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Abstract. The non-linear heating of electrons in the ionospheric plasma due to high-power radio wave 
propagation has been investigated through an integro-differential equation derived from Boltzmann 
velocity-moment equations. Various processes appropriate to the situation under study are taken into 
account. The numerical solution of the derived equation is presented graphically. 

1. Introduction 

Interaction of electromagnetic waves within the ionospheric plasma during high 
power radio wave propagation has been investigated by Ginzburg (1960), Lin 
(1961) Papa (1965), El-Khamy et al. (1970), Chakrabarti and Ram (1974), Gra- 
ham and Fejer (1976), Kumar and Rao (1976), De (1976), Aggarwal et al. (1979), 
Chakrabarti and De (1982) Ram (1982), Sulzer et al. (1982), De et al. (1987), De et 

al. (1987), using various techniques. Different effects of such interaction are well- 
known. 

During high power wave propagation, the average energy imparted to the elec- 
trons by the field gradually heats up the medium and eventually a new equilibrium 
temperature is reached. The heating is non-linear in nature. This non-linearity arises 
due to the slow rate of transfer of energy from electrons to heavy particles in the 
medium. The slow rate is associated with the small magnitude of the ratio of the 
electron mass to the mass of the heavy particles. The mean free path of the electrons 
in the medium is quite large due to which they extract a considerable amount of 
energy from the field. Under the circumstance, the electrons get heated and the 
complex dielectric constant of the medium becomes a function of the electric field. 
The non-linearity of the electromagnetic process will be pronounced the more the 
amplitude of the electric field exceeds that of the plasma field. 

For a weakly ionised plasma like ionosphere, the effective collision frequency 
and ionisation frequency depend on the temperature of the electrons through the 
average electron velocity. In this presentation, the temperature variation of elec- 
trons under the specified circumstance has been investigated with the help of 
an integro-differential equation derived from Boltzmann’s velocity-moment equa- 
tions. The influences of the geomagnetic field, photoionisation and recombination 
process towards the phenomenon have been taken into consideration through 
the basic equations. The numerical solution of the derived equation is presented 
graphically. 
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2. Mathematical Formulation 

The plasma may be assumed to be neutral, unbounded and at static equilibrium. The 
ions are stationary and the electron component of the plasma only affects the plasma 
waves. The physical situation, as stated earlier, may be represented by the following 
velocity-moment Boltzmann equations 

dN 
at = (vi - v,)N - ctN2, 

; + (v . v)v = -f E(t) - v,(T,)v -; y x H - 2 + f ~37, 

if (NK T,) + eNv . (E + v x B) + G,&T,)v,(T,) + , 

+; Gv,(T,)NK(T, - T) - V . q - xV2T + Qig = 0, 

(2) 

(3) 

where 

E(t) = applied electric field, 
H = geomagnetic field, 
vi = ionisation frequency, 
v, = effective collision frequency of the electrons with heavy particles, 
v, = electron-neutral attachment frequency, 
v = average electron velocity, 

Qi = ionisation energy of the medium, 
N = electron density, 

&2” 
F?li’ 

m' = mass of the heavy particle, 
M: = electron-ion recombination coefficient, 
q = total energy flow due to electron drift when the heavy neutral and ion- 

components are assumed to have no net drift velocity 
= -A(T,)VT,, 

T = equilibrium plasma temperature, 
T, = electron temperature, 

I(T,) = effective coefficient of electron energy conduction, 

A=.,(1 -J&), 
KT = coefficient of electron energy conduction at constant electron density, 

p = coefficient of electron energy conduction due to d.c. electric field, 
g = coefficient of viscosity, 
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go = d c electric conductivity, . . 
r’ = current flow coefficient due to thermal gradients at constant electron pressure 

P( = NK T,), 
Geff = effective fraction energy transfer per collision; 

the other symbols have their usual significance. 
The expressions for ionisation frequency (vi) and effective collision frequency (v,) 

appropriate to the stated circumstance will be considered from the works of Papa 
(1965) and Datta et al. (1981), respectively, which can be written as 

vi(Te) = n(~~“(m:) exp( -&); 

where 

IZ = neutral particle number density, 
a, = Bohr radius, 

and 

v, = v,, + v,i = 

871 Z2e4 N 
= FZ[UT;‘~ + bT, + cT,312 + dT;] + - ~ ~ 

3 (27~1) “2 (KT,) 3’2 
In A, 

(4) 

(5) 

where 

~312 ~312 112 
A=- 

1.78Ze3 (27r$rj2 

and 

T, = ion temperature; 

a, b, c, and dare the constants as explained in Aggarwal and Setty (1980). From (2), 
the expression for v can be obtained as 

v= -exp(-A)ilE(t’)expk +[Mdt”}dr’, (6) 

where 

A= (v . V) + v,(T,) + $ + z dt’, 

C = Reynold number. 
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Substituting aN/& from (1) in (3), one obtains 

~+[~(~)ll2~**~)exp(-~)-v,-irN+~v=~T~)- 

-g$(l -&)]c =BI,(Te)Tfgg 

(7) 

Using the expression of v from (6), we find that Equation (7) yields 

If we transform Gv,(T,)t as t and let TJT = 0 (the normalized electron temperature), 
Equation (8) yields 

~+&[n(~)“‘(mz:) exp( -+$)-v,-NIV+ 

+ ~VeVeJ - g+$#3= 

=l+ 
2xk2 2Qi 

3Amv,(T,) - 3KT6v,(Te) x 

x {n(~)“*(na$ exp(-g)-v,-EN)-- 
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Let a linearly polarized electric field be applied suddenly at the time t = 0 such that 

E(t) = 0, for t <O 
= E, sin cot, for t > 0 . (10) 

Using (lo), the Equation (9) becomes 

~+&[n(~)“‘(mz$ exp( -&)-v,- 

- olN + 6v,(T,) - ~(1~-&)je= 

=l+ 
2Xk2 2Qi 

3NKh,(T,) - 3KT&,(T,) x 

x {n(z)“*(m:) exp( -$$)-va-aN}- 

2 2e2 
- 3NKTGv,(T,) GedTe)ve(Te) + 

3mKT6v,( T,) 
E,, sin ot . 

[=pFA) l E,sinmt’exp~ +rMdt”}dt’]. (11) 

The integro-differential Equation (11) will be used to determine the variation of 
normalized electron temperature within the medium under the modified condition. 

3. Discussion 

The variation of normalised electron temperature (T,/T) in the E-region of the 
ionosphere has been computed numerically, and the results shown graphically on 
Figure 1. The rapid increase of electron temperature with time as depicted in the 
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Fig. 1. Variation of normalised electron temperature with time. 



222 S. S. DE ET AL 

figure is due to the dependence of collision frequency on the electron temperature that 
causes an increase in the average electron velocity. The temperature-dependent terms 
on the right hand side of the Equation (11) tend to reduce d0/dz and decelerate the 
temperature rise until an equilibrium temperature is ultimately reached (Ginzburg, 
1964). 

The rate of energy transfer from the wave to the medium particles can also be 
computed through the integro-differential Equation (11). 

The physical data are taken from CIRA 1972. The other parametric values are 
taken from the ionospheric observations over Calcutta (lat. 22”58’ N; long. 88”34’ E). 
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