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Abstract. In this paper we introduce and investigate a mathematically rigorous theory of learning curves that 
is based on ideas from statistical mechanics. The advantage of our theory over the well-established Vapnik- 
Chervonenkis theory is that our bounds can be considerably tighter in many cases, and are also more reflective of 
the true behavior of learning curves. This behavior can often exhibit dramatic properties such as phase transitions, 
as well as power law asymptotics not explained by the VC theory. The disadvantages of our theory are that 
its application requires knowledge of the input distribution, and it is limited so far to finite cardinality function 
classes. 

We illustrate our results with many concrete examples of learning curve bounds derived from our theory. 
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I .  I n t r o d u c t i o n  

Accord ing  to the Vapnik-Chervonenkis  (VC) theory of  learning curves (Vapnik, 1982; 
Vapnik  & Chervonenkis ,  1971), min imiz ing  empir ical  error wi thin  a funct ion class ~r on a 

r a n d o m  sample  o fm  examples  leads to general izat ion error bounded  by O ( d / m )  (in the case 
that the target funct ion is conta ined in ~ or O ( ~ )  plus  the opt imal  general izat ion error 
achievable  wi thin  .~r (in the general  case) 1 . These  bounds  are universal :  they hold for any 
class of  hypothesis  funct ions  b r ,  for any input  distribution, and for any target funct ion.  The  
only  problem-specif ic  quant i ty  r emain ing  in these bounds  is the VC d imens ion  d, a measure  
of  the complexi ty  of  the funct ion class f .  It has been  shown that these bounds  are essent ia l ly  
the best  d is t r ibut ion- independent  bounds  possible,  in the sense that for any funct ion class, 
there exists an input  dis t r ibut ion for which  match ing  lower bounds  on the general iza t ion 
error can  be given (Devroye & Lugosi ,  1994; Ehrenfeucht  et al., 1989; Simon,  1993). 
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The universal VC bounds can give the impression that the true behavior of learning 
curves is also universal, and essentially described by the functional forms d /m  and ~/'-d-/m. 
However, it is becoming clear that learning curves exhibit a diversity of behaviors. For 
instance, some researchers have attempted to fit learning curves from backpropagation 
experiments with a variety of functional forms, including exponentials (Cohn & Tesauro, 
1992). Backpropagation experiments with handwritten digits and characters indicate that 
good generalization error is sometimes obtained for sample sizes considerably smaller than 
the number of weights (presumed to be roughly the same as the VC dimension) (Martin & 
Pittman, 1991), though the VC bounds are vacuous for m smaller than d. Discrepancies 
between the VC bounds and actual learning curve behavior have also been pointed out and 
analyzed in other machine learning work (Oblow, 1992; Sarrett & Pazzani, 1992). 

Of course, the VC bounds might simply be inapplicable to these experiments, because 
backpropagation is not equivalent to empirical error minimization. It has been conjectured 
that backpropagation can access only a limited portion of the function space, so that the 
"effective dimension" is much smaller than the VC dimension. According to this type of 
reasoning, learning curves are heavily affected by the specifics of the algorithm. Another 
possibility is that the VC bounds are applicable, but sometimes fail to capture the true 
behavior of particular learning curves because of their independence from the distribution. 
Hence some theorists have sought to preserve the functional form of the VC bounds, but 
to replace the VC dimension in this functional form by an appropriate distribution-specific 
quantity, such as the VC entropy (which is the expectation of the logarithm of the number 
of dichotomies realized by the function class) (Benedek & Itai, 1991; Haussler et al., 1991; 
Vapnik, 1982). Work on the "empirical VC dimension" has tried to measure the depen- 
dence of learning curves on both the algorithm and the distribution via backpropagation 
experiments (Vapnik et al., 1994). 

Perhaps the most striking evidence for the fact that the VC bounds can sometimes fail 
to model the true behavior of learning curves has come from statistical physics. In recent 
years, the tools of statistical mechanics have been applied to analyze learning curves with 
rather curious and dramatic behavior (see the survey of Watkin, Rau and Biehl and the 
references therein (Watkin et al., 1993)). This has included learning curves exhibiting 
"phase transitions" (sudden drops in the generalization error) at small sample sizes, as 
well as asymptotic power law behavior 2 in which the power law exponent is neither 1 nor 
1/2. Although these learning curves do not contradict the VC bounds, it seems fair to say 
that their behavior is qualitatively different. The theoretical revisions of the VC theory 
mentioned above cannot explain such behavior, because they conservatively modify only 
with the constant factors of the same power laws. 

In this paper, we show that ideas from statistical mechanics (namely, the annealed ap- 
proximation (Amari et al., 1992; Levin et al., 1989; Schwartz et al., 1990; Sompolinsky 
et al., 1991) and the thermodynamic limit (Sompolinsky et al., 1991)) can be used as the 
basis of a mathematically precise and rigorous theory of learning curves 3. This theory 
will be distribution-specific, but will not attempt to force a power law form on learning 
curves. Speaking coarsely, there are two main ideas behind our theory that are novel to 
someone familiar with the VC theory. The first new idea is related to the annealed ap- 
proximation. It is based on the simple observation that in the VC theory and its proposed 
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distribution-dependent variants, all hypotheses of generalization error greater than E are 
treated equally by the analysis--for instance, by assigning (1 - E)" to all such hypothe- 
ses as an upper bound on the probability of being consistent with m random examples. 
We undertake a more refined analysis that decomposes the function class into error shells 
that actually attribute the correct generalization error to each hypothesis, and give uniform 
convergence bounds on each shell. The resulting bounds already predict learning curve 
behavior not explained by the VC theory, but are difficult to interpret. 

The second new idea is to formalize a particular mathematical limit known to statistical 
physicists as the thermodynamic limit. The goal of this limit is to express the error shell 
decomposition bounds in a form that is both useful and intuitive. The thermodynamic 
limit accomplishes this goal by introducing the notion of the correct scale at which to 
analyze a learning curve, and by expressing the learning curve as a competition between an 
entropy function (measuring the logarithm of number of hypotheses as a function of their 
generalization error E) and an energy function (measuring the probability of minimizing 
the empirical error on a random sample as a function of generalization error). 

The resulting theory provides a formalized variant of the statistical physics approach that 
is able to predict and explain many nontrivial behavioral phenomena of learning curves, 
including phase transitions. It is far from being the last word on learning curves, and in- 
deed, the task of providing a truly universal theory of learning curves--one that applies 
to all function classes, input distributions, and target functions, and is furthermore tight 
in all cases--appears to be a daunting if not unreasonable task. Furthermore, this paper 
concentrates on the case of finite cardinality function classes (although we provide some 
discussion of possible extensions to the infinite case). For someone familiar with the VC 
theory, it may be somewhat surprising that we devote so much effort to the finite case, 
since in the VC theory a power law uniform convergence bound can be obtained trivially 
for finite classes. Briefly, it turns out that in our formalism, it can be nontrivial to trans- 
late a collection of separate uniform convergence bounds, one for each error shell, into a 
learning curve bound, even in the finite case. By concentrating on this translation step, 
our methods can yield much tighter learning curve bounds than the VC theory in some 
cases. 

The reader should regard the current paper as having three primary goals. First, we aim 
to derive from first principles a formal theory retaining the spirit of the statistical mechanics 
approach. Second, we aim to provide evidence in the form of specific examples and a 
general lower bound that the new theory truly is closer to modeling the actual behavior of 
learning curves than the standard VC theory. Third, we aim to precisely relate the statistical 
mechanics approach to the VC theory. 

2. The  finite and real izable  case 

We begin with the most basic model of learning an unknown boolean target function. We 
assume that the target function f is chosen from a known class ~- of {0, 1 }-valued functions 
over an input space X. We refer to this as the realizable setting, since the learning algorithm 
knows a class of functions that contains or realizes the target function. We also assume that 
~" has finite cardinality. 
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The learning process consists of giving a learning algorithm a fixed finite number m of 
independent random training examples of f .  Thus, let D be any fixed probability distribution 
over X. The learning algorithm receives as input a training sample S = {(xi, f(xi)) }l<_i<_m. 
Each input xi in the training sample is chosen randomly and independently according to 
the fixed distribution D. For any boolean function h, the generalization error of h is the 
probability of disagreement between h and f : Egen(h) = Prxeo[h(x) ~ f (x ) ] .  Note that 
the training sample S depends on f and m and Egen(h) depends on f and D. Throughout 
the paper we will consider these quantities as fixed and suppress such dependencies. 

If  we let h denote the hypothesis function output by a "reasonable" learning algorithm 
following training on m examples, what is the behavior of Egen(h ) as a function of the 
sample size m? In this paper, "reasonable" will essentially mean any algorithm that chooses 
a hypothesis function that is consistent with the training sample (or one that chooses a 
hypothesis with minimum empirical error on the sample in the unrealizable case). This 
notion is both natural and mathematically convenient, because it allows us to give an 
analysis of the behavior of Egen(h) that ignores the details of the learning algorithm, and to 
instead concentrate exclusively on the expected error of any consistent hypothesis. 

2.1. Relating the version space to the e-baU 

For any sample S, we define the version space by 

VS(S) = {h E ~- : V(x, f ( x ) )  E S, h(x) = f(x)}.  

Thus, VS(S) _ ~r is simply the subclass of all functions h that are consistent with the target 
function f on the sample S. The e-ball about the target function f is defined as the set of 
all functions with generalization error not exceeding e: 

B(e) = {h E ~r: Egen(h) _< E}. 

Thus, VS(S) is a sample-dependent subclass of .T, and B(E) is a sample-independent 
subclass of ~', and both contain the target f .  

The goal of this subsection is to examine the relationship between VS(S) and B(E). 
More specifically, for a sample S of size m, we would like to calculate the probability that 
VS(S) is contained in B(E). This probability is significant for learning, because it allows 
us to bound the error of any consistent learning algorithm: we can always assert that with 
probability at least Prs[VS(S) _ B(E)], any consistent hypothesis has generalization error 
less than E. Here the probability is taken over the m independent draws from D used to 
obtain S. We now derive a lower bound on Prs[VS(S) _c B(E)], or equivalently, an upper 
bound on Prs[VS(S) ~Z B(E)]. 

The probability that a function h of generalization error Egen(h) remains in the version 
space after m examples decays exponentially with m: 

Prs[h e VS(S)] = (1 - egen(h)) m. 



RIGOROUS LEARNING CURVE BOUNDS 199 

Since the rate of decay is slower for small ~gen(h), the version space should consist only of 
hypotheses with small generalization error. Let B(E) = 5 t" -- B(~), the functions in ~- with 
generalization error greater than E. Since the probability of a disjunction of events is upper 
bounded by the sum of the probabilities of the events, we find that 

Prs[VS(S) ~ B(E)] = Prs[3h c B(e) : h ~ VS(S)] (1) 

< E Prs[h ~ VS(S)] (2) 
hoB(E) 

~--- E (1  - -  Egen(h ) )  m (3) 
heB(~) 

which proves the following theorem. 

Theorem 1. Prs[VS(S) c_ B(E)] > 1 -- 3, where 

= E (1 - ege,(h)) m. 
hEB(E) 

We will refer to Theorem 1 as the union bound. It is closely related to the annealed 
approximation, which has been used by physicists to study the performance of the Gibbs 
learning algorithm. Note that the sum in the union bound has a direct interpretation, being 
the average number of surviving hypotheses that lie outside B(~). 

We can restate Theorem 1 in the following alternate form, in which we regard 3 as given 
and then bound the achievable e. 

Corollary 2. Let .~ be any finite boolean function class. For any 0 < 3 < 1, with 
probability at least 1 - 3 any function h ~ ~ consistent with m random examples of  a 
target function in ~ obeys Egen(h) <_ E, where ~ is the smallest value satisfying Y~.hCff(E) 
(1 - 6gen(h)) m < 3. 

2.2. The standard cardinality bound 

Since *gen(h) > E for all h ~ B(¢), the union bound can be further transformed by 

E (1 - -  % e n ( h ) )  m ~ E (1 - E) m ~ I.~1(1 - E;) m . 

h~B(E) hEB(~) 

(4) 

By applying Theorem 1 to this bound, we obtain the standard result that with probability 
1 - 3, any consistent hypothesis h obeys egen(h) < ( ln( l~l /3)) /m.  Since the only depen- 
dence of this bound on the learning problem is through the cardinality of the function class 
)r, we will refer to it as the cardinality bound. In particular, it depends neither on the input 
distribution D nor on the target function f .  

Although this bound is powerful because of its generality, there is no reason to believe 
that it is tight for specific distributions. Its tightness depends on the chain of inequalities 
beginning with Eq. (1) and those given in Eq. (4), and any link in this chain can be weak. 
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Most of  the work of  this paper will be directed toward finding tighter alternatives to 
Eq. (4). We will slice B(~) into many shells with different error levels rather than lump all 
of  them together at E, as was done in Eq. (4). Furthermore, our calculations will make use 
of  all the shell cardinalities, not just the crude measure of  total cardinality of  the function 
class. This more refined bookkeeping can lead to learning curves that have radically different 
behavior than that predicted by the simple cardinality bound. 

On the other hand, we will generally rely on the union bound as is. It is tight if the survivals 
of  different hypotheses are mutually exclusive events. In fact, when hypotheses have small 
disagreement, their survivals are often positively correlated instead. Nevertheless, for the 
finite function classes examined here, the crudeness of  Eq. (1) will not weaken our bounds 
too severely. In particular, we will exhibit examples of distribution-specific bounds that are 
much tighter than the distribution-free VC bounds. 

It is only for infinite function classes that the union bound fails spectacularly, for here 
the bound diverges and becomes useless. The VC dimension, VC entropy, and random 
covering number (Dudley, 1978; Haussler, 1992; Pollard, 1984; Vapnik, 1982) are the 
known tools for dealing with the correlations neglected by the union bound. These tools 
have previously been applied to the function class as a whole. In our current research efforts, 
we are attempting to refine these tools by applying them to error shells. In Section 4 we 
discuss an alternative approach that reduces the infinite case to a sequence of  finite problems. 

2.3. Decomposition into error shells 

Since we are assuming 5 t- to be a finite class of  functions, there are only a finite number of  
possible values that Egen (h) can assume. Let us name and order these possible error values 
0 = E l < ¢~2 "< " ' "  < Er -~< 1. T h u s ,  r < I~'1, and for each 1 < i < r there exists an hi c f" 
such that Egen(hi)  = 6i. Then for each index 1 < j < r we can define the cardinality of  the 
j th  error shell Qj = I{f '  6 5r : Egen(f') = Ej }1. ThUS Qj is the number of functions in 9 v 

r whose generalization error is exactly C j, and ~ j = l  QJ = I~'1. Hence we arrive at the shell 
decomposition of the union bound: 

(1 - E g e n ( h ) )  m ~-- ~ Q j(1 - 6 j ) m  

hEB(¢i) j=i 

(5) 

Together with Theorem 1, we can obtain the following bound on Egen(h) for consistent 
learning algorithms. 

Theorem 3. For any fixed sample size m and confidence value 8, with probability at least 
1 - ~ any h ~ VS(S) obeys Egen(h) <_ Ei, where Ei is the smallest error value satisfying 

r ~ j ~ - i  Q j(1 -- (:j)m ~ 5. 

In other words, if we fix the confidence 8 then Theorem 3 provides the bound 

Egen(h)<-min{ Ei:~Qj(1-Ej)m<-8}j=i  (6) 
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with probability at least 1 - 8  for any consistent h. While this bound is clearly a function of 
m, its behavior is not especially easy to understand in its current form. For this we rely on a 
particular limit popular in the statistical mechanics literature known as the thermodynamic 
limit. 

2.4. The thermodynamic limit method 

There are two basic ideas or assumptions behind the thermodynamic limit method as we 
formalize it. The first idea is that we are often interested in the learning curve of a parametric 
class of functions, and in such cases the number of functions in the class at any given error 
value may have a limiting asymptotic behavior as the number of parameters becomes large. 
The second idea is to exploit this limiting behavior in order to describe learning curves 
as a competition between the logarithm of the number of functions at a given error value 
(an entropy term) and the error value itself (an energy term). 

As we shall see, the most important step in applying the thermodynamic limit method, 
both technically and conceptually, is to find the right scaling with which to analyze the 
learning curve, and to find the best entropy bound for this scaling. The thermodynamic 
limit method assumes that an appropriate scaling and entropy bound are given, and then 
provides a learning curve analysis for them, much in the same way that VC theory assumes 
that the VC dimension is known and then provides learning curve upper bounds. Thus 
the real work of the user in applying the thermodynamic limit method (which may be 
considerable) lies in finding the best scaling and entropy bound. 

In order to properly define and use the thermodynamic limit method, we cannot limit our 
attention to a fixed finite class U of functions, but must instead assume an infinite sequence 
of finite function classes (of presumably increasing but always finite cardinality). As we 
have already suggested, it will be convenient to think of this sequence as being obtained 
in some uniform manner by increasing the number of parameters in a parametric class of 
functions. Thus, let ~'1,5r2 . . . . .  .T'N . . . . .  be any infinite sequence of classes of functions, 
where each ~'N is aclass of boolean functions over an input space XN and obeys 19VNI < 2 u. 
We may think of N as just an abstract index obeying N > log I~-N I, and thus representing 
the number of bits or parameters required to encode functions in ~-N. Let DN be a fixed 
probability distribution over XN. A typical example of these objects is where we let XN be 
N-dimensional Euclidean space, DN be the uniform distribution over the unit sphere in XN, 
and .T'N be the class of all N-dimensional perceptrons in which each weight is constrained 
to be either 1 or -- 1. 

Now suppose that for each class brN we also choose a fixed target function fN E UN, 
thus yielding an infinite sequence of target functions f l ,  f2 . . . . .  fN . . . . .  Our goal now is to 
provide a framework in which we can analyze the limiting generalization error, as N --+ 0o, 
of any algorithm that always chooses a hypothesis consistent with m random examples of 
fN drawn according to DN. 

There are a number of problems with this proposal. Foremost among these is the question 
of whether there actually exists any interesting limiting behavior. For instance, in our 
discussion so far we have been suggesting that all the classes .UN are "similar" in the sense 
of being obtained through some nice uniform parametric process, with only the number 
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of parameters varying. If  this assumption is grossly violated, and each 5rr¢ looks radically 
different than the last, it may be nonsensical to analyze the limiting behavior of a consistent 
algorithm's error. Similarly, even if the ~'N are generated in a uniform fashion, a highly 
nonuniform sequence of target functions fu  may render the limit meaningless. 

There is no definitive solution to such obstacles: there do exist function class, distri- 
bution and target function sequences for which there is no limiting generalization error 
for consistent algorithms, and obviously no theory can assign a tight asymptotic limit in 
such cases. The thermodynamic limit method survives these problems by only providing an 
upper bound on the asymptotic generalization error. In those cases where the limit does not 
exist, this upper bound may be weak or even vacuous. However, we hope to show through 
examples that in many natural cases the limiting behavior is both well-defined and captured 
by our theory, and that the resulting upper bound correctly predicts learning curve behavior 
that is radically different from that predicted by more standard methods. 

A second and more technical objection to our proposal is that if wefix a sample size m 
and let N --+ ~ ,  we should not expect to obtain any nontrivial bound on the generalization 
error, since the function classes are becoming larger but the sample size remains fixed. This 
is exactly right, and for this reason the thermodynamic limit method examines the learning 
curve behavior as both m ~ c~ and N --+ c~, but at some fixed rate. This allows us to 
meaningfully investigate, for instance, the asymptotic generalization error when the number 
of examples is 1/2 the number of parameters, twice the number of parameters, 10 times the 
number of parameters, and so on. This is frequently the language in which experimentalists 
discuss learning curves. 

Returning to the development, once we fix target function sequence fN ~ ~-N, we can 
u 

again define the error levels 0 = e~ v < e~ v < .- .  < er(U) < 1 for ~-u with respect to DN, 
where r (N) < I JrN I is the number of error levels for this fN,  DN and fN, and for clarity we 
have included a superscript on the error levels indicating N. Recall that by Theorem 3, we 
can reduce the problem of bounding the error of a hypothesis from U~¢ consistent with m 
examples of fN drawn according to DN to the problem of finding the smallest error level 
~[¢ such that the right-hand sum in Eq. (6) is bounded by 3 (where, in the thermodynamic 
limit, 3 will go to 0). The first step of the thermodynamic limit method is to simply rewrite 
this sum in a more convenient but entirely equivalent exponential form: 

r(N) r(N) 
y ~  Qy (1 - ,~v)m = ~ clog Q~,+~,og¢l-,7)" 

j=i j=i 

(7) 

Notice that in each term of this sum, the exponent term log Q~¢ is positive, and the exponent 
term m log(1 - eJ v) is negative. Thus, informally speaking, the contribution of the j th  
term in the sum is largely determined by the competition between these two quantities: if 
log Q~ >> - m  log(1 - E} ¢) then the contribution of the j th  term is large (and thus, to make 
the overall sum smaller than 3, we must eliminate terms by increasing i and consequently 
weakening our bound on the error), and if log Q~¢ << - m  log(1 - ¢~) then the contribution 
of the j th  term is negligible. 

In particular, if the sample size m is such that log Q~ >> - m  log(1 - e~ v) for all j then 
we cannot give a nontrivial bound on the error, and if log a ~  << - m  log(1 - e~¢) for all j ,  
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and r(N) is not too large, then the error should be close to 0. Such cases are uninteresting. 
In general, the values of  the sample size m for which it will be most interesting to analyze 
the learning curve are those for which there is some real competition between the log Q~V 
and the - m  log(1 - E~). Thus we need to find the right scale at which to examine the 
learning curve. At the same time, we would like to replace the competition between these 
two discrete quantities by the competition between two continuous functions of a single real 
parameter e. The obvious choice for a continuous approximation to the - m  log(1 - E~ ¢) is 
simply m log(1 - E). The choice of  a continuous approximation to the log Q~ depends on 
their behavior, which may be quite complex, and which we now try to capture. 

Thus the next and crucial step of  the thermodynamic limit method is to choose the 
appropriate scaling function and to provide an associated entropy bound. As mentioned 
already, these are functions that are assumed to be given in the thermodynamic limit method. 
Let t(N) be any mapping from the natural numbers to the natural numbers such that 
t(N) --+ cx~ as N --+ oo, and let s : [0, 1] --+ ~+  be any continuous function. Then we 
say that s(~) is a permissible entropy bound with respect to t(N) if there exists a natural 
number No such that for all N > No and for all 1 < j < r(N), (1/t(N)) log Q~ < s(~¢).  

We refer to t (N) as a scaling function. The intention is that when t (N) is properly chosen 
it captures the scale at which the learning curve is most interesting, and that the entropy 
bound s(E) tightly captures the behavior of  the (1/t(N)) log Q~. We will see that we 
obtain our best upper bounds on generalization error for a given scaling function when the 
thermodynamic limit method is used with the smallest possible permissible entropy bound 
for this scaling function. 

Given a scaling function t(N) and a permissible entropy bound s(E), for N > No we 
may now rewrite and bound our sum: 

r(N) 
elog Q~f+m log(I-,7) (8) 

j=i 
r(N) 

= ~ et(N)[(1/t(U)) log Qrf+(m/t(U)) log(1-~¢)] (9) 
j =i 
r(N) 

-< Z et(N~t~('f)+'~ log(1-,y)j (10) 
j=i 

where we define ot ---- m/t(N),  and in taking our limit m, N --+ c~, t~ will remain constant. 
Before doing so, however, let us pause to notice the benefits of  our definitions in the final 
summation: each exponent's dependence on N has been isolated in the factor t(N), and 
the remaining factor is the continuous function s(E) + ot log(1 - E), evaluated at only the 
discrete points El .  

Let us now let m, N ---> c~ (and thus t(N) ---> o0) but let m/t(N) = ot > 0 remain 
constant. DefineE* ~ [0, 1] to be the largest E ~ [0, 1] suchthats(E) > --or log(I--E).  Note 
that both s(E) and -or  log(1 - E) are non-negative functions, and 0 = - t~ log(1 - E) < s(E) 
for E = 0. Thus E* is simply the rightmost crossing point of  these functions (we define 
~* = 1 if s(E) stays above - t~log(1 - E) for all 0 < E < 1). We wish to argue that 
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provided we examine our sum only for terms in which E > E*, then under certain conditions 
the thermodynamic limit of  the sum is 0. In other words, in the thermodynamic limit we can 
bound the generalization error of  any consistent hypothesis by ~*. Intuitively, the reason 
for this is that if s(E) < -t~ log(1 - E) then e t(N)[s(~)+u log(1-~)] __+ 0 as t (N) --+ c~. 

More precisely, let r 6 (0, 1] be an arbitrarily small quantity, and for each N, define the 
index iN r to be the smallest satisfying E. N > E* + r. Let us define A by 

A = m i n { - a l o g ( 1  - - e ) - - S ( E ) : E  6 [ E * + r ,  1]}. (11) 

Note that A is well-defined since the quantify 

- a l o g ( 1 - ¢ ) - s ( ¢ )  

is strictly positive for all E 6 [~* + z, 1]. We can now write 

r(N) 
Z et(N)[s('~)+al°g(1-'~)] (12) 

j=iu,~ 
r(N) 

< Z e-t(N)A (13) 
j =iN,, 

< ( r (N)  -- iN,r)e -t(N)A (14) 

< r ( N ) e  -t(N)n (15) 

where the first inequality follows from the fact that for all iN,r < j < r ( N )  we have e~ v 
[E* + r, 1 ]. The expression r (N)e  -t (N)A will go to 0 in the thermodynamic limit, as desired, 
provided r ( N )  is o(e t(N)A) (this condition is easily met by all of  the examples we shall 
analyze, but for completeness its relaxation is discussed in the Appendix in Section A. 1). 

We have shown: 

Theorem 4. Let s (e) be any continuous function that is a permissible entropy bound with 
respect to the scaling function t (N),  and suppose that r (N)  = o (e t (N)/,) for  any positive 
constant A. Then as m, N -+ oo but ot = m / t  (N)  remains constant, for  any positive z we 
have 

Prs[VS(S)  c B(e* + r)]  --+ 1. (16) 

Here the probability is taken over all samples S o f  size m = ct t (N)  for  the target function 
in f E .~N. and E* is the rightmost crossing point o f  s(E) and -or log(1 - e). In other 
words, in the thermodynamic limit any hypothesis h consistent with ott ( N )  examples will 
have generalization error egen(h) <_ e* + r with probability 1. 

We can finally see in Theorem 4 the roles of  the scaling function t (N) and the entropy 
bound s (E). The scaling function t (N) defines the units by which we shall measure learning 
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curves, since the sample size in the thermodynamic limit is always a constant times t(N). 
Given the scaling function, the smaller the entropy bound s(E), the smaller the rightmost 
crossing ~* will be, and consequently the better the bound obtained from Theorem 4. 

2.5. Extracting scaled learning curves from the thermodynamic limit method 

Theorem 4 gives a bound on the limiting generalization error of consistent algorithms on 
a sample size m that is afixed constant ot times the scaling function t(N). However, the 
real value of the thermodynamic limit method emerges only when we now allow the value 
of ot to vary, taking the thermodynamic limit by applying Theorem 4 to each value, and 
examine the learning curve as a function of increasing t~. As we shall now see, it is in 
such scaled learning curves (we refer to them as scaled because they are expressed as a 
function of the multiple ot of t (N) rather than in the more traditional absolute number of 
examples) that interesting behavior such as phase transitions appears. We shall also see that 
the thermodynamic limit method permits an intuitive and highly visual derivation of scaled 
learning curves. 

We first illustrate the derivation of scaled learning curves using several artificial examples. 
By artificial we mean that rather than defining natural function class, target function and dis- 
tribution sequences YN, fN and DN, and then deriving an appropriate scaling function t (N) 
and entropy bound s(E), instead we will simply start with a given s(E) and carry the analy- 
sis forward. However, the lower bound provided in Section 2.8 demonstrates that there do 
exist function class and distribution sequences whose true scaled learning curves match the 
bounds we will give in this section. In the following sections, we give examples of complete 
analyses (that is, beginning with given -~N, fN and DN) for some natural function classes. 

To start, suppose that for some scaling function t(N) we have the permissible entropy 
bound s(E) = 1 (a rather weak entropy bound). Then in figure 1, we have plotted both 

1 
0 ~_3 e2 E1 

Figure 1. Rightmost intersections for a constant entropy bound s(e) = 1 and -0/log(1 - E) for three values 
0/ ~ ~1, 0/2,013. 
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Scaled learning curve E* (a) corresponding to the entropy-energy competition of figure 1. 

the constant entropy bound s(e) = 1, and the function - ,~  log(1 - E) for three values 
c~ = ~a, u2, u3. The resulting rightmost intersections el = e*(ul), e2 = e*(cl2), e3 = 
E*(c~3) are then identified on the E-axis. Here we now adopt the convention of  writing e* 
as a function of  or, since we no longer regard c~ as a constant. 

In figure 2, we then plot the righmaost crossing E*(ot) as a continuous function of  
(and identify the points (~i, Ei) for i = 1, 2, 3 from figure 1). This plot is what we mean 
by the scaled learning curve, and Theorem 4 tells us that in the limit N -+ c~, this 
scaled learning curve bounds the generalization error of  consistent algorithms given ott (N) 
examples. 

Note from figure 1 that - ~  log(l - E) is essentially linear with slope c~, and it is the 
rightmost intersection of  this roughly linear function with s(E) that gives the corresponding 
point on the scaled learning curve. Furthermore, the energy function is independent of  
the learning problem in Theorem 4, and thus in general, for any entropy bound s(e), to 
get the scaled learning curve we will be looking at the leftward progress of  the rightmost 
intersection E*(Ol) between the nearly-linear energy and s(e) as ~ grows. In the particular 
example s(e) = 1, this progress is quite uniform, resulting in the familiar power law scaled 
learning curve of  figure 2. 

A less familiar and more interesting example occurs for the single-peak entropy bound 
s(e) shown in figure 3 4. We shall shortly see in Section 2.6 that this entropy bound actually 
occurs for a natural and well-studied learning problem. In this example we see that for 
small ~, the leftward progress of  e* (~) is rather slow, due to the large negative slope of  s (E) 
on the right side of  its peak. This for instance is the case for ot near the plotted value or1. 
For some larger value of  t~, E*(ot) moves over the peak of  s(e) and thus begins decreasing 
more rapidly. 

Then something interesting happens. There is a critical value or2 that gives the intersection 
e*(t~z) = e2. For this critical value, we see that the energy curve is barely intersecting the 
entropy curve. For ot > or2 (for example, for the plotted value ~3), we see from figure 3 that 
the rightmost intersection is 0 ! Theorem 4 can be applied to obtain the scaled learning curve 
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0 
0 ~2 el 1 

E 

Figure 3. Rightmost intersections for a single-peak entropy bound (for the Ising pereeptron of Section 2.6) and 
- ~  log(1 - E). The curves corresponding to the three values at = 0.7, c~2 = 1.448 and a3 = 2.5 are plotted. 
The resulting three intersections are el = 0.6011, Q = 0.2543 and 0. The value or2 = 1.448 is a critical value, 
resulting in the phase transition seen in figure 4. 

1 

el 

, 

a l  a2 

Figure 4. Scaled learning curve e*(u) corresponding to the entropy-energy competition of figure 3 (Ising per- 
ceptron), showing a phase transition to zero error at the critical value u2 = 1.448. 

bound  o f  f igure 4, which  exhibits  aphase  transition f rom error E 2 to perfect  genera l iza t ion 

(error 0) at ~ = or2. 

A similar  but  more  subtle example  is shown for another  s ingle-peak  s(~) in figures 5 

and 6. Here  again, le f tward progress  o f  E* (~)  for smal ler  ot is s low due  to the large negat ive  

s l o p e  o f  s(E) on the r ight-hand side o f  its peak  (for instance, at ot = ~ ) .  Again,  there is a 

cri t ical  va lue  ~z  which  results in an intersect ion at ~+ = E*(~2), s l ightly to the left  o f  the 

peak  of  s(E). However ,  for ot jus t  larger than Ot 2 we do not t ransi t ion to perfect  learning,  

but  to error  ~ - .  The  d i f ference  be tween  this example  and that o f  figures 3 and 4 is that this 

t ime  the entropy curve  is sufficiently large near  E~- to "ca tch"  E*(~) for ~ above the cri t ical  
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~2+ el 1 0 E3 ~2- 

Figure 5. 
Ol  2 . 

Rightmost intersections for a single-peak entropy bound and - a  log(1 -- E), showing a critical value 

E1 

E 2 -  

0 al  a2 

£t 

i , , - -  

a3 

Figure 6. Scaled learning curve E* (c¢) corresponding to the entropy-energy competition of figure 5, showing a 
phase transition to nonzero error at the critical value ct 2. 

value. Following the transition, the decrease of e* (or) resumes rather gradual behavior (for 
instance, near or3). This is all clearly seen in the scaled learning curve of figure 6. 

As our next example we consider a double-peak entropy bound in figures 7 and 8. Here 
we see there are two critical values, u2 and or4. Initial progress of e*(u) occurs at a steady 
but controlled rate, for instance at or1. As ot becomes larger than or2, there is a sudden burst 
of generalization (a phase transition), not to perfect generalization, but from error E + to E~- 
on the fight side of the left peak of s(E). Then progress is slow, for instance at ~3, until c~ 
becomes larger than or4, at which point we have a transition to perfect generalization (so 
for or5 the error is 0). One aspect of this example worth noting is the fact that although the 
energy may intersect s(e) many times, we are interested only in the rightmost intersection. 
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0 E4 e3 e2- e2+ el 

E 

Rightmost intersection for a double-peak entropy bound and -or log(1 - E), showing critical values 

1 

E1 

e2+ 

E2~ 

e.3 

e4 

Figure 7. 
a2 and ot 4. 

0 a l  et2 0.3 tt4 

Figure 8. Scaled learning curve ~* (a) corresponding to the entropy-energy competition of figure 7, showing a 
phase transition to nonzero error at the critical value ct2, and a phase transition to 0 error at the critical value u4. 

As our final artificial example, we consider a three-peak entropy bound in figures 9 and 
10. This example demonstrates the interesting phenomenon o f  shadowing  predicted by our 
theory, because despite the change in s(E) from our last example, we see that the scaled 
learning curve of  figure 10 is quite similar in form to that of  figure 8. Figure 9 shows the 
reason for this: by the t ime ot becomes larger than the first critical value or2, the energy 
curve is already above the small middle peak of  s(E), and thus the phase transition is from 
E + to ~2, complete ly  bypassing the middle peak. Thus, the small middle peak of s(~) 
is in the "shadow" of  the larg e rightmost peak. There is an intuitive explanation for this 
phenomenon. Despite the fact that (relative to the scaling function) there are a significant 
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e4 e3 e2-  E2+ e l  

j , 

Figure 9. Rightmost intersections for a triple-peak entropy bound and - a  log(1 - E), showing critical values at 
a2 and o~ 4 and demonstrating the phenomenon of shadowing. 
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Figure 10. Scaled learning curve E* (et) corresponding to the entropy-energy competition of figure 9, showing a 
phase transition to nonzero error at the critical value a2, and a phase transition to 0 error at the critical value ~4- 

number of functions of generalization error approximately E' (resulting in the middle peak of 
s (E) centered at E'), by the time the sample size is large enough to eliminate the considerably 
larger number of  functions of generalization error approximately e+ from the version space, 
the functions at generalization error E' are already eliminated from the version space. Note 
that if this middle peak were higher, there would be a brief transition from e+ to near e', 

and then from there to a value on the right side of the left peak. 
In all of these examples, we have concentrated on the qualitative behavior (including 

coarse phenomena such as phase transitions) of scaled learning curves at moderate values 
of oe. Also of interest are the large ot asymptotics of the scaled learning curve, that is, the 
asymptotic rate of approach to generalization error 0. In our theory this rate is obviously 
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determined by the behavior of the entropy bound s(E) for E ~ 0. It turns out that many 
natural examples of s(E) fall into a few broad categories of behavior near 0, and this is 
discussed in Section 3.5. 

2.6. Analysis of the Ising perceptron 

We now tackle some real examples of the application of our theory, complete with deter- 
mination of the appropriate scaling function and a permissible entropy bound. 

We first consider the class ofIsing perceptrons (Gardner & Derrida, 1989; Gy6rgyi, 1990; 
Sompolinsky et al., 1990). Suppose that the function class ~rN consists of all homogeneous 
perceptrons in which the weights are constrained to be 4-15. Let the distribution DN be any 
spherically symmetric distribution on ~t N, and let the target function fN ~ FN be arbitrary. 
It will turn out that for this problem, the appropriate scaling function is simply t (N) = N. 
We now derive a permissible entropy bound for this scaling function, and then extract the 
associated scaled learning curve. 

An Ising perceptron is parametrized by a weight vector w in the hypercube { -  1, 1 }N, and 
maps x e ~t N to sgn(w- x). For a spherically symmetric distribution DN, the probability of 
disagreement between two perceptrons is proportional to the angle between them. Hence 
if w0 is the weight vector of the target function, 

Egen(W) Z COS_I W • WO 1 ( 2dH(W, Wo)) = - - -  COS -1  1 - -  (17) 
Jr N 7r N 

where dn denotes the Hamming distance. The Hamming distance layers the function class 
like an onion with N error shells surrounding the target at the center. The number of 
perceptrons at Hamming distance j from the target is Q}V = (N),  and they all have 
generalization error ~u = (1/Jr)cos -1 (1 -- 2j /N) .  Since the binomial coefficients are 
bounded by 

1log Q~Y ~ ( J ) =  7-/(sinE (Jr~7/2)) (18) 

where 7-/(p) --= --p log p -- (1 - p)log(1 -- p), a permissible entropy bound for scaling 
function t(N) = N is 

S(E) = 7-/(sin2(~E/2)). (19) 

We have actually already discussed the resulting entropy-energy competition for this 
problem in Section 2.5. Recall that in figure 3 we graph the competition, and in figure 4 
we graph the scaled learning curve obtained by applying Theorem 4. Thus for this problem 
our theory predicts slow initial learning, followed by a phase transition to perfect gener- 
alization at R E ~ 1.448. We remind the reader that a sudden transition in our bound does 
not necessarily imply a sudden transition in the true behavior of any consistent learning 
algorithm. However, this bound does show that any consistent learning algorithm must have 
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Figure 11. The function s(E) + a log(1 - E) for the Ising perceptron, plotted for the same values of oq. az, ct3 
as in figure 3. 

reached zero error with probability approaching 1 in the thermodynamic limit for scaled 
sample size greater than 1.448. This bound on the critical value was known from the work 
of  Gardner and Derrida (1989), and extended to the case of boolean inputs by Baum, Lyuu 
and Rivin (1991; 1992). Here we are actually giving a bound on the entire learning curve, 
and the behavior of  our bound is very similar in shape to learning curves obtained in both 
simulations and non-rigorous replica calculations from statistical physics (Engel & Fink, 
1993; Gy6rgyi, 1990; Seung et al., 1992; Sompolinsky et al., 1990) 6. 

In figure 11, we graph the difference of the entropy and energy curves shown in figure 3, 
that is, we plot s(E) + ot log(1 - ~) for the three values of or. This plot is simply another 
way of  visualizing the entropy-energy competition. The zero crossings of  the graphs in 
figure 11 correspond to the intersections of  the entropy and energy curves in figure 3, and 
thus it is now the leftward progress of  the rightmost zero crossing of  s (~) + ot log(1 - E) that 
yields the scaled learning curve as ot increases. The quantity N[s(E) + ot log(1 -- E)] is the 
logarithm of the average number of  surviving hypotheses at distance e from the target, and 
is the exponent in the sum of Eq. (10). For ot < ~2, there are two zero crossings. The fight 
zero crossing yields the upper bound on generalization error of  Theorem 4. The left zero 
crossing also has a meaning. With high probability, there are no hypotheses in the version 
space with error less than this left crossing except for the target itself. So the version space 
minus the target is contained within an annulus (Engel & Fink, 1993) whose inner and outer 
limits are the left and right zero crossings. 

It is instructive to compare our bounds with the cardinality and VC bounds for this 
problem. Since both of  these latter bounds go like N / m ,  and the lowest error shell is at 
~1 ~ 1/~/-~, the critical rn for perfect learning is m ~ N 3/2, rather than m ~ N. 

2.7. Analysis o f  monotone boolean conjunctions 

In this example, the input space X~v is the boolean hypercube {0, 1 }N. The class 5rN 
consists of  the 2 N functions computed by the conjunction of a subset of  the input variables 
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xl . . . . .  xN, along with the empty (always 0) function 0 and the universal (always 1) function 
{0, 1} N. The input distribution DN is uniform over {0, 1} N. A similar scenario has also 
been analyzed in the machine learning literature (Oblow, 1992; Sarrett & Pazzani, 1992). 

We will examine the thermodynamic limit for two different choices of  target functions 
fN. We begin with the target function f = {0, 1} N, in which every input is a positive 
example. Any conjunction h of  exactly i variables from xl . . . . .  xN has generalization error 

%en(h) = Pr~oN[h(Y)  = 0] = 1 -- 1/2 i. 

Hence the error shells are 1/2 = 4~ < 4~ v < . - .  < 4~ = 1 - 1/2 N, where 4 N = 1 - 1/2 i. 
The number of  conjunctions in the ith shell is Qff = ( N ) < N i. Since 

In Q//V 
- -  < i l n 2  = - I n  (1 - 4~ v )  (20)  
log 2 N - 

we choose the scaling function to be t ( N )  = log N and thus the sample size is written as 
m = ot log N. A permissible entropy bound for t ( N )  is s(E) = - ln(1 - 4). 

The competition between s(E) and -o~ log(1 - 4) results in a scaled learning curve that 
exhibits a sudden transition: for any 0 < ot < 1, the rightmost crossing E*(ct) does not 
exist and our bound on the generalization error is 1. But for ~ > 1, s(E) is dominated by 
- ~  log(1 - 4), so 4*(or) makes a sudden transition to 0. In summary, our theory predicts 
that in the thermodynamic limit, for o~ < 1 there is no generalization, but for c~ > 1 there 
is perfect generalization. 

Our bound can be checked by deriving the exact learning behavior. In the problem 
described, every random example is positive for fN, and every positive example Y eliminates 
from the version space any conjunction containing a variable that is set to 0 in Y. Since half 
of the remaining variables is eliminated by each example, it should take roughly log 2 N 
examples to eliminate all N variables and hence all conjunctions, leaving only the target 
function. 

A more precise calculation goes as follows. Since each variable has probability 2 -m of  
surviving m examples, the number j of surviving variables obeys a binomial distribution: 

(21) 

The function with maximum generalization error in the version space is a conjunction of 
all j surviving variables, so that maxhavs(s ) Egen(h) ---- E N. Then Chernoff bounds on the 
fluctuations in j yield 

1 - 2  - N 2 - " 0 - ~ )  < max 4gen(h) _< 1 - - 2  - N 2 - " 0 + ~ )  
hEVS(S) 

(22) 

with confidence greater than 1 - 2e -Nr2/3. Taking the thermodynamic limit with 
m = ot log 2 N,  then E --+ 1 for any ot > 1, and 4 ~ 0 for any a < 1 with confidence 
approaching 1. 
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For this model, the cardinality and VC bounds give a learning curve of  order N / m ,  which 
drops below the lowest error level ~ = 1/2 for m of  order N. Hence these bounds also 
predict perfect generalization, but with a bound on the critical m of  order N rather than 
log N. 

Now let the target function be the empty function fN = 13. Since a conjunction h 
of i variables has Egen(h) = 1/2 i, the error shells are 1/2 N = ~ < E~ < - .-  < 
su N = 1/2, where ~ff = 1/2 N-i+~. The number of  conjunctions in the ith shell is 

Q r / =  ( u N - i ) < NU-i.  We again choose t (N)  = log N as the scaling function. Then 

lnQU < ( N - - i ) l n 2 = - - l n 2 E f f  
log 2 N - 

(23) 

so that s (e) = -- In 2~ is a permissible entropy bound for t (N). The rightmost zero crossing 
of s (E) and -or  log(1 - E) gives the scaled learning curve E ~ O (log ot/t~). 

One interesting aspect of  this learning problem is that the scaled learning curve is highly 
dependent on the target function. Whereas learning the target functions f u  = {0, 1} u led 
to a sudden transition in generalization, learning the empty function f u  = 13 led to a slow 
power law decrease. This is in marked contrast to the Ising perceptron problem, where the 
learning curve is independent of  which weight vector is the target function. 

2.8. The thermodynamic limit lower bound 

In this section, we give a theorem demonstrating that Theorem 4 is tight in a fairly general 
sense (modulo the given entropy bound). More precisely, for any function s(E) meeting 
certain mild conditions, we construct a family of  function classes ~" = {SrN} such that s(~) 
is a permissible entropy bound for the scaling function t (N)  = N, and in the thermody- 
namic limit the rightmost crossing of  the functions s(E) and 2tee is a lower bound on the 
generalization error of worst hypothesis in the version space. Note that although this does 
not exactly match Theorem 4, which gives as an upper bound the rightmost crossing of 
s (~) and - ~  log(1 - E), the qualitative behavior of  the scaled learning curves obtained by 
intersecting with 2tee and -oe log(1 - ~) is essentially the same. In particular, our lower 
bound shows that the various scaled learning curve phenomena examined in Section 2.5 
(such as phase transitions and shadowing) can actually occur for certain function classes 
and distributions. 

In the same way that lower bounds for the VC theory show that if the only parameter 
of  the learning problem we consider is the VC dimension, then the existing learning curve 
upper bounds based on the VC dimension are essentially the best possible, Theorem 5 shows 
that if the only parameter of  the learning problem we use is a given entropy bound s(E), 
then Theorem 4 gives essentially the best possible learning curve upper bound. Thus, in 
the absence of  further information about the function class, distribution and target function 
sequences, the scaled learning curves derived in Section 2.5 are essentially the best possible. 
Similarly, the lower bound shows that better learning curves for the Ising perceptron and 
boolean conjunction problems that depend only on the entropy bound cannot be obtained. 
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T h e o r e m  5. Let s : [0, 1/2] ~ [0, 1] be any continuous function bounded away from 1 
and such that s(0) = s(1) = 0. Then there exists a function class sequence UN over XN 
(where I~-NI = 2N), a distribution sequence DN over XN, and a target function sequence 
fN ~ .,~IV such that: (1) s(e) is a permissible entropy bound with respect to the scaling 
function t (N)  = N, and (2) For any o~ > O, if  E* ~ [0, 1/2] is the largest value satisfying 
2orE* >_ s(e*), then as N --+ c~ there is constant probability that there exists a function 
h E .UN consistent with m = otN random examples satisfying Egen(h ) > ~*. 

Proof: (Sketch) For every N, the class f N  will contain the function fN which is identically 
0 on all inputs. For the lower bound argument, for every value of N, fN will always be the 
target function against which we measure generalization error. The distribution DN will 
always be uniform over the domain XN, which will always consist of  2 u discrete points, 
so XN = { 1, 2 . . . . .  2 s }. 

A high-level sketch of the main ideas follows. For any N, the class f N  will be constructed 
so that there are exactly N / 2  error levels, namely E~Y = j / N  for 1 < j < N/2 .  Now 
let s : [0, 1/2] ~ [0, 1] be any continuous function bounded away from 1 and satisfying 
s(0) = s (1 /2)  = 0. The idea is that for any N and any 1 < j < N/2 ,  .~N will contain 
exactly 2 s(j/N)N functions whose error with respect to fN is j / N .  Thus, for any E, as 
N -+ c~, there will eventually be arbitrarily close to 2 s( '~s functions of  error arbitrarily 
close to E. This ensures that s(e) will be a permissible entropy bound with respect to the 
scaling function t (N)  = N. Furthermore, these functions will be specially chosen to force 
the claimed lower bound. 

In more detail, for every N and every 1 < j < N/2 ,  .~s will contain a subclass of 
functions 5r~, where I~-~l. = 2s(j/N)'N. Note that this implies I~NI < (N/2)2  N since 
s(~) < 1. For every h 6 ~-~v and every ( 2 j / N ) 2  N < x < 2 N, h(x) = 0. In other words, on 
a fraction 1 - ( 2 j / N )  of the input space, all the h ~ 5r~ agree with the target function fN. 

However, on the points { 1, 2 . . . .  , ( 2 j / N ) 2  N } each h c ~'~ will behave as a unique parity 
function on a domain of size ( 2 j / N ) 2  N. More precisely, we can define an isomorphism 
between {1, 2 . . . .  , (2 i /N)2  N } and the hypercube of the same size, and let each function 
in ~'~ (when restricted to { 1, 2 . . . . .  (2 j /N)2N})  be isomorphic to a unique parity function 
on this hypercube. (Note that s(E) must obey 2 s(~)N < 2~ • 2 N in order to ensure there are 
enough unique parity functions. The condition s(E) < 1 is sufficient to give this asymptot- 
ically.) Thus, each h 6 5r~ has ~gen(h) = j / N  since each parity function outputs 1 on half  
of  the hypercube inputs and fN is identically 0. 

Now let us analyze, in the thermodynamic limit, the largest generalization error of  any 
function in the version space of  the constructed family ~-N (for target functions fN and 
uniform distributions DN). By our construction, for any E, as N --+ cx~ there are eventually 
2 ~(')N functions in 5vN of  generalization error arbitrarily close to E (namely, ~ q- I /N) .  
Let the sample size m = a N .  As N ~ cx~, the number of  sample points falling in the set 
{ 1, 2 . . . . .  2E. 2 N } becomes sharply peaked at (2E)otN. The remaining sample points fail to 
eliminate any of the functions of  generalization error E since they all agree with the target 
function fN on the remaining points. 

Now it is known (Goldman, Kearns, & Schapire, 1990) that in order to eliminate 2 s(~)'N 
parity functions over a uniform distribution, the sample size m must obey m _> s(e) • N;  
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for smaller m, there is a constant probability that at least one parity function remains in the 
version space. Thus, we obtain that if (2~)otN < s(E)N then there is constant probability 
that the version space contains a function of  generalization error at least ~. In other words, 
2aE > s(E) is a condition for eliminating all functions of  generalization error E from the 
version space, thus proving the theorem. [] 

3. The finite and unreal izable  case 

One highly restrictive aspect of  all of  our analysis so far is the assumption that the labels of  
the examples are generated by some target function in ~ ,  and hence it is always possible 
to obtain zero generalization error. We now consider the relaxation of  this restriction to the 
case where there may exist no function in ~- with zero generalization error. We call this 
case the unrealizable target case. This actually covers two cases. In the first, the labels of  
the examples are generated by some target function that is not in 5 c. In the second, and more 
general case, each labeled example (xi, Yi) in S, 1 < i < m is generated independently 
according to a distribution DN on XN × {0, 1}, which plays the role that was played jointly 
by the distribution DN and the target function in the realizable case. Here DN can model 
noise in the examples as well. We pursue this second, more general case here. 

In analogy with the realizable case, for any function h ~ 5rN, Egen(h) = Pr(x,y)~On 
[h(x) ¢ y]. For simplicity we will assume that there is a unique best hypothesis in .T'N 

h* = argmin Egen(h), (24) 
hoe 

although it is easy to generalize the arguments to handle cases where there is a tie. (Since 
5VN is finite, we need not worry about there being an infinite sequence of  better and better 
hypothesis, with no best hypothesis in -T'N.) Our goal in this section is to analyze the 
learning curve for this unrealizable case in the same manner as for the realizable case, 
providing a thermodynamic limit method and extracting scaled learning curves. Of course, 
now the learning curve approaches ~min = Egen (h*) rather than 0 as the number of  examples 
is increased. We shall see that interesting technical differences from the realizable case are 
also forced upon us in the analysis. 

Recall that in the realizable case, we focused on bounding the error of any consistent 
algorithm. In the unrealizable case, we analyze an empirical error minimization algorithm. 
We define the training error or empirical error of  a hypothesis h to be the frequency of  
disagreement on a sample S: 

l m 

Etrn(h, S) = - -  Y ~ . x [ h ( x i )  ~ Yi] 
m ~ .  

(25) 

where the indicator function Z is 1 when its argument is true and zero otherwise. An 
empirical error minimization algorithm chooses a hypothesis from the version space, which 
we now redefine to be the set of  all functions that minimize the training error ~ ( h ,  S): 

VS(S) = {h c U :  Etrn(h, S) = min Etrn(h', S)}. (26) 
h'~5 r 
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3.1. Energy functions 

One of the main differences between the unrealizable and realizable cases is the form of the 
bound we can obtain on the probability that a fixed function h ~ 3 r "survives" m random 
examples, that is, remains in the version space and hence is eligible to be chosen by an 
empirical error minimization algorithm. Recall that in the realizable case, this probability 
was exactly (1 - 6 g e n ( h ) )  m since Ermn = 0 and minimum empirical error is equivalent to 
consistency. In the unrealizable case, the situation is more complicated: we will only 
be able to upper bound this survival probability. Unlike the realizable case, where the 
exact expression (1 - Egen(h)) m for the survival probability was eventually translated in the 
thermodynamic limit method to a function - ~  log(1 - 6) in the exponent that was universal 
for all problems (the specifics of the problem affecting only the scaling function and entropy 
bound), in the unrealizable case we may sometimes need to use energy bounds that depend 
on the problem specifics. Furthermore, the quality of bound we use can have significant 
effects on the behavior of the resulting scaled learning curve, especially in the large ot limit. 

We will treat this bound on the survival probability as a parameter of the analysis. More 
precisely, let us refer to a function u(E) as apermissible energy bound (with respect to 5 t', 
D and the target function) if for any h E .T" and any sample size m we may write 

Prs[h ~ VS(S)] _< e -u(Eg~"(h))m. (27) 

In other words, we imagine that u (Egen (h)) assesses a penalty to 6gen (h) that increases with 
larger ~gen(h), and the probability that h survives to be in the version space (and thus the 
probability that an empirical minimization algorithm may choose h) decreases exponentially 
in m times this penalty. 

Permissible energy bounds will all be derived from the following chain of inequalities: 

Prs[h 6 VS(S)] 

< Prs[Etm(h, S) < E~(h*, S)] 

< 1 - - E ( h , h * ) +  ~(h,h*) 2- (Egen(h) -emin)  2 

(28) 

(29) 

(30) 

where E(hl, h2) is the probability of disagreement between hi and h2 on the label of a 
random example drawn according to DN. The first inequality follows from the fact that the 
training error of any hypothesis h in the version space must be no greater than the training 
error of  any other hypothesis in the class, including h* in particular. The second follows 
from Sanov's theorem on large deviations (Cover & Thomas, 1991) (see Section A.2 of the 
Appendix). 

For the realizable case we have Emin  = 0 and ~(h, h*) = Egen(h), SO Prs[h E VS(S)] < 
( 1  - -  E g e n ( h ) )  m already follows from the second inequality. To obtain an energy bound in 
the unrealizable case, we must somehow relate E(h, h*) to Egen(h). If  v(E) is a function that 
satisfies 

E(h, h*) _< V(~gen(h)) (31) 
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then from Eq. (30) 

u(E) = - - In  (1 - v(E) -t- %//)2(E) - -  (E - -  Emin) 2) (32) 

is a permissible energy bound. In our theory, learning curves are determined by the com- 
petition between energy and entropy, with the best bounds being obtained for the largest 
energy bound (which corresponds to the most rapidly decaying bound on the survival prob- 
ability as a function of  m). For this reason, we see that smaller v(E) is, the better the 
resulting energy bound. Now by the triangle inequality, we can always find v(E) such 
that E - emin < v(e) < min{E + ~min, 1}, and cannot find a smaller v(E). Since the choice 
v (~) = ~ q-Emin is always possible, plugging this into Eq. (32) gives a universally permissible 
energy bound. After a little algebra, this bound reduces to 

u(E) = - - l n ( 1 -  (~fE-- ~g,-~)2) (33) 

However, better v(E) may be obtained in certain cases. For instance, if we are fortunate 
enough to have v(e) = E - emin for some problem, then u(E) = - ln(1 - E + Emin) is a 
permissible energy bound, which is essentially linear in ~ and thus nearly the same as for the 
realizable case. We now sketch the technical development for the unrealizable case using 
a generic permissible energy bound u(E), occasionally pointing out the effects of  specific 
energy bounds on learning curves. We examine these effects more closely in Section 3.5. 

3.2. Technical development for the unrealizable case 

As was done for the realizable case in Section 2.1, we can write a union bound on the 
probability that VS(S) is contained in B(E). This enables us to bound the error of  all 
empirical error minimization algorithms. For with confidence Prs  [VS (S) c B (e)], we can 
assert that the hypothesis with minimal training error has generalization error less than e. 

Let E > Emin be given. Then any permissible energy bound u(E) can be used to lower 
bound the probability that every function outside B(E) has training error larger than the 
training error of  h*: 

Theorem 6. Let u(E) be a permissible energy bound. Then Pr s[VS( S) c_ B(E)] >_ 1 -- 8, 
where 

-~ Z e-U(~ge"(h))m (34) 

hEB(~) 

Theorem 1 is a special case with u(E) = - log(1 - ~). 
With the universally permissible energy function u(E) = - In(1 - (V'-~ - v/-~-~-~2), the 

standard cardinality bound becomes 

e -u(eg=(h))m <_ I~-I(l - (g '~ - ~%/r~-~n)2)m (35 )  

hrB(E) 

_< [~'l e - ( , / z - , / r~2"  (36) 
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because 6 g e n ( h )  > 6 for all h ~ B(E). Setting the latter quantity to 8 and solving for E 
yields 

6 = 6min -}- 2~/emin ln(l'Wl/8)m q- ln(l~l/8)__m (37) 

Hence in analogy with Section 2.2 for the realizable case, it follows that for any empirical 
error minimization algorithm, with confidence 1 - c~ the hypothesis h it produces satisfies 

% e n ( h )  _< Emin-{-2~/ t?min  In--(mid-I/8) + - -  ln(l~' l /8) 

m 
(38) 

giving the same bound we obtained in the realizable case when Emin = 0. 
This worst case bound already has some interesting behavior in the thermodynamic 

limit. To see this, let assume that .T'N = 2 N, as large as we allow, and further that the best 
entropy function that we can obtain is the trivial function s(E) --- 1. Let  t ( N )  = N.  Then 
In IUN I /m = 1/or. Hence, from Eq. (38), in the thermodynamic limit we obtain the scaled 
learning curve 

E - ~min < 2 + - .  (39) 

This curve exhibits a faster learning rate, scaling roughly like 1/or in the early stages of  
learning, until c~ ~ 1/4Emin, the point at which both terms in the bound are equal, then it 
begins to scale more like 2 ~  as c~ gets larger and the first term in the bound begins 
to dominate. This behavior has also been noted by Vapnik (1982). 

Retuming to the general development, just as in the realizable case we can refine the union 
bound of Theorem 6 via a shell decomposition. Still more improvement may come from 
finding a better energy function of the form in Eq. (32). Addressing the first improvement,  
just as in the realizable case in Section 2.3, we proceed to slice the function class into error 
shells. Let ~/min = E1 <Z ~/2 < "" " < •r be all of  the possible values for the generalization 
error for functions in ~ ,  and let ai be the number of  functions h 6 ) r  satisfying ~ge, (h) = Ei. 
The analog of  Theorem 3 in the unrealizable case is: 

T h e o r e m  7. Let u(E) be a permissible energy bound. Then for  any f ixed sample size m 
and confidence value 5, with probability at least 1 - 8 any h ~ VS(S) obeys Egen(h) < Ei, 
where E i ~> Emin is the smallest error level satisfying 

r 

~ Qje-U(~) m < ~. 
j=i 

(40) 

In other words, for any 8 we may write 

%en(h) <--min[ Ei:£Qje-u(EDm < - t ~ } J = l "  " (41) 
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with probability at least 1 - 8. Thus we have a bound on Egen(h) that implicitly depends on 
m, but as in the realizable case, this bound is more easily understood in a thermodynamic 
limit. 

Towards this goal, in analogy with Section 2.4 for the realizable case, we again can 
rewrite the summation obtained by shell decomposition in a convenient exponential form. 

~-~ Qje-U(EJ) m 
j : i  

(42) 

r 
= Z el°g Qj-u(Ey)m (43) 

j=i 
r 

= Z et(N)[(I/t(N))l°g Qj-(m/t(N))u(E))] 

j=i 
(44) 

where t (N) is a scaling function of  our choice. Thus we see that in the unrealizable case, the 
bound on generalization error again involves a competition between the entropic expression 
(1/t (N)) log Qj and the energetic expression (m/t  (N)) u (~j). Using the same definition 
of  the permissible entropy function s(E) as in the realizable case, we obtain the following 
theorem, whose proof is entirely analogous to the realizable setting. 

Theorem 8. Let u(E) be a permissible energy bound. Let s(~) be any continuous function 
that is a permissible entropy bound with respect to the scaling function t (N), and suppose 
that r (N)  = o(et(N)•) for any positive constant A. Then as m, N -+ oo but ot = m / t ( N )  
remains constant, for any positive ~ we have 

Prs[VS(S) c B(E* + r)] ~ 1. (45) 

Here the probability is taken over all samples S of size m = ott(N), where each example 
is drawn independently according to DN, and E* is the rightmost crossing point of s(~) 
and ctU(E ). In other words, in the thermodynamic limit any hypothesis h with the minimum 
number (over f ' )  of  observed disagreements on the ott ( N) examples will have generalization 
error Egen(h) <_ E* + ~7 with probability 1. 

Just as in the realizable case, Theorem 8 allows us to extract scaled learning curves 
that express generalization error as a function of  or. It is also easily verified that the 
thermodynamic limit lower bound of  Theorem 5 translates unchanged to the unrealizable 
setting. 

In summary, for the unrealizable case in the thermodynamic limit, the generalization error 
can be upper bounded by the rightmost crossing of  s (E) and a competing energy function of  
the form in Eq. (32) times ~. Thus the basic theory derived for the realizable case survives 
relatively nicely. Furthermore, we will shortly see that while the overall picture is described 
by this competition, slight changes to simple models of  unrealizability can yield important 
changes to s(E) and the energy function, and thus to the resulting learning curve. 
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3.3. Analysis o f  an unrealizable Ising perceptron 

We now illustrate the use of the thermodynamic limit method in the unrealizable case by con- 
sidering an unrealizable variant of the Ising perceptron problem considered in Section 2.6. 
Let the target function fN be the perceptron in which every weight is +1,  and let the func- 
tion class .T'N consist of all Ising perceptrons which have at least F N  weights (y e [0, 1]) 
that are -- 1. (Note that unlike the realizable Ising perceptron case, here the choice of target 
function matters.) Again let the distribution D~ be any spherically symmetric distribution 
on ~ s .  Thus, the target function is not contained in ~'N, and the minimum error Emin(Y) 
is given by applying Eq. (17), so Emin(y) = (1/zr)cos-l(1 - 2y). This minimum error 
is achieved by all of those functions in ~'N with the minimum allowed number y N  of - 1  
weights, of  which there are exactly ( ~ ). We shall regard ?, as a parameter measuring the 

extent of the unrealizability. 
The correct scaling function for this problem is again t (N) = N, and it is easy to see 

the effects of the unrealizability parameter y on this problem. The resulting permissible 
entropy bound s~, (e) is identically 0 in the range [0, E~n(y)], as there are no functions in ~N 
at these generalization errors. In the range [0, emin(Y)], however, s× (e) = s(e), where s(e) 
is simply the entropy bound for the realizable Ising perceptron given by Eq. (19). Thus our 
entropy bound in the unrealizable case is simply that of the realizable case, but truncated 
to the left of E~n(y). 

The effects of this truncation on the predicted scaled learning as a function of y turn out 
to be quite interesting. If  we use the universally permissible energy bound given by Eq. (32) 
then figures 12, 13 and 14 show the resulting entropy-energy competition for three different 
degrees of unrealizability (that is, three values of earn(y)) by plotting s(E) - oeu(E). In 
each case of  emin(y), we plot s(E) - c~u(E) for three different values of oc. When erran(Y) 
is small (thus, the target function is nearly realized by the function class), the behavior is 
quite similar to that of the realizable case in figure 11. By the time Emin(y) is as large as 

o0 I 

-O.Ol 

-- - 0.05 Oil 0.15 0:2 0.25 

E 

Figure 12. The function s(e) - ctu(E) for the unrealizable Ising perceptron discussed in Section 3.3, with 
Erni~(y) = 0.005. The function is plotted for the values u = 2.0, 2.063, 2.1 (top to bottom). 
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Figure 13. The function s(E) -- otu(E) for the unrealizable Ising perception discussed in Section 3 3. with 
Emin (Y) = 0.01224. This value for E~n (y) is a critical value, in the sense that the learning curve phase transition 
disappears for larger ~:min()"). The function is plotted for the values u = 2.5, 2.659, 2.8 (top to bottom). 
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Figure 14. The function s(e) - au(E) for the unrealizable Ising perceptron discussed in Section 3.3, with 
~Smi n ( y )  ~-- 0.05. The function is plotted for the values ce = 10, 11, 12 (top to bottom). 

0.05 in f igure 14, we  can see that the lef tward progress  o f  the zero crossing as c~ increases 

is quite  u n i f o r m - - t h e  unreal izabil i ty has thus erased all traces o f  a phase  transition. The  

in termedia te  value  Emin(Y) = 0.01224 is the boundary be tween  these two behaviors :  for 
smal le r  ~wan(Y), the resul t ing learning curve  wil l  still exhibi t  some  phase transition, whi le  

for larger Emin (y) ,  the transit ion is erased (al though there may  still be some  trace o f  a phase 
transit ion in the fo rm of  accelerated general izat ion) .  This  can all be clearly seen in figure 15, 

which  shows the resul t ing scaled learning curves for these values  of  emin(Y). Thus we see 
that the increase o f  y not  only increases the best  error e~n(Y) ,  it affects the very  fo rm of  

the learning curve.  In particular, as Y increases the asymptot ic  rate o f  approach to Emin(y) 

becomes  slower. F igure  16 shows a phase diagram that plots the critical value o f  c~ for 
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Figure 15. The scaled learning curves Ey (a) for the unrealizable Ising perceptron discussed in Section 3.3, for 
the three values 6mia(y) = 0.005, 0.01224, 0.05 (bottom to top). 
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Figure 16. Phase diagram showing line of first-order transitions beginning at u = 1.448 for 6min(Y) = 0 and 
terminating at a = 2.659 for 6rain(Y) = 0.01224. 

which  the learning curve  exper iences  a phase transi t ion as a funct ion o f  Emin(F)-- thus,  

as we have  a l ready ment ioned,  no value  is plotted for  Enan(Y) > 0 .01224 s ince no phase  

transi t ion occurs  in this case. 

3.4. Analysis of  the Ising perceptron with input noise 

Here  we  cons ider  the case  when  DN is obtained by applying a target funct ion  consis t ing o f  

an Is ing percept ron  w* to inputs corrupted by addit ive Gaussian noise  ~. Thus in a r andom 
training example  (x, y) f rom D n ,  

y = f ( x ,  ~e) = sgn(w* • (x + ~)) .  (46) 
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The distribution of  inputs x is Gaussian, with unit variance on each component.  The dis- 
tribution of noise ~ is also Gaussian, with variance F z - 1 on each component.  A similar 
problem was examined by Gytirgyi and Tishby (1990). 

In this case, one can show that 

Egen (W) = L COS -1(R/F) (47) 
7'( 

Emin(F) = Egen(W*) ~--- __1 COS-- 1 ( l / F )  (48) yg 

Egen (w, W*) 1 ----- - -  c o s  - 1  R ( 4 9 )  

where R = w .  w*/N. 
The entropy function takes the form 

s× (E) = 7-/((1 - cos zr~/cos rrEmi~(F))/2). (50) 

To derive the energy function, we use 

v× (~) = 1 cos -  1 (cos n E/cos ~r Emi. (y))  (51) 
7g 

and plug into Eq. (32) to obtain uy(E). Our error bound is then the rightmost solution of  
s e (6) = oeuy (E). The entropy sy (E) is a single hump, as in the zero noise case. However, 
the edges of  the hump are at E = Emin(Y) and ~ = 1 - ~min(Y), outside of  which the entropy 
is zero. At  the edges, the entropy rises like AE log AE (where AE = ~ -- Emin(V)), and 
thus has infinite slope. In contrast the energy has zero slope, since it behaves like (AE) 3/2. 
Hence the asymptotic behavior must be 

logct) 
- ~min(Y) = O - -  (52) 

However, the large a asymptotics are not the whole story. For  ~ n ( Y )  < 0.01969, the 
error bound undergoes a first order transition to nonzero error. In other words, although the 
input noise prevents a transition to perfect learning, when it is small it does not erase all 
traces of  the transition. 

Plots of  s (E) - a u (E) for three different values of  Ernin (F) are given in figures 17, 18 and 
19, and the corresponding learning curves in figure 20. The phase diagram indicating the 
critical value of  c~ for each value of  Eroin(Y) is plotted in figure 21. 

As an i l luminating exercise, we note that four different bounds can be written using the 
tools of  this paper. For the entropy there are two choices, the simple cardinality bound 
s(e)  = 1 and the tighter bound above. For the energy there are two choices, given by 
Eqs. (32) and (33), corresponding to the choices of  v(E) as above and v(E) = E + ~min- 
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Figure 17. The function s(~) - c~u(e) for the unrealizable Ising perceptron discussed in Section 3.4, with 
6rnin() t ) = 0.01. The function is plotted for the values c~ = 2.0, 2.1184, 2.2 (top to bottom). 
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Figure 18. The function s(E) - ~u(e) for the unrealizable Ising perceptron discussed in Section 3.4, with 
Emin(],') = 0.01969. This value for Emin(Y ) is a critical value, in the sense that the learning curve phase transition 
disappears for larger ~:min(Y). The function is plotted for the values ce = 2.5, 2.6136, 2.7 (top to bottom). 

T h e s e  f o u r  p o s s i b i l i t i e s  g i v e  t h e  b o u n d s  e x h i b i t e d  b e l o w :  

c a r d i n a l i t y  e n t r o p y  

o(E)  - -  E -[- Emin t~ -1/2  (log or)lot 
v(E)  ~ ~ ~ - 2 / 3  ( ( l o g c t ) / o 0 2  

(53) 

N o t e  h o w  m u c h  w e a k e r  s o m e  o f  t h e  b o u n d s  a re  t h a n  o the r s .  
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Figure 19. The function s(e) - au(E) for the unrealizable Ising perceptron discussed in Section 3.4, with 
6min(Y) = 0.03. The function is plotted for the values u = 2, 3, 4 (top to bottom). 
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Figure 20. The scaled learning curves E~ (or) for the unrealizable lsing perceptron discussed in Section 3.4, for 
the three values ernln(y) = 0.01, 0.01969, 0.03 (bottom to top). 

3.5. Large-or asymptotics of scaled learning curves 

Our formalism can be used to give a classification of the large-or asymptotics of scaled 
learning curves 7, thus completing a classification program that has been suggested by 
several researchers (Amari et al., 1992; Schwartz et al., 1990; Seung et al., 1992). From 
Eq. (32) and Lemma 9, the weaker form 

(6 --  6nzin) 2 
u(e) = (54) 

2v(E) 
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Figure 21. Phase diagram showing line of  first-order transitions beginning at ~ = 1.448 for Emi n ( y )  ~ 0 and 

terminating at ce = 2.6136 for Emin(Y) = 0.01969. 

is derived as a permissible energy bound in the Appendix in Section A.2. The entropy- 
energy competi t ion then takes the form 

(Aft) 2 
S(AE) = otu(AE) = Ot2v(A~) (55) 

where we have rewritten all functions of  E as functions of  the difference AE = E -- ernin. 
Since the only model-dependent  quantities are s (AE) and v(Ae) ,  we can classify the 

large ~ asymptotics of  scaled learning curves. In fact, the only model-dependent  quantity 
that need enter is a single exponent x, defined by 

s ( A E ) v ( a ~ )  ~ ( /X~)  x (56) 

near AE = 0. This yields the following cases: 

• I f  x > 2, there is a first-order (sudden) phase transition to perfect learning. This is 
assuming that s (0) ---- 0, so that AE = 0 is always a solution of  Eq. (55), if  not the r ightmost 
solution. This is the generic case, unless there are exponentially many functions with 

E ~ Emin. 

• I f  1 < x < 2, the error decays as a power law, 1/~ 2-x. 

• In the marginal case x = 2, the behavior can be affected by logarithmic corrections 
to the power law of  Eq. (56). In the absence of such corrections, there is a second- 
order (continuous) transition to perfect learning in which the error drops to zero like 
E ~ O~c - ~. In the presence of  a logarithmic correction, s ( A E ) v ( A E )  ~ - - (AE) 2 log Ae,  
the error bound decays exponentially with o~. 

This classification scheme is a generalization of  that of  Sompolinsky and his colleagues to 
include unrealizable rules (Seung, et al., 1992). 
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4. T h e  inf ini te  case  

The final generalization of our theory that needs to be discussed is to the frequent case 
in which the function class .T" (whether it realizes the target function or not) has infinite 
cardinality. Unfortunately, while there are certainly several plausible directions we can 
take to adapt our theory to this case, none of these has emerged as definitively the best 
choice for handling the infinite case. This is partially due to the lack of known natural 
examples of infinite classes that lead to learning curve behavior other than a power law 
(thus suggesting that the extremely general VC dimension-based approach is sufficient for 
analyzing most classes), and partially due to the difficulty of the calculations required by 
the various approaches. Thus, by necessity our examination of the infinite case will be 
considerably more open-ended than for the finite case. 

We begin by noting that practically every step of our analysis for the finite case was 
based on computing the (finite) cardinality of some subclass of 5 t'. This began with the 
shell decomposition of ~- to obtain the subclass cardinalities Q j, whose logarithms were 
eventually bounded by the entropy function s (O in the thermodynamic limit method. Ob- 
viously, new ideas will be required in order to carry out a similar analysis in the infinite 
case. Our eventual goal should be to preserve the essentials of our theory: namely, to again 
describe learning curves as a competition between "entropy" and "energy", with the largest 
value for which energy dominates entropy being a bound on the generalization error of 
empirical minimization algorithms. However, there are now several distinct candidates for 
our entropic measure. We now discuss in some detail just one of these candidates, which 
essentially attempts to reduce the infinite case to a series of finite problems. In Section 6, 
we briefly mention alternative approaches that are the focus of our current research. 

4.1. The covering approach 

In the covering approach, we reduce an infinite cardinality function class to a series of finite 
classes, and perform our analysis for the finite case on each of these classes in order to 
obtain a bound on the learning curve. 

For any fixed function class U (of possibly infinite cardinality), any distribution D, and 
any value F e [0, 1], a subclass U[F] - .T" is called a y-cover o f f  with respect to D if for 
every f 6 ~" there exists an f '  6 ~-[F] such that e ( f ,  f ' )  < Y. In other words, while there 
may be functions in 5 r that are not realizable in 0r[y], the extent of this unrealizability is 
bounded by the parameter Y. 

There is a canonical greedy construction of y-covers that will be particularly helpful to 
keep in mind. Thus, throughout this section, for any fixed value F, we assume that 5elF] 
is a ?,-cover of 5 r with respect to D obtained by initially choosing any function in 5 t', 
then inductively adding to 5r[F] at each step any f e .T" that is distance at least F (with 
respect to D) from all h 6 5r[y]. This process is repeated until no more functions can 
be added. It is easy to see that the resulting set 5r[F] does indeed form a },-cover, and it 
is known that this y-cover is in fact at most twice the cardinality of the smallest possible 
),-cover. Furthermore, suppose F'  < F. Then we can extend 5t-[F] to obtain a F'-cover 
Y:'[Y'] D_ 5t'[F] by again greedily adding to 5r[F] functions that are at distance at least Y' 



RIGOROUS LEARNING CURVE BOUNDS 229 

until no such function exists. The resulting cover f [2 / ' ]  will again have cardinality at most 
twice the smallest 2/'-cover. In this way we can obtain for any sequence 2/1 > 2/2 > 2/3 > " '"  
a sequence of nested covers ~[2/1] - f[YY2] c 5r[2/3] _ . . . .  

Let us fix 2/ e [0, 1], and assume that ~ has a finite },-cover with respect to D. This is not 
as severe an assumption as it might initially seem. For instance, it is well-known that any 
class of  VC dimension d has a },-cover of  cardinality at most 0(1/2/a) with respect to any 
distribution and for every 2/. Furthermore, if a class is not finitely y-coverable with respect 
to D, then the generalization error cannot be made less than 2/ in any finite number of 
examples. Thus, we see that finite coverability is really a minimal assumption for attaining 
small generalization error. 

With a fixed 2/-cover jr[2/] of  j r  with respect to D in mind, it is a straightforward appli- 
cation of  our theory for the finite unrealizable case to analyze the algorithm that performs 
empirical error minimization with respect to .T'[yy]. Given m examples, this algorithm out- 
puts any h e 5t'[2/] with minimum empirical error on the sample. Note that this algorithm 
explicitly does not choose from the full class 5 r,  but limits its search to the fixed finite 
subclass f [2 / ] .  For a fixed target function (contained in f or not), the thermodynamic limit 

* where * is the rightmost method applied to f [yy]  results in a bound on the error of  E r,  E× 
crossing function of a permissible entropy bound s r (E) for jr[2/] and an energy function 
c~ur (E), where as before 6min (2/) --< 2/is the smallest possible generalization error achievable 
in f [2 / ] -  The idea of  using empirical minimization over a finite cover for an infinite class 
has also been investigated by Benedek and Itai (1991) in their investigation of distribution- 
specific sample complexity, and also by Vapnik (1982). 

Things become more interesting when we take the natural step of analyzing the algorithm 
that first chooses an advantageous value for the realizability parameter 2/and then performs 
empirical minimization using f[2/]-  More precisely, if we assume that the algorithm has 
knowledge of s×(¢) for each 2/8, and is given m = at (N)  examples of the target function, 
then the algorithm will explicitly choose ) / to  minimize the resulting rightmost crossing E~. 

It is worth mentioning at this point that while such an algorithm may be difficult or 
impossible to implement (requiring the possibly difficult choice of  2/and knowledge of 
the finite covers f [2 / ] ) ,  it is worth study for at least two reasons. First, the algorithm is of 
some theoretical interest since it explicitly considers the potential trade-off between the best 
error achievable in the chosen cover jr[2/] (which improves as 2/--+ 0), and the size of f [2 / ]  
(which increases as Yy -+ 0). Second, although one might not implement such an algorithm 
in practice, any bound we can provide on its generalization error can provide bounds on 
the generalization error of  optimal algorithms (such as the Bayes or Gibbs algorithms in a 
Bayesian framework (Haussler et al., 1991)). 

In the thermodynamic limit, we may upper bound the generalization error of  this algo- 
rithm by 

~* = min E* ×~t0,1l ×" (57) 

Let  us interpret this bound. For each fixed 2/, we are computing the rightmost crossing e~ 
of st(E) and otur(E ). What  is the expected behavior of  this crossing as 2/ --+ 0? Well, as 
y ~ 0 the covers 5r[yy] are becoming larger (since we require more functions to achieve the 
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greater realizability), and we thus expect s r (e) to increase. Indeed, if we use the nested cover 
construction suggested at the beginning of this section, then for any y~ < Y we will have 
s×,(E) > sr(¢ ) for every E. Thus, decreasing y has the effect of "lifting" s×(~) (although 
perhaps in a very nonuniform and complex manner). If u×(E) remained unchanged as y 
decreased, then the lift to sy (E) could only cause the crossing ~ to increase, thus predicting 
that decreasing y could never help. 

However, u× (E) does n o t  remain unchanged as y decreases. Rather, smaller 1/results in 
a smaller value for the optimal error Emin(y) _< y, thus shifting the energy curve ur (E) to 
the left. If  s r (E) remained unchanged as y --+ 0, we would predict that decreasing y could 
never hurt, and would choose y = 0. 

Thus in general, the covering analysis predicts that while for each fixed V, the best error 
for resolution g is determined by the competition between s r (s) and oeu× (e), the overall 
best error is governed by the competition between the lift to s v (E) and the leftward shift to 
u×(E) as y --~ O. 

5. Generalization of the theory to distribution learning 

We believe that the basic components of the theory outlined here--namely, the identification 
of the appropriate entropy and energy bounds, and the resulting bound on the learning curve 
in terms of their competition--should generalize considerably beyond the basic model of 
supervised learning of boolean functions examined in this paper. By this we mean the theory 
should generalize to cover many different models of learning from random independent 
observations, using a variety of loss functions. To demonstrate this, we now informally work 
out a simple example in which we calculate learning curve bounds, in the thermodynamic 
limit, for a certain class of probability distributions with respect to the well-known Kullback- 
Leibler divergence. 

Let the target distribution D over {0, 1} N be defined as follows: for each 1 < i < N, we 
let the ith bit of the output vector be 0 with probability (1 - p) and 1 with probability p. 
Here p is a parameter in [0, 1/2] that will remain fixed for the ensuing discussion. Thus, 
the distribution D can be regarded as outputting a random vector obtained by corrupting 
each bit of the vector 0 = 00- . .  0 with independent probability p. 

Let the class of hypothesis distributions be similarly defined by all the possible "center" 
vectors ~ c {0, 1 }N. Thus, the vector ~ represents the distribution D~ obtained by corrupting 
each bit of ~ with independent probability p, and the target D -- D 5. It should be clear that 
the Kullback-Leibler divergence of D~ from the target D depends only on the Hamming 
distance between ~ and 0, which is just the number of l 's appearing in the vector ~. 

We now undertake an analysis of the Kullback-Leibler divergence, as a function of the 
sample size m, of the hypothesis D~ minimizing the empirical log-loss 

loss(O~, S) = ~ log(1/O~[f]). (58) 
~ s  

Here S consists of m independent random draws from the target distribution D. Thus, we 
are simply analyzing in our theory the learning curve of the maximum-likelihood approach 
to this problem. 
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Now it is not hard to show that if ~ is a vector with exactly r l ' s  in it, then the Kullback- 
Leibler divergence o f  D~ to D is 

1 + (1 - p ) l o g  1 H ( p ) )  (59) r p log 1 - p p 

where H(p) is the usual binary entropy of  p. Note that the divergence is 0 when r = 
0 (the divergence of  the target from itself is 0), and it is also 0 when p = 1/2 (since 
then every ~ generates the uniform distribution on {0, 1}N). Since p is fixed, let us use 
Cp = p log( l / (1  - p)) + (1 - p ) l o g ( I / p )  - H(p) to denote the constant inside the 
parentheses above. For convenience, we also divide the Kullback-Leibler divergence by N 
just to make our measure of  generalization error an order 1 quantity. Then we see that our 
error levels are just Er N = r (Ce/N)  for 0 < r < N, and the number of  distributions in the 
class that are at divergence E~ from the target is Q~ = (N) .  

We now turn to the problem of  finding a suitable energy function. In other words, suppose 
that ~ is a fixed vector with exactly r l 's ,  and suppose we draw a sample S of  m vectors 
from the target distribution D. Then what is Prs~Dm [loss(D~, S) < loss(D, S)]? 

To bound this probability, note that the difference in the log-loss incurred by the two 
distributions on any fixed vector ~ depends only on the setting in ~ of the r bits where fi and 

disagree (which we may assume without loss of generality are the first r bits). On a 0 in 
bits 1 through r, the target pays log(1/ ( l  - p)) and D~ pays log ( l /p ) ,  and on a 1, the costs 
are reversed. Thus our problem simply reduces to the following: we have m • r Bernoulli 
trials, each with probability p of  tails, What is the probability that we have a majority of 
tails? Now we can just use standard Chernoff bounds to obtain the following bound: 

Prs~om [loss(D~, S) _< loss(D, S)] _< e -(mr/3)(l-2p)2/(4p). (60) 

Thus when we write out our summation of  entropy times energy (corresponding to Eq. (7) 
in the boolean function learning setting), the rth term is ( N )e-(mr/3)(1-2p)2/(4p). Using the 
bound (N)  < N r we can bound the rth term by e rl°gN-(mr/3)(1-2p)2/(4p). Factoring out 
the scaling factor t (N) = log N, we rewrite this e l°g N(r-(ar/3)(1-2p)2/(4P)) where we define 
ot = m/ log  N. In the thermodynamic limit, this predicts a phase transition to perfect 
generalization for ct proportional to p/(1 - 2p) 2. This makes some sense, in that the critical 
c~ goes to infinity as p approaches 1/2. 

6. Conclusion 

Two questions have often been raised in the computational learning theory community 
regarding the statistical physics approach to learning curves. Can it be made rigorous? 
Does it give any results that can not be derived from the VC theory? In this paper, we have 
shown that for finite function classes and excluding replica calculations, the answer to both 
questions is affirmative. Under certain circumstances, our theory provides much tighter 
bounds than the VC theory, best illustrated in our examples exhibiting phase transitions. 
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Our theory gives tighter bounds than the VC theory at the expense of increasing the 
number of problem-dependent quantities. Since the computation of the entropy bound s(E) 
requires knowledge of the input distribution, it is considerably more difficult than the 
computation of the VC dimension, which requires knowledge of only the function class. 
For this reason, applications of our theory to real problems may be difficult. Thus, our 
theory is descriptive rather than prescriptive at this point: it should be regarded more as 
an attempt to come to a theoretical understanding of the true behavior of learning curves, 
rather than as a tool for application. 

There is obviously still much work to do in our theory, and we now list some of the 
research directions we are pursuing. 

• The infinite case. The most glaring weakness of our theory, especially in comparison 
to the VC theory, is that we have developed and analyzed it only for finite cardinality 
concept classes. We are currently investigating extensions to the infinite case that are 
more refined than the covering approach discussed in Section 4.1, and are based on 
combining the shell decomposition with the VC dimension, VC entropy and random 
covering numbers (Dudley, 1978; Haussler, 1992; Pollard, 1984; Vapnik, 1982). 

• Expressing our bounds as penalty functions. One of the most interesting aspects of 
the VC theory is Vapnik's explicit prescription in the unrealizable setting for trading off 
hypothesis class complexity (and therefore, ability to realize the target function) against 
empirical error (Vapnik, 1982). This prescription is known as structural risk minimiza- 
tion, and the form it takes can be directly traced to the form of the VC bounds on learning 
curves. The fact that we now have learning curve bounds whose functional form can 
differ radically from the VC bounds opens the possibility for structural risk minimization 
prescriptions that are different from Vapnik's. Although possibly difficult to apply, such 
prescriptions may have interesting theoretical interpretations and consequences. 

• Alternatives to the computation of s(E'). We mentioned above that at this point our 
theory is descriptive rather than prescriptive. It would be nice to at least partially remedy 
this situation. The main barrier is our assumption that s(e) is known to the designer of 
a learning algorithm, which in turn implies knowledge of the input distribution. Might 
it be possible to estimate s(E) from data, even for special function classes of interest? 
If one has only partial information about the input distribution, can this be translated 
into useful partial information about s(~). Note that such considerations must be central 
to any attempt to apply our theory in a practical manner, for instance to structural risk 
minimization. 

A. Technical appendix 

A.1. Relaxing the bound on the number of  error levels 

One undesirable aspect of the statement of Theorem 4 is the demand that r (N)  = o(e  t(N)A) 
for all values A > O, that is, the insistence that the number of error levels r (N)  be a 
strictly subexponential function of chosen scaling function t (N). In this section we briefly 
show how this condition can be sidestepped without changing the essential character of the 
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thermodynamic limit method. The basic idea is this: if the true number of error levels r (N)  
is too large to apply Theorem 4, we can instead apply the theorem using a smaller number 
of error levels of our own choosing. 

More precisely, rather than using the error levels E~/, 1 < j < r(N),  that are determined 
by the definition of the Ur¢, fN and DN, let us instead let r (N)  be any function meeting the 
condition r (N)  = o(e t(~c)A) for all values A > 0, and let the e~¢ be any sequence of error 
values that we choose. Thus, now there may in fact be no functions in U at generalization 
error E~ We now redefine QN to be all those functions in ~'N whose generalization error ,I " ) 
falls in the interval [~7' E Jr+l)' The intuition is that we are first putting functions of nearby 
generalization error in the same "bin", and assuming (pessimistically) that all functions in 
the same bin have the smallest possible generalization error for this bin. 

The definition of a permissible entropy bound s(E) with respect to the scaling function 
t (N) remains unaltered, and it can be verified that under the new definitions, Theorem 4 
still holds. Given a scaling function t (N) ,  the number and spacing of the error levels we 
should choose to obtain the best analysis depends on the problem. A natural choice is to 
space the error levels evenly over [0, 1], but this is not the only possibility and may not be 
the best one for certain problems. 

A.2. Derivation of  general energy bound form 

Here we show how Eqs. (30) and (54) can be derived. 

L e m m a  9. (Sanov) Let Zl . . . . .  Zm be i.i.d, random variables taking on the values 
{-1 ,  0, 1} with probabilities {P-l,  P0, Pl}, resp. I f  the mean Pl - P-1 of Zi is positive, 
then the probability that the empirical mean is nonpositive is bounded by 

m(pl  --p-l)2"~ 
___ exp 2(p1"~ p---~ .] 

(61) 

(62) 

1 m Proof: Let T = ~ E i = I  Zi be the empirical mean. Then from Markov's inequality it 
follows that 

P r [T  < 0] = Pr[e -mxr > 1] (63) 

_< E[e -m~r] (64) 
r n  

= U E[e-~Z'] (65) 
i=1 

= (Pl e-x + Po + P-leX) m, (66) 

for any positive ~.. In particular, it is true for the )~* satisfying e -x* = V~-S~pl .  Making 
this substitution and using Po --- 1 - Pl - P - l ,  we find the first inequality of the lemma. 
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The second inequality follows from 

(Pl -- P - l )  z 

p l  + P - l  
_ (4 -~-_  p~-~-)2 (v'~S + pCP-~-~) 2 

Pl + p-1 

___ 2 ( 4 ~ S -  4 T s 3 2  

< - 2  log(1 - ( , v ' ~ - -  4 'P-~)  2) 

(67) 

(68) 

(69) 

[] 
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Notes 

1. Here for simplicity we are using the 0(9 notation, which hides logarithmic factors in the same way the O(.) 
notation hides constant factors. 

2. By a power law, we mean the functional form (a/m) b, where a, b > 0 are constants. 

To prove Eq. (30) using this lemma, we note that the random variable Etm (h, S) - 
e~(h*,  S) is precisely the empirical mean of the random variables 

Zi = x[h(xi)  ~ Yi] - x[h*(xi) 5 ~ Yi], (70) 

where each (xi, Yi) is an example drawn independently from DN. Each Zi takes on the 
values { - 1 ,  0, 1 } with probabilities 

Pl = Pr[(h(x)  ~ y ) / x  (h*(x) = y)] (71) 

P0 = Pr[(h(x)  ~ y) A (h*(x) ~ y)] 

+ P r [ ( h ( x )  ---- y ) /x  (h*(x) = y)] (72) 

P-1 = Pr[(h(x)  = y) A (h*(x) ~ y)] (73) 

where (x, y) is an example drawn randomly from DN. These are related to probabilities of  
disagreement via 

E(h, h*) = Pl q- P - l  (74) 

e(h) - e(h*) = Pl - P-1 (75) 

Making the appropriate substitutions in Eq. (62) yields the desired result. 
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3. Aside to the statistical physicist: the annealed approximation was previously used to approximate the learning 
curve of  a Gibbs learner, which chooses a hypothesis from a Gibbs distribution with the empirical error as 
energy. Here we adopt a microcanonical rather than a canonical ensemble, enabling us to obtain rigorous 
upper bounds from the annealed theory, rather than approximations. These bounds hold for all empirical error 
minimization algorithms, including the zero temperature limit of the Gibbs algorithm. Because of our desire 
for rigor, we have not used the replica method (Gardner, 1988) in this paper. Engel, van den Broeck, and Fink 
have used the replica method to calculate the maximum deviation between empirical and generalization error 
in the function class, and the maximum generalization error in the version space (Engel & Fink, 1993; Engel 
& Broeck, 1993). Although the replica method produces exact results when used correctly, it rests upon an 
interchange of limits for which no rigorous justification has been found. 

4. Throughout this section, we will refrain from giving the explicit functions s (e) used to generate the plots, since 
some of them are rather complicated, and it is their shape rather than their mathematical definitions that are of 
interest here. 

5. The designation "Ising" refers to the 4-1 constraint, which is present in the original Ising model of magnetism 
with N interacting spins. 

6. According to calculations using the replica method of statistical physics, for this problem the true scaled learning 
curve of the Gibbs learning algorithm (which chooses a random consistent hypothesis from the version space) 
exhibits a phase transition to perfect generalization at t~ = 1.245. This picture is consistent with the results of 
exhaustive enumeration by computer for up to N = 32. 

7. Note that the large-or asymptotics, which by definition invoke a thermodynamic limit, may be different from 
the large m asymptotics for a fixed function class. 

8. This is a nontrivial assumption, since in many of the examples we have examined, the entropy bound depends 
strongly on the target function, which we of course assume is unknown. Thus, we are really assuming here 
that either sy (E) is invariant to the target function (as in the realizable Ising perceptron), or that is a worst-case 
entropy bound over all target functions. 
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