsec~ ~ True,~j ~ T~,e,x~ ~ True,~,-- T~e 
(ii) Falsee~,__ True,xj ~ T . . . . .  k ~ True 
(iii) False¢~ +__ T . . . .  k +-- T~,~,~z ~- 7V,,e 
(iv) Falsec~ ,__ Tru~,~j ~ T~,e,~z*-- T~,e 

The formula 9 evaluates no more than 30q + 1 assignments to True. (The assignment 
F a l s e  is one, assignments in items 3 and 5 add at most 24q more since there are 3q sets in 
C, assignments in item 2 add 3q more since there are 3q elements in X ,  and assignments in 
item 4 add another 3q more.) Therefore this is a polynomial  transformation. Fix the DNF 
formula representation of  9 = g(x,c) by simply making each of  the above list of at most 
30q + 1 assignments a term in the natural way. To complete the proof  of  the theorem, it 
suffices to show that: 

1. U is testable with respect to De(),  where ¢ (n )  = 13n --~--, and 

2. I f  9 = g<x,c) is any formula in 5r6q, then 9 can be represented as a 13q-term DNF 
formula if  and only if  (X, C> has an exact cover. 

To prove (1), we develop an algorithm, .A, such that if  .A is given formulas h E ~)13q,6q 
and 9 = 9(x,c) E -P6q as input, .A halts in t ime polynomial  in Ihl, 191 and q and outputs (i) 
"No" and an assignment x such that h(x) • g(x) or (ii) "Yes", if  h - 9- Since both h and 
g are of size polynomial  in q, it suffices to show that .4 needs only a polynomial  in q units 
of  time. 



250 K. PILLAIPAKKAMNATT AND V. RAGHAVAN 

Now, 9 = h if  and only if  both 9 :=~ h and h ~ 9 hold. Let  P be the set of  at most  
30q + 1 assignments that 9 evaluates to True. To test if 9 =~ h holds, ,,4 simply checks if 
all of  the assignments in P are evaluated to True by h as well. Clearly, this can be done 
in time polynomial  in q and a counterexample, if  one exists, can be found. Next, observe 
that h ~ 9 if and only if  for every term t in h, the set Q(t) of assignments evaluated to 
True by t satisfies Q(t) c P. Therefore, .4 can test if  h ~ g by considering each term t 
of  h, generating the assignments in Q(t) and checking if  every such assignment generated 
is in P .  Algori thm .it stops the generation of  Q(t) for any term t when either all of the 
assignments in Q(t) have been generated or A finds an assignment in Q(t) that is not in P .  
In the latter case, such an assignment is a certificate that h ~ 9 and therefore that h ~ g. 
Since h has at most  13q terms and ,4 generates at most  IP] + 1 _< 30q + 2 assignments per 
term, A runs in time polynomial  in q. 

We prove (2) through a series of  claims. Let 9 = 9(x,c) be a formula in F6q and let 
V = X t5 C.  Let  Z denote the term {7 : v E V}.  We define the sets $1 and S~ of  terms 
over literals that correspond to variables in V as follows: 

Sa = { Z -  { Y j , x k , ~ l } :  ci = { x j , x k , x t }  is a s e t  in C}.  

( z  u - ( z  u { z z , z j } )  - : 

ci = {xj ,  xk, xt } is a set  in C}.  

CLAIM 1 The set S = $1 U $2 contains exactly the prime implicants of 9. 

Proof" It can be verified that each term in S is indeed an implicant of  9. We prove that 
each term in S is a prime implicant. Assume to the contrary that for some term t in S,  there 
exists t ~ c t such that t' is an implicant  of g. It is sufficient to consider the case where 
t ~ = t - {x} for some literal x in t. 

Case 1: t E $1. 
No positive assignment of g (i.e., none of  the at most  30q + 1 assignments) satisfies more 
than three variables from X.  Since t is in $1, it contains one literal per variable in V, except 
for three missing literals that correspond to variables in X .  Thus, x cannot be a literal that 
corresponds to a variable in X ,  lest t p be satisfied by an assignment that satisfies more than 
three variables from X .  But if  x corresponds to a variable in C,  then t r would be satisfied 

by an assignment that satisfies exactly one variable in C and one variable in X .  No such 
assignment exists in our set of  positive assignments. Hence, each term in $1 is a prime 
implicant. 
Case 2: t E $2. 
Deleting any literal in t that corresponds to a variable in C produces a term that is satisfied 
by an assignment that satisfies two variables from C. No such assignment exists in our 
function g. Hence, it is sufficient to consider the case where literal x corresponds to a 
variable in X .  I f t  is a term of  the form Z - {~i}, and x corresponds to a variable in X ,  
then t' is satisfied by an assignment that satisfies one variable in C and one variable in X .  
Hence t t is not an implicant o fg .  For a term t of  the form (Z U {x D xk }) - {~i, Y:j, xk, ~Z }, 
any assignment that satisfies t satisfies at least two variables and at most three variables in 
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X, If x is a negated literal, then t '  is satisfied by an assignment that satisfies more than 
three variables in X. If x is a positive literal, then t / is satisfied by an assignment that 
satisfies exactly one variable in X and one variable in C. Thus, every term in Sz is a prime 
implicant. 

Finally, we need to show that g has no other prime implicants. The crucial observation 
here is this. Any implicant t of 9 is satisfied by at least one assignment in P. Now t 
must contain at least 6q - 4 complemented literals, lest it be satisfied by some assignment 
not in P.  (All assignments in P set at least 6q - 4 variables to False.) Similarly, there 
must be some ci = {x j ,  xk ,  x t}  in C such that t has all the negated literals over the 
variables in Y = V - {ci, x j ,  xk, x t} ,  lest it satisfy some assignment not in P. Now, the 
projection of 9 obtained by setting all the variables in Y to false is precisely the formula 
-d~ + x j x k  + xkx t  + x l x j  + x j xkxz ,  all five terms of which are prime implicants of the 
projection. Therefore, t must be a superset of one of the five corresponding terms in $1 US2. 

[] 

Since ISI = 15q, 9 can be actually be represented using 15q or fewer terms. 

CLAIM 2 I f  t X  , C)  has an exact cover, then 9 can be represented using 13q terms. 

Proof: Let C'  C C be an exact cover of (X, C). Let S~ = { Z -  {~j, ~k, ~z } : {xj, xk, xt } 
is a set in C'} .  Now IS~{ = I C ' l  = q,  since X contains 3q elements and each set in C '  
contains exactly 3 elements. Consider the DNF formula f = Vtes[ t V Vt~s~ t. By 

Claim 1, f evaluates a subset of the positive assignments of 9 to True. In particular, all 
assignments in items 1,3,4 and 5 of the definition of 9 are evaluated correctly using the 
terms in $2. Since C I is an exact cover of X, for each x c X,  there exists c C C ~ such 
that x E c. Thus, for each assignment in item 2 of the definition of g, there exists a 
term in S~ that evaluates/3x to True. The number of terms in f is [S~I + IS21 = 13q. 

[] 

CLAIM 3 I f  ff can  be represented as a D N F  formula f with at most 13q terms, then there 
exists an exact cover for  (X ,  C). 

Proof: Suppose there exists a DNF formula f with at most 13q terms such that f --= 9- 
Without loss of generality, assume that f contains a set of prime implicants from S. (Since 
every term t of f is an implicant of 9 and therefore a superset of one of the prime implicants 
in S, we can replace each term t in f by a term t' E S such that t I C_ t. The resultant 
formula will still be equivalent to 9.) 

Now, all terms in $2 must be in f ,  lest some assignment in part 4 or 5 of the definition of 9 
be not evaluated to True by f .  These account for 12q terms. The remaining at most q terms 
must be a set S t C $1. Every prime implicant in $1 is satisfied by exactly 3 assignments in 
item 2 of the list of assignments satisfied by 9. Moreover, only the prime implicants in $1 can 
evaluate these assignments to True. Since there are 3q such assignments, it follows that there 
must be at least q terms in S~ and C '  = {{x, y, z} : Z - {~j, ~k, xt } C S i } contains q sets 
ofpairwise disjoint sets. By the definition of $1, C C C and therefore C ~ is an exact cover. 

[] 

From the proof of the claim above, 9 requires at least 13q terms to be represented as a 
DNF formula, and if (X, C) has an exact cover, then 9 can be represented with exactly 13q 
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terms. Since the number of  variables over which 9 is defined is n = 6q, the number of  
13n (if <X, C) has an exact cover). terms in 9 is 13q : --6"- 

Since 5 r is testable with respect to D¢0 ,  ¢(n)  = L~_, and, by Claims 2 and 3, there exists 
an exact cover for (X, C} if and only if 9 : 9(x,c) E YZaq can be represented as a DNF 
formula with exactly 13q terms, the theorem follows. • 

COROLLARY 3 I f  P ~ NP, then ~ - t e r m  DNF formulas over n variables are not properly 
learnable in the exact model. 

Proof: Immediate from Corollary 1 and Theorem 4. [] 
13n By the definition of  proper learnability, m(n)oterm DNF formulas, for any re(n) > --g-, 

are also not properly and exactly learnable unless P = NP. We now give a general hardness 
result for m(n)- term DNF formulas, which is particularly useful for functions re(n) that are 
o(n). In what follows, we adopt the following definition of  a functional inverse: f - 1  (n) is 
the least non-negative integer j such that f (j) > n. (If no such integer exists then f -  1 (n) is 
infinity.) Following standard practice, we use the shorthand notation poly(f(n))  to denote 
functions that are at most a polynomial in f ( n ) .  

A technical requirement needed to prove the following theorem is that the real function 
f (n )  be efficiently computable in the following weak sense. A total function f : 7~ -+ 7~ 
is computable in pseudo-polynomial time if there exists an algorithm .Ay that, when given 
integers n and N as input, can decide if f ( N )  > n in time polynomial in n and N.  

THEOREM 5 I f  f O is computable in pseudo-polynomial time and D I O is property learn- 
able in the exact model, then UP C_ DTIME (poly(max(n, f - l (L~_) ) ) ) .  

Proof :  Let U = {91x,c ) : (X, C} is an instance of  X3C3} be a class of  DNF formulas, 

where for each instance (X, C) of  X3C3, the formula glx,c) is as defined below. 

Let (X, C) be any arbitrary instance of  X3C3, with X = {xl ,  x 2 , . . . ,  X3q} and C = 
{Cl, c 2 , . . . ,  C3q}. Let g be the Boolean formula defined in Theorem 4 over the set of  
variables V = X U C. Let f 0  be a real function that is computable in pseudo-polynomial 
time. In what follows, assume that the range of  f 0  is not bounded from above by any fixed 
integer c, otherwise f - l ( n )  = cxz, for n > c, and the theorem is trivially true for such a 
function f 0 .  Compute f - l ( 1 3 q )  as follows. By iterating through integer values j > 0, 
determine the least j such that f ( j )  > 13q. 

Let N = max(6q,  f - l ( 1 3 q ) ) .  I f  N > 6q, then create a set of N - 6q new variables 
Y = {Yl, Y2, - - -, YN-6q }; if N = 6q, let Y = 0. We define g~x,c) over the set of  variables 

V p = X U C t3 Y as follows. 
For any assignment/3, 9~x,c)(/3) = True if and only if 9(/3) = True and for all y E Y, 

/3(y) = False. 
Given any instance (X, C) of  X3C3 with I XI = I CI = 3q, we can compute a DNF formula 

g '  in time polynomial in N = max(6q, f - l ( 1 3 q ) ) .  As in the proof of  Theorem 4, <x,c> 
fix the DNF formula glx,c> by making terms out of the at most 30q + I assignments. 

(However, now the number of  literals in 91x,c> may be more, since N is potentially larger 
than 6q.) 

We claim that: 
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1. 5 r is testable with respect to [-Jq>l ~)13q,max(6q,f-l(13q))" 

/ 
2. If  9 ~ = 9(x,c) is any formula in .~'max(6q,f-l(13q)) then 91 can be represented as a 

13q-term DNF formula if and only if (X, C) has an exact cover. 

To prove (1), it suffices to give an algorithm, .4, such that if .4 is given formulas h c 
~)13q,max(6q,f-x(13q)) and 91 = 9~x,c> E ~'max(6q,f-1(13q)) as input, .4 halts in time 

polynomial in N = max(6q, f -1 (13@)  and outputs (i) "No" and an assignment x such 
that h(x) ~ 91(x) or (ii) "Yes", if h -= gl. 

If  N = 6q, then .4 proceeds as in the proof of Theorem 4. So, suppose that N = 
f - l ( 1 3 q )  > 6q and h is defined over the set of variables X t2 C U Y, where Y ~ 9. To 
check if gl =4, h, test (as in Theorem 4) if the set P of at most 30q + 1 assignments that 
91 evaluates to True are evaluated to True by h as well. If  not, one of the assignments in 
_P is a counterexample. To check if h ~ 91, check if all the terms of h contain negated 
literals corresponding to all the variables in Y. I f  any particular term t does not contain a 
literal ~, where y C Y, then any assignment formed by setting y to True and satisfying the 
remaining literals in t is a counterexample that satisfies h but not g' .  Finally, if all the terms 
in h contain negated literals corresponding to all the variables in Y, then consider the DNF 
formula h'  obtained from h by deleting all the literals corresponding to variables in Y. At 
this point, we can assert that h ~ g'  if and only if h'  ~ g, where g is the original formula 
of Theorem 4 obtained from g' by deleting all literals corresponding to variables in Y. By 
the proof of Theorem 4 testing if h'  ~ g can be done in time polynomial in q. Clearly, all 
of the above tests can be done in time polynomial in N since we are assuming that N > 6q 
and h and g'  have only O(q) terms over N variables. 

To prove (2), note that, by Theorem 4, it suffices to prove that 9'  can be represented as 
a 13q-term DNF formula if and only if 9 can be represented as a 13q-term DNF formula. 
The " i f '  part follows by noting that any DNF formula for 9 can be transformed to a DNF 
formula for 91 by simply appending a set of negated literals corresponding to variables in 
Y to every term of 9. The "only if" part follows by noting that any implicant of gl must 
contain all the negated literals corresponding to variables in Y. Therefore, stripping off the 
negated literals corresponding to variables in Y from every term of a DNF representation 
of 91 gives a DNF representation of 9. 

By Theorem 1 and (1) above, the existence of a polynomial time exact and proper learning 
algorithm for ~)13q,N for every q > 0 implies that recognizing if 9'  can be represented 
in ~)13q,N is in DTIME(poly( N) ). Since the transformation to gl can be done in time 
polynomial in N,  X3C3 is NP-hard, and (2) above holds, we can conclude that if there 
exists a polynomial time exact and proper learning algorithm for :Dlaq,N, then all problems 
in NP can be solved in DTIME(poly( N) ). The theorem now follows by putting n = 6q. 

Of interest are the following corollaries, which illustrate how Theorem 5 can be used to 
get stronger results with stronger assumptions. 

COROLLARY 4 If P ~ NP, then ha-term DNF formulas over n variables cannot be properly 
learned in the exact model for any fixed constant a > O. 
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Proof: It suffices to consider a _< 1 since the result follows from Theorem 4 for a > 1. 
For any constant a ,  0 < a _< 1, let c be any integer such that ~ < a.  Put f ( n )  = 
in Theorem 5. Now f ( n )  is certainly computable in pseudo-polynomial time. Since 
f-a(13.......nn) = [ ( . ~ ) c ]  is in poly(n),  the corollary follows. [] 

A reasonable assumption is that NP is not contained in DTIME(n°0°g'~)). This assump- 
tion leads to the following. 

COROLLARY 5 I fNP  is not contained in DTIME(n°O°gn)), then 21x/ig-~-term DNF for- 
mulas over n variables cannot be properly learned in the exact model. 

Proof: Put f ( n )  = 2 ~  in Theorem 5. Again f ( n )  is computable in pseudo-polynomial 

time and f-1(13_____~n)= [ ( .~) log(! -~) ]  is in nO(logn). The corollary follows. [] 

Since NP is definitely contained in DTIME(2 p°ty(n)) the next corollary uses the strongest 
assumption that is still plausible. 

COROLLARY 6 If there exists some constant e > 0 such that NP is not contained in 
DTIME(poly(2 n`) ) then there exists a constant c > 0 such that log c n-term DNF formulas 
over n variables cannot be properly learned in the exact model. 

Proof: If  such an e > 0 does exist, let c > ! be any integer. Now f ( n )  = (log n) c is 

computable in pseudo-polynomial time and f -1 (13n)  = 13, 1 - -  I2 (~  ) l i so(poly(2n ' ) ) .  By 

Theorem 5, logC(n)-term DNF formulas cannot be learned in the exact model. [] 

The positive result of Bshouty, Goldman, Hancock, and Matar (1993) shows that the 
1 It is open if this can be improved further. constant c of the last corollary is greater than 7" 

This last corollary is not so much a negative result as it is an indication that improved positive 
results for proper leamability of DNF formulas must necessarily imply a corresponding 
improvement in what is known about the smallest DTIME class in which NP is contained. 

5. Proper PAC Learnability of  m - t e r m  DNF Formulas 

We now turn to proper PAC learnability of m-term DNF formulas. It must be mentioned 
that the results in this section imply the results for proper exact learnability if all the 
complexity-theoretical assumptions of this section hold. However, the assumptions in this 
section involve the relationship of randomized time (RTIME) to NP and are stronger than 
the corresponding assumptions about DTIME of the previous section. So we have taken 
the "safe" route by proving the results for PAC and exact learnability independently. 

THEOREM 6 There exists a class Y of  Boolean formulas compressible with respect to 
De(), where ¢(n) = 13n --K-, such that REP(D¢O ) is NP-Hard for Y .  

Proof: The reduction is from X3C3. Let the class .7- of DNF formulas is exactly the class 
defined in Theorem 4. It suffices to show that the class Y is compressible with respect to 
De0,  since REP(C) is NP-hard for Y (Theorem 4). 



PROPER LEARNABILITY OF SUBCLASSES OF DNF FORMULAS 255 

We now show that Y is compressible with respect to ~¢().  We create an algorithm .A such 
that if ..4 is given as input a formula g = 9(x,c)  E Y6q then it outputs, in time polynomial 
in Ig[ and q, a set Xg with the following property: if there exists a formula h E ~913q,6q 
such that for all x E X 9, g(x) = h(x),  then there exists a formula f E D13q,6q such that 
f = g- Since 191 is itself polynomial in q, it suffices to show that A runs in time polynomial 
in q. 

Let P be the set of  at most 30q + 1 assignments that g evaluates to True. We define the 
set X a of assignments as follows. 

X9 = {flv,--~ : v E V, b E { True, False), ~ E P }  

The number of  assignments in Xg is at most (30q ÷ 1)(6q + 1) = O(q2). Therefore X 9 
can be computed in polynomial time and is of  polynomial size. It remains only to show 
that if there is a DNF formula h of  at most 13q terms such that h and g agree with the 
assignments in X 9 then there is a DNF formula of  at most 13q terms that is equivalent to 9. 

Let h be a 13q term DNF formula consistent with the set Xg of examples. For each term 
t in h such that t satisfies none of the positive examples in X 9, delete t from h. Clearly, h 
is still consistent with Xg, and has 13q or fewer terms. I f t  is a term in h that has 6q - 4 
or fewer titerals, then t can be deleted, since (i) none of  the positive assignments in Xg has 
more than 4 variables set to True (it) when a positive assignment contains 4 variables set 
to True, exactly one variable of  the form ci is set to True and (iii) none of  the positive 
assignments satisfy exactly one variable of  the from ci and xj .  Thus, each remaining term 
has at least 6q - 3 literals. Moreover, no term t contains more than three positive literals 
corresponding to variables in X.  For each term t in h, if t is a superset of  any of  the prime 
implicants defined in the proof of  Theorem 4; then replace t with a prime-implicant. Again, 
if h was consistent with Xg before, it is still consistent with all assignments in X 9. If  each 
term in h is a prime-implicant of  g, we are done. 

If  to the contrary, there exists a term t in h that is not a prime implicant, we show that h 
is not consistent with the set Xg of  examples. At this juncture, each term in h has 6q - 3 or 
more literals. If term t has two or more positive literals of  the form c~, or t does not contain 
literals corresponding to two or more variables of  the the form ci, then by the construction 
o f X  9, one of  the following is true: (i) it is satisfied by an assignment in Xg that is a negative 
example (it) none of  the assignments that satisfy t are in Xg. If  the former is true, then we 
contradict the assumption that h is consistent with Xg. If  the latter is true, then t should 
have been deleted at an earlier step. Thus t can contain at most one literal of  the form ci. 

If  t contains one literal of  the form ci then it must be a term of length exactly 6q, lest it 
be satisfied by an assignment that satisfies exactly ci and a variable of  the form xj  (all such 
assignments are negative examples). But this would make t an implicant of  g, contrary to 
our assumption. 

If  t is missing a literal corresponding to a variable of  the form ci and is not a prime 
implicant of  9, then t must contain at least 2 positive literals of the form x j  and xk, lest it be 
satisfied by a negative example in Xg. I f  x j  and xk do not belong in the set c~ of  C, then t 
is satisfied by a negative example, contrary to our assumption that h is consistent with X 9. 
But this would make t a prime implicant of  g (t would be in $2). 
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Finally, consider the case where all literals corresponding to variables in C are negated. 
Since t cannot be satisfied by any assignment that satisfies two variables xj  and xk, where xj  
and xk do not belong together in any set ci in C, t must be an implicant of h, which would 
contradict our assumption that all such implicants were replaced by prime implicants. 

COROLLARY 7 I f  RP 7~ NP, then !_~_term DNF formulas over n variables are not properly 
learnable in polynomial time in the extended PAC model. 

Proof: Immediate from Corollary 2 and Theorem 6. [] 

It is possible to get stronger negative results by using assumptions stronger than RP 
NE The proof of the following theorem is substantially similar to the proof of Theorem 5; 
so we omit the proof and the corresponding corollaries. 

THEOREM '7 I f  Z)fO is properly learnable in the extended PAC model and f O  is com- 
putable inpseudo-polynomial time, then NP C RTIME(poly(max(n,  f -1( !~_)) ) ) .  

6. Read-Thrice DNF Formulas  

We strengthen the result in (Aizenstein, Hellerstein & Pitt, 1992) to show that read-thrice 
DNF formulas are hard to learn, given the weaker assumption that PT~NP. In addition we also 
show that, under the assumption that RP¢NP, read-thrice DNF formulas are not properly 
learnable in the PAC model. Let 7)3 r, denote the class of read-thrice DNF formulas. We 
have Theorem 8 to help prove the hardness of learning 793 u in the exact model. 

The basic idea behind the reduction in the following theorem is this: if the formula 
9 in the proof of Theorem 4 is representable as a 13q term DNF formula, then each 
variable in this representation occurs exactly 13q - 4 times. Therefore, we generate a 
set {Vl, V2, . . . ,  V(13q--4)} of 13q -- 4 variables for each variable v over which g is de- 
fined. We replace each occurrence of variable v with a unique copy, creating a read- 
once DNF formula. In order to "force the equivalence" of all copies, we add the formula 
VlU 2 q- v2~ 3 + ... q- V13q_4U1, for each variable v. Since each variable vi occurs three times, 
we have a read-thrice DNF formula. On the other hand, if 9 cannot be represented as a 13q- 
term DNF formula, then at least one variable occurs more than 13q - 4 times, and hence the 
new formula cannot be represented as a read-thrice DNF formula. This reduction is similar 
to the ones in (Angluiin & Kharitonov, 1991) and (Aizenstein, Hellerstein & Pitt, 1992). 
Finally, we show that the class of read-thrice DNF formulas obtained by this reduction is 
testable with respect to any read-thrice DNF formula. 

THEOREM 8 There exists a class J= such that f is testable with respect to 793~ and 
REP(79au) is NP-Hard for ~.  

Proof: The reduction is once again from X3C3. We define f" = {glx ,c  ) : (X,  C) is an 

instance of X3C3} as follows. Let (X, C} be the given instance of X3C3. Consider the 
DNF formula g over the set V = X U C of 6q variables as defined in Theorem 4. We define 

t V t the DNF formula g3u = 9(x,c) over a set of O(q 2) variables in the following manner. 
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The set V'  contains 13q - 4 copies of each variable v C V. That is, V '  = {vi : v E 
V~I < i < 1 3 q - 4 } .  For a l l y  E V, we l e t V l  = v. Thus, V C V '. For the sake of 
convenience let ~313q_ 3 also denote Vl. Since there are 13q - 4 copies of each variable in 
V, the number of variables in V r is 6q(q3q - 4)=O(q2). For any v C V, and integers i and 
j ,  1 < i , j  <_ 13q - 4, we say vi and vj are synonyms. The DNF formula g3t, is expressed 
as the disjunction of terms in S1 U $2 U 83, where S1 and $2 are as defined in Theorem 4, 
and 

$3 = U {vi i i+l}.  
vE V, l <_i<13q-4 

We claim the following: 

' is any formula in -~6q(13q--4), then g3/z can be represented as a read- 1. I f  g3~ = g(x~c)  

thrice DNF formula if and only if the instance <X, C) of X3C3, with IXI = ICI = 3q, 
has an exact cover. 

2. ~ is testable with respect to 7931z. 

The total number of terms in $1 U $2 tj $3 is 15q + (13q - 4)6q = O(q2). Hence this is 
a polynomial transformation. Therefore, proving items (1) and (2) above would suffice to 
prove the theorem. 

To prove (1), note that by Claims 2 and 3 in Theorem 4, any given instance (X, C / of 
X3C3, with IXI = ICI = 3q, has an exact cover if and only if the formula g = g(x,c> 
defined in Theorem 4 can be expressed as a 13q-term DNF formula over 6q variables. Thus, 
it suffices to prove that 93~ can be expressed as a read-thrice DNF formula if and only if g 
can be expressed as a 13q-term DNF formula. 

As a first step, we characterize all the prime implicants of g3~- The set  $3 expresses the 
"equivalence" of all synonymous variables. Each term in $1 U $2 U $3 is a prime implicant 
of 93~- It is easily shown that for each prime implicant t C $1 tA $2 - $3, the term t p 
obtained by replacing any variable vi E t (or its complement gl) by vj (correspondingly 
~j), where vi and vj are synonyms, is also a prime implicant of g3u. Denote by S[ and S~ 
the set of all prime implicants obtained by such substitutions to prime implicants in S1 and 
$2 respectively. Also, for all pairs vi and v3 of distinct synonyms, the terms vigj and givj 
are prime implicants of g3u- Call this set of prime implicants S~. To see that the terms in 
S '  = S~ U S~ U S~ are, in fact, the only prime implicants of g3u, assume that t is any prime 
implicant of g3u. If  t contains v~ and gj  for some v c V and distinct 1 _< i, j < 13q - 4, 
then t = vi~j since v~gj is a prime implicant in S~. Otherwise, consider the term t r obtained 
by replacing each v~ in t, 1 < i < 13q - 4, v E V, with v. The term t ~ must be a prime 
implicant of g. Hence, t '  c S1 [-J $2 and, by construction of S[ and S~, t E S[ U S~. 

Next, we claim the following about g itself. 

CLAIM 4 9 can be represented as a DNF formula in which each variable v E V occurs 
in exactly 13q - 4 terms if and only i f (X ,  C} has an exact cover. 

Proof: 
~ :  By Claim 2, if (X, C) has an exact cover, then g has a minimal DNF representation 
that contains 13q terms. The proof of Claim 2 shows that of these 13q terms, 12q of them 
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are the terms in the set $2 and q terms are from the set S1. Since each element xu C X ,  
1 < u < 3q, occurs in exactly 3 sets of  C and there are exactly 3q sets in C, it is easy to 
count the number of occurrences of  each variable Xu in the terms of set $2. Each variable x~ 
occurs (either as a positive literal or as a negative literal) in all terms of  Sz except in 3 terms 
of  the form {Z - {W//, x~,, xr ,  ~-7~} U {xr,  x s } :  c~ is a set in C},  where Z = { F :  v E V}. 
Thus, the terms in $2 account for 12q - 3 occurrences of  each variable on the form x~,. To 
count the number of variables of  the form x~ in the remaining q terms that express g, note 
that since (X, C)  has an exact cover (say C ) ,  each x~ occurs in only one set of  C ~ and 
is thus, by definition of  S1, missing from only one term. Thus there are q - 1 additional 
occurrences of  variable x,,, yielding a total of 13q - 4 occurrences. To count the number 
of  occurrences of  each of  the variables of  the form c~ E V, 1 < i < 3q, note that each 
such variable occurs in all but 4 terms of  $2, and in all terms of  remaining q terms from 
$1. Thus, each variable of  the form ci also occurs exactly 13q - 4 times, i f  (X,  C) has an 
exact cover. 

: Note that irrespective of  whether or not (X, C) has an exact cover, 9 cannot be expressed 
with fewer than 13q terms. From Claim 3 we can conclude that if  (X, C)  does not have 
an exact cover, then 9 requires at least 13q + 1 terms to be represented as a D N F  formula, 
and must include all terms in $2. Thus, there are at least q + 1 terms from S1. But this 
would require more than 13q - 4 occurrences of  each variable of  the form ci, 1 < i < 3q. 

[] 

CLAIM 5 g3~ is representable as a read-thrice D N F  formula over V r i f  and only i f 9  can 
be represented as a 13q-term D N F  formula over V. 

Proof: 
~ :  Let f be a 13q-term DNF formula that represents 9- We can assume that f is a subset 
of  $1 U $2. Consider the DNF formula f '  obtained by replacing the i th occurrence of  each 

variable v C V in f with its synonym vi. That is, 

f '  = U {vi : t h e  i thoeeurrence of v is in t} 

t e l  

By Claim 4 and the fact that each variable v E V has 13q - 4 copies in V ~, the formula 
f~ is a read-once DNF formula on V ' .  Now add all terms in Sa to f~. Since these terms 
add two more occurrences of  each variable in V' ,  f l  is now a read-thrice DNF formula. 
We claim that f~ is a DNF representation of g3~,. Clearly f '  ~ gau. Further, consider an 
assignment fl over V ~ such that g3#(/3) = True. If  fl satisfies any term in 5'3, then fl also 
satisfies f q  If  fl falsifies all terms in Sz, then it must  satisfy some term in S1 U $2, and 
hence some term t in f .  Moreover, for each variable v E V, we must have /3(v j )  = / 3 ( v ) ,  
for all 1 _< j _< 13q - 4. This implies that the term t ~ in f / t h a t  corresponds to t in f is also 

satisfied by/3.  We thus have g3u =:> f ' .  

~ :  Let  f l  be a read-thrice DNF formula equivalent to g3#. We can assume that f '  is a 
minimal set of prime implicants of  93~- For each variable v E V, let V~ C V I denote the 
set of  all synonyms of  v. We claim that for each vi C V~, there exist v j ,  vk E Vv, with 
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distinct i, j and k, such that viVj and "~ivk are terms in f t .  Consider  an assignment/3 to 
the variables in V that satisfies exactly five variables in V - {v} and falsifies all other 
variables in V. Such an assignment falsifies g (by the definition of  g, no assignment that 
satisfies more than 4 variables satisfies g), as does the ass ignment /3w- T,-~c. Now consider 
the ass ignment /3 '  to V '  defined as /3 ' (w~)  = /3(w), for all w E V, 1 < u < 13q - 4. 
That is, for each w C V, we assign the value of  w to each of  the 13q - 4 variables in V ~ 
associated with w. The assignment/3~ does not satisfy gau, since it does not satisfy any 
term in $1 U $2 tO $3. But the ass ignment/3 p does. It is easy to see that the only v i  ~-- T r u  e 

b t prime implicants in g3t~ that are satisfied y/3v~_ T ~  e are of  the form v i i i ,  and hence there 
must he at least one such term in f t .  Using a similar line of  reasoning but starting with the 
assignment ~/=/3v.__ T , ~ ,  it can be shown that there must be at least one term of  the form 
~ v k  in f~. Moreover,  note that vj must be distinct from vk, otherwise the assignment that 
satisfies all variables except vi and vk falsifies f~, but not gau. Thus, two occurrences of 
each variable vi are used in representing pr ime implicants in S~. 

Delete all prime implicants of  the form vi~j,  for all v C V, from f~. The DNF formula 
f~ is read-once and all the prime implicants in it are from S~ tO S~. We construct a D N F  
formula f on V as follows: for each term t ~ in f~ add the term t to f ,  where each literal 
in t '  that corresponds to a variable vi in V ~ is replaced with the corresponding literal 
from variable v in V. Thus, there are at most  13q - 4 occurrences of  each variable 
v E V in f .  We claim that f is a DNF representation of  g. By the definition of  S~ 
and S~, each term in f is a prime implicant of  g, and hence f ~ g. Now consider any 
assignment/3 that satisfies g. Extend/3 to /3 '  over the set V '  by set t ing/3 ' (vi )  = / 3 ( v ) ,  for 
all v E V, 1 < i < 13q - 4. Since/3  satisfies some term in $1 U $2,/3~ satisfies gau. 
Thus, /3  r satisfies some term t in f r  _= 93~ such that t E S~ U S~. By our construction 
of  f ,  this implies that some term in f is satisfied by /3 itself, since all synonyms are 
assigned the same value. Hence, g ~ f .  The claim then follows from Claims 2, 3 and 4. 

[]  

We now show that (2) is satisfied by 5V--that is, ~ is testable with respect to read-thrice 
DNF formulas. To do this, we construct an algorithm, A3u, such that A3u takes as input a 
read-thrice DNF formula h over 6q(13q - 4) variables and g3p C ~6qO3q-4) and outputs in 
time polynomial  in t hl, 191 and Iql either (i) "No" and an assignment x such that 9(x)  ~ h(x)  
or (ii) "Yes" and a read-thrice DNF formula h ~ over 6q(13q - 4) variables such that h ~ - g. 

Let T r u e  denote the assignment that sets all variables in V ~ to True. For any v C V, 
let T r u e  v denote the assignment over V ~ that sets all synonyms of  v to False and the 
remaining variables in V ~ to True. That is, T r u e V ( v i )  = False, for all 1 < i < 13q - 4, 
and T r u e r ( u )  = True for all u E V '  - {Vl, v2, ..., Vlaq-4 }. 

Algori thm .A3t, creates a new formula h ~ from h as follows. For each term t in h: (i) i f t  is 
of  the form vi~jz ,  where vi and vj are distinct synonyms of  some v E V, and z is some set of  

literals, A3t~ replaces t with v i i i ;  (ii) if  t is of  the form VilVi2...vik z, where vi~, vi2, ..., vi~ 
are synonyms of  some v E V, and z contains no synonyms of  v, .,43~ replaces t with vi~ z. 
(iii) if  t is of the form ~i~ vi: . . .vi~ z, where vi~, vi2, ..., vi~ are synonyms of  some v E V, 
and z contains no synonyms of  v, A3t, replaces t with vi~ z. All  other terms are retained. 

If  h~ (True )  = True, then .A3u outputs "No" and T r u e .  If  there exists a v ~ V such 
that h ' ( T r u e  ~) = True, then Asu  outputs "No" and T r u e  v. I f  there exists a v ~ V 
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and an i, 1 < i < 13q - 4, such that ht(Wruev~+_False) -= False, then A3u outputs 
"No" and Wl'uevi..-False. If  there exists a v E V and an i, 1 < i < 13q - 4, such that 
h ' ( T r u e V ~ T r u e )  = False, then ¢43u outputs "No" and True~,._True. Otherwise, .A3u 
creates h"  from h ~ by replacing every synonym vi, 1 < i < 13q - 4, of  every variable 
v E V with v, and then deleting all terms of  the form v~..A3u then invokes the equivalence 
testing algorithm .4 in the proof of  Theorem 4 with h"  and g as inputs. If  .A outputs "No" 
and an assignment/3 over V, then .A3u outputs "No" and the assignment/3 ~ over V ~ formed 
by replicating the assignment to each v E V to all its synonyms. That is,/3'(v~) = /3 (v )  for 
all v E V and 1 < i < 13q - 4. I f  .A outputs "Yes" then ,,43/~ outputs  "Yes" and the DNF 
formula h r modified as follows: delete from h ~ all terms of the form vi~j for some v, i and 
j ,  and add all terms in $3. 

We now show that ,A3p " is correct. Note that g3u(True )  -~ g3u (True  v) = False for all 
v E V. Also note that for any assignment/3 returned by A3u such that h'(/3) ¢ g3u(/3) 
it also holds that h(/3) ¢ 93~(/3). As a first step we show that if A~ u invokes A, then 
for each v E V and 1 < i _< 13q - 4, there exist 1 _< j , k  < 13q - 4 (both j and 
k distinct from i) such that vi~j and ~ivk are terms in hC Assume to the contrary that 
there exists some vi such that there is no term of the form vi~j in h' .  Since, at this point, 
h ' ( T r u e  v) = False and h ' ( T r u e ~ 7 - ~  ) = True, there must be a term t in h '  of  the 
form v~z, where z is a set of  positive literals that do not correspond to synonyms of  v. But 
such a term (and hence h ' )  would be satisfied by T r u e ,  which is a contradiction. Now 
assume that there is no term of the form ~ivk in hC Again, we know that h~(True)  = False 
and h~ (Truev~F~ t ~ )  = True. Therefore, there must be a term t in h ~ of  the form ~iz, 
where z is a set of  positive literals that-do not correspond to synonyms of  v. But such a 
term (and hence h ~) would be satisfied by T r u e  ~, which is a contradiction. 

Thus, when h" is created, h ~ contains at most one occurrence of  each synonym variable 
v~ in a term that is not of  the form v ~ j  or ~ v k .  There are, therefore, at most 13q - 4 
occurrences of  each variable v E V in h". Clearly, if.,4 responds with a "Yes", A3~ outputs 
a read-thrice DNF formula equivalent to 93u. I f  A responds with an assignment/3 such that 
h"(/3) ¢ 9(/3), then it is easy to verify that the assignment/3' satisfies h'(/3) ¢ 93,(/3')- 

Finally, note that all steps in A3u can be carried out in time polynomial in Ih[, and q. 

COROLLARY 8 If P ~ NP, then the class of read-thrice DNF formulas is not properly 
learnable in the exact model. 

Proof :  Follows directly from Theorem 8 and Corollary 1. []  

Next we consider the learnability of  read-thrice DNF formulas in the extended PAC model. 
We have the following theorem. 

THEOREM 9 There exists a class .~ of Boolean formulas compressible with respect to :D3t~ 
such that REP(:D3u) is NP-Hard for :F. 

Proof :  We show that the class 5 r as defined in the preceding theorem is compressible with 
respect to read-thrice DNF formulas. This, in conjunction with the fact that REPCD3u) is 
NP-hard for f ,  proves the theorem. 
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CLAIM 6 Y is compressible with respect to D3u. 

Proof: To show that ~- is compressible, we give an algorithm .A such that if .A is given as 
input a formula g3u = g~x,c) E ~'6q(13q-4), ,Z outputs in time polynomial in q a set Xg3, of 

assignments such that if there exists a read-thrice DNF formula f over 6q(13q-  4) variables 
that is consistent with g3u over all assignments in Xg~,, then there exists a read-thrice DNF 
formula f '  over 6q(13q - 4) variables such that g3~ =- ft .  

Consider the set Xg of assignments over V defined in the proof of Theorem 6. Extend 
each assignment in Xg to the set V '  by replicating the assignment to all synonyms. That 
is, X~ = {/3' :/3'(vi) = 13(v), fl c X g , v  ¢ V, 1 < i < 13q - 4}. As in Theorem 8, let 
T r u e  be the assignment that satisfies all variables in W, and for any v c V, let T r u e  v 
denote the assignment over V '  that sets all synonyms of v to False and the remaining 
variables in V '  to True. Let P '  = { T r u e ~ F a Z s ~  : v E V, 1 < i < 13q - 4}. For all 
v E V, letQV _~ { T r u e ~ , ~ T ~ e  : 1 < i < 13q- -4} .  Finally, we defineXg~x,c ) = 

Xg~, = {True}  U Xg U P '  t2 Uvev  QV. The number of assignments in Xg is at most 
(30q + 1)(6q + 1) (from the proof of Theorem 6, the number of assignments in P '  is 
(6q)(13q - 4), the number of  assignments in Uvcv  Q~ is (6q)(13q - 4). Thus, the total 
number of assignments in Xg~, is at most O(q2). 

We now show that there exists a read-thrice DNF formula f over V'  that is consistent 
with 93u over the evaluation of assignments in Xo~" only if g3u can be represented as a 
read-thrice DNF formula. 

Let f be a read-thrice DNF formula consistent with g3/~ over the evaluation of assignments 
in Xg~ .  We create a read-thrice DNF formula f '  with no more terms than f as follows: For 
each term t in f of the form v ~ j z ,  where vi and vj are synonyms and z is any conjunction 
of literals, add vi~j to f ' .  The formula thus obtained is still consistent with g3tz over the 
evaluation of all assignments in X g a .  Next, for each term in f of the form vivjz  (or 
correspondingly Ui~jz), where vi and vj are synonyms and z is any conjunction of literals, 
add viz (Viz) to f ' .  The formula thus obtained is consistent with g3~ over all assignments 
in Xg~ .  Finally, delete all terms in f '  that are not satisfied by any assignment in X93" that 
satisfies g3~,- 

The argument in the proof of Theorem 8 that shows .T" is testable with respect to read- 
thrice DNF formulas can be repeated to show that for each variable vi c V ~, there exist vj 
and vk such that vi~j and V~vk are terms in f ' ,  lest it not be consistent with g3u over X g 3 .  
Thus, there is only one remaining occurrence of each variable in V'.  Now, delete all two 
literal terms in f~ and replace them with the terms in $3. The formula f '  thus obtained 
is still consistent with Xg~ .  I f  there exists a term t in f '  of length greater than 2 that is 
not a superset of any of the terms in S~ t2 S~, then clearly f was not consistent with X 9. 
Replacing each term t in f '  with a subset t '  that is a prime implicant of g3u and arguing 
on the lines of Theorem 6 shows that f '  is a read-thrice DNF formula equivalent to 93~- 

COROLLARY 9 I f  RP ~: NP, then the class of read-thrice DNF formulas is not properly 
learnable in the extended PAC model. 

Proof: Follows directly from Theorem 9 and Corollary 2. [] 
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7. Conclusions 

We have presented general techniques to prove that certain classes of Boolean formulas 
cannot be efficiently learned when an exact (or PAC) learning algorithm is restricted to 
hypotheses from the class itself. We have applied these techniques to show that h a - t e r m  

DNF formulas over n Boolean variables, for any fixed constant a > 0, cannot be properly 
learned in the exact model unless P = NP and in the extended PAC model unless RP = 
NP. Using a very strong assumption about the containment of  NP in DTIME classes, we 
also show that there exists a fixed constant c > 0 such that lof t  n-term DNF formulas 
cannot be learned properly in the exact model. Finally, we have improved the result in 
(Aizenstein, Hellerstein & Pitt, 1992) to show that read-thrice DNF formulas are not learn- 
able properly in the exact model unless P = NP and in the extended PAC model unless RP 
= NP. 

One common feature of  this technique and the techniques in (Pitt & Valiant, 1988), 
(Kearns, et al., 1987) and (Aizenstein, Hellerstein & Pitt, 1992) is that all of  them rely 
solely on the apparent hardness of  finding a representation in a concept class that agrees 
with given data. These techniques do not exploit the fact that a learning algorithm has no 
knowledge of  the data at all and must somehow elicit it using queries. On the other hand, 
Angluin's technique of  approximate fingerprints (Angluin, 1989)relies solely on this "lack 
of  knowledge" to devise an adversary that will confound any purported efficient learning 
algorithm that uses only equivalence queries. Recently, this technique was generalized to 
give a characterization of  polynomial-query learnability with equivalence and membership 
queries (Hellerstein, et al., 1995). However, Angluin's  technique and its generalization do 
not exploit the limited computational resources--in particular time--available to the learn- 
ing algorithm. Perhaps there is a way to combine these disparate techniques to form a 
stronger technique to attack the problem of  learning DNF formulas in the normal sense. 
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