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Abstract. In this paper, the connections between orbit dynamics and rigid body dynamics are estab- 
lished throughout the Eulerian redundant parameters, the perturbation equations for any conic motion 
of artificial satellites are derived in terms of these parameters. A general recursive and stable compu- 
tational algorithm is also established for the initial-value problem of the Eulerian parameters for 
satellites prediction in the Earth’s gravitational field with axial symmetry. Applications of the algorithm 
are considered for the two cases of short and long term predictions. For the short-term prediction, we 
consider the problem of the final state prediction of some typical ballistic missiles in the geopotential 
model with zonal harmonic terms up to .I,,, while for the long-term prediction, we consider the 
perturbed JZ motion of Explorer 28 over 100 revolutions. 

1. Introduction 

Orbit computations of artificial satellites become one of the most important prob- 
lems at present, this due to their wide applications in scientific researches, mission 
planning and military purposes, etc. As far as the computation techniques are 
concerned, the applications of the special perturbation methods to the equations 
of motion in terms of the redundant variables, provide the most powerful and 
accurate techniques that have been devised recently for satellite ephemeris with 
respect to any type of perturbing forces (cf. e.g., Sharaf et al., 1987a, b; Sharma 
and Raj, 1988; Awad, 1988). 

Despite the many advantages of the Eulerian redundant parameters (cf., e.g., 
Carrington and Junkins, 1984; Vadali, 1988; Cid and Saturio, 1988) by which they 
have gained popularity in recent years in the rigid body dynamics and in the 
analysis of rotational motion of artificial and natural satellites, they have not 
been seriously utilized in constructing special perturbation techniques for satellite 
prediction. 

The aim of the present paper is threefold. First, to establish the connections 
between orbit dynamics and rigid body dynamics and these are the subjects of 
Sections 2 and 3. Second, to derive general equations of motion in terms of the 
Eulerian parameters (Section 4), these equations include perturbations which can 
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arise from a potential and perturbations which cannot be derived from a potential, 
also they are valid for any type of orbital motion (elliptic, parabolic or hyperbolic). 
Third, to construct a general, recursive and stable computational algorithm for 
the initial value problem of the Eulerian Parameters for satellite motions in the 
Earth’s gravitational field with axial symmetry (Section 5). Applications of the 
algorithm for short and long term predictions are illustrated by numerical examples 
of some typical ballistic missiles and Explorer 28 satellite. 

2. Rotation of a Rigid Body in Eulerian Parameters 

2.1. EULERIAN ANGLES AND EULERIAN PARAMETERS 

When defining the orientation of a body with respect to a reference frame a series 
of pure rotations is used, and this results in an orthogonal transformation. The 
associated rotations are the Eulerian angles, and they uniquely determine orien- 
tation of the body. Start by assuming both the reference XI, XZ, X, and body- 
fixed x1, x2, x3 frames coincide. One convenient sequence of rotations can be 
listed as: 

1. Rotation about X3 axis through angle $ to produce cu’, /3’, y’, axes. 
2. Rotation about LY ’ axis through angle 6 to produce (Y”, /3”, y”, axes. 
3. Rotation about y” axis through angle $ to produce x1, x2, x3 axes. 

Each rotation is characterized as an orthogonal transformation. The cr” axis which 
is known as the line of nodes is the intersection of X1, X2 and x1, x2 planes. 
Combining this sequence of rotations we get for the transformation from X to x 
the equation 

x=cx, (2.1) 

where 

XT = [XI, x2, x33; XT = [XI, X2, X3]; C = [Cii]; i, j = 1,2,3 , 

C1l=cos~cos*-sin$icos~sin*, 
Cl2 = cos +sin rl,+ sin $cos 79~0s $, 

Cl3 = sin 4 sin 6, 
C,l= -sin4cos*-cos$cos6sin*, 
C22= -sin~sin*+cos~cos6cos*, 

CZ3=cos+sin6, 

C3, = sin 6sin * , 

C32= -sin6cos$, 

c,, = cos 6. 

The amplitudes of the Eulerian angles 4, 6 and $ satisfy the conditions 

(2.2) 
(2.3.1) 

(2.3.2) 
(2.3.3) 
(2.3.4) 
(2.3.5) 

(2.3.6) 
(2.3.7) 

(2.3.8) 

(2.3.9) 
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01*<2?i-; 0565lT; 05+<27r. (2.4) 

According to this definition, we can express the Eulerian Parameters (ul, u2, u3, ud) 
by means of the equalities 

u1 = sin4cos kZ!+ ; u2= singsin( 
2 ( > 2 

ug=cosQsin 2 ( -. ‘+’ 1 ’ 2 u4=cos-cos 6 2 ( - *+4 > . 2 

(25.1) 

(2.5.2) 

From these equations it is clear that 

U:+uz,+u~+u~=l. (2.6) 

Eulerian parameters define two quaterrzions, u = (ur, u2, u3, u4) and its diametric 
opposite -u = (-Ul, -u2, -u3, -uq), hence according to the real algebra of 
quaternions (cf., e.g., Porteous, 1969) u and its conjugate 6 are written as linear 
combinations 

u = u1 + iu2 + ju3 + ku4 , 

ti = u1 - iu2 - ju, - ku4 , 

Where (1, i, j, k} is the standard basis of the Euclidean space R4 with the basic 
rules i2 = j’ = k* = ijk = - 1. Since a symplectic inner product of two quaternions 
4 and p (say) is defined by (4, p) = qp, consequently, the norms of the quaternions 
u and -u are given in accordance with Equation (2.6) as 

(u, ii) = u: + u$ + u; + u’, = 1 ) 
(-u, -ii) = l.4; + u; + u:. + u; = 1 . 

That is, u and -u are unit quaternions, which means that every rotation is repre- 
sented on the unit sphere S3 in the Euclidean space R4 by two points at the extremity 
of a diameter. 

Some important relations between Euler’s angles and Euler’s parameters are 
given in what follows. 

From Equations (2.3) and (2.5) we get 

Cl1 = u: - us - ug + u: ; cl* = 2(&U* + u3u4) ) 

c13 = 2(ulu3 - u2u4); c21 = 2(ulu2 - u3u4), 

c*z= -u:+u:-ug+u;; c~3=2(uzu3+u1u4), 

c31 = 2(kU3 + uzh) ; c32 = 2(u2u3 - u1u4) , 

c33 = - u; - u”2 + u: + u: ) 

where 
3 3 

2 Clj ’ Cij = C Cjl ’ Cji = 0 ; i = 2,3 , 
j=l j=l 

(2.7.1) 

(2.7.2) 
(2.7.3) 
(2.7.4) 
(2.7.5) 

(2.8.1) 
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i C$j= f: CfZ,=l; k = 1,2,3, (2.8.2) 
j=l j=l 

Gl = c12c2, - G3C22 , 

c32 = cd21 - cllc23 > (2.8.3) 

c33 = Cl1 c22 - c12c21 . 

From Equations (2.5), the inverse transformation from the Eulerian Parameters 
(ur, u2, u3, uq) to the Eulerian angles ($J, 6, 4) may be written in the form 

* = tan-r (2.9.1) 

(2.9.2) 

where 

I9 
a=u:+uz=sin2-; 

2 
b=u:+u:=cos2y. 

(2.9.3) 

(2.9.4) 

However, ambiguities in the Eulerian angles will be removed by using the following 
relations 

sin * = (u1u3 + uzu&VZ; cos * = (uluq - u2u3)l?5, 

sin6=2 ab; cos6=b-a, v- 

sin $ = (u1u3 - u2u4)&; cos qh = (UlU4 + u2L13)/vz. 

Also from Equations (2.5) we deduce that 

(2.10.1) 

(2.10.2) 

(2.10.3) 

u1 = (u3 sin * + uq cos $) tan t = (ug sin 4 + u4 cos 4) tan t, (2.11.1) 

u2 = (-u3 cos $ + u4 sin $J) tan t = (u3 cos C$ - u4 sin 4) tan f , 

(2.11.2) 

6 
Ug=(ursin$f-u2cos+)cot~=(uisin~+uZcos~)cot~, (2.11.3) 

6 
u4 = (ul cos I/J + u2 sin Q!J) cot ; = (ul cos $ - u2 sin 4) cot f , (2.11.4) 
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2.2. ANGULAR VELOCITY COMPONENTS 

Frequently in the dynamics of rigid body one needs to express the components 
(ol, w2, 03) of the angular velocity vector o about the body axes x1, x2, x3 in 
terms of the Eulerian angles. 

However in the present study we need the expressions of these components in 
terms of the Eulerian Parameters (ur, u 2, u3, Q), to find so the following analyses 
are devoted. 

2.2.1. Expressions of ol, 02, w3 in terms of the Eulerian Angles 

Referring to the axes of Section 2.1, resolve the angular velocity 4 along y” and 
p” axes so that the orthogonal components of 4, 6, &, are 8 along a!“, $ sin 6 
along p”, & + 4 cos 6 along y”. Next resolve the components along the (Y” and 
p” axes to the x1, x2 direction, the result being 

o1 = $sin6sin++ &cos+, (2.12.1) 

w2= $sin6cos+- &sin+, (2.12.2) 

w3=$+ JIcos79. (2.12.3) 

Of course, the Eulerian rates can be expressed in terms of wl, w2, w3. In order 
to avoid coupling of the rates, only normal components of $, 8, and &, can 
be used, because the Eulerian rates are not orthogonal. The three appropriate 
components are: 

(a) 4 sin 8 which is normal to & and &, , 
(b) d sin 6 which is normal to $ and 9, 
(c) 8 which is already normal to 4 and 4. 

The transformation are then easily obtained as, 

t,b = cosec 6(wl sin 4 + w2 cos 4) , 

$=Wg- cot 8(w1 sin 4 + o2 cos 4) , 

4= w,cos4--w,sin+. 

(2.13.1) 

(2.13.2) 

(2.13.3) 

2.2.2. Partial Derivatives of the Eulerian Angles with respect to the Eulerian Par- 
ameters 

From Equations (2.5) and (2.9) we deduce that 

(2.14.2) 

a* -u2 -=-= - 
au, a 

sinf(*- 4)/sint, 

a* Ul _=-= 

du2 a 
cos f (I) - @)/sin f , 

a* u4 -=-= 
au3 b 

cos ; ($ + +ycos 4 ) (2.14.3) 
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a* -U3 -=-= - 

au4 b 

aI9 
-= 

dU3 

aI9 
-= 

au4 

-2cos$(++ 4)sinf, 

a4 U2 a* -=-= --= 

au, a au1 
sin $( $ - 4)/sin g , 

84 Ul a* -= --= --= 
dU2 a dU2 

- cos +(ti - f$)/sin $ , 

a4 U4 WJ -=-= 

au3 

--co&b+ d)/cos;, 

b du3 

a4 -u3 a* -..--=-z-c - 

au4 b du4 

sin$($ + 4)icosf. 

(2.14.4) 

(2.151) 

(2.15.2) 

(2.15.3) 

(2.15.4) 

(2.16.1) 

(2.16.2) 

(2.16.3) 

(2.16.4) 

2.2.3. Eulerian Rates in terms of the Eulerian Parameters and their Rates 

Since any of the Eulerian angles can be expressed as a function of the Eulerian 
Parameters, then 

+ i !2Cj1 
4 a6 4 84 

j=l dUj 

9-= C-Lij; (b=l~l~tij- 

j=l dUj I 

Using Equations (2.14), (2.15) and (2.16) into the above expressions we get 

I,$ = (-u2tiil + u1 &)/a + (u4ti3 - u&)lb , (2.17.1) 

79 = 2 (U1til + u2&) 
L I- $3 u4zi4 + u3ti3) f ) 

Jl (2.17.2) 

&, = (u94 - uIti2)la + (u4ti3 - u3ti4)lb. (2.17.3) 
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2.2.4. Expressions for ml, w2, o3 in terms of the Eulerian Parameters and their 
Rates 

Using Equations (2.17) and Equations (2.11) into Equations (2.12) we get 

WI = 2(-u1ti4 + u& + z&z& - z&r&) , (2.18) 

02 = 2(-U$L$ - u34 + uqti.2 + Ulti3), (2.19) 

w3 = 2(-z&& + u*ziil - u1& + U&3). (2.20) 

These equations are what we required to set up for the present subsection. 

3. Motion of the Orbital Frame 

A most interesting connection between orbital dynamics and rigid body dynamics 
could be established if we consider the orbit normal 5, the radius vector 6, and 
the orthogonal vector IJ = & x 6 as a rigid body. Since this triad is a rotating 
coordinate system, its motion can be investigated by applying well-known methods 
of rigid body dynamics. The present section is devoted to establish the basic 
formulations for the connection between orbital and rigid body dynamics. 

3.1. ORBITAL FRAME 

The unit vector 5 is defined as a vector which always points at the body under 
consideration (hereafter we shall consider such body as a given artificial satellite). 
The unit vector q is advanced to E in the sense of increasing true anomaly f by a 
right angle in the plane of instantaneous motion. Finally, the unit vector 5 com- 
pletes the orthogonal set and is always directed along the angular momentum 
vector H. The rotating triad 6, q, 5 will be called the orbital frame. 

Now, the first step for the connection between orbital and rigid body dynamics 
is to find the relations between the unit vectors (g, q, 0, the position and velocity 
vectors (x, i’) in the inertial frame (in which the orbital motion is described). 

3.2. RELATIONS BETWEEN (c,q,c) AND (x,ir) 

The unit vector g is related to the position vector x by 

g 2, 
r 

(3.1) 

where r = 1x1. Since in the pure Keplerian motion C#I is a part from an additive 
constant the true anomaly f then 

I5 - ix ti-iX 
-= 

q= 24 GG 
2 (3.2) 

where p is the semi-latus rectum, p in the present study (artificial satellite motions) 
is the Earth’s gravitational constant. 

Finally, since the angular momentum H is given as 
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then 

ig =&xxi). (3.3) 

Since p vanishes on collision orbits, Equation (3.2) and (3.3) then become mean- 
ingless. We therefore exclude collision, hence p > 0. This is no restriction in 
satellite applications since the central mass has finite dimensions. 

3.3. RELATIONS BETWEEN (g,q,c) AND (uI,u2,u3,u4) 

The next step in our analyses is to find the relations between the unit vectors 
(6, q, 5) and the Eulerian Parameters. To obtain so, let us define the following 
vectors 

u=[# v=[fj w=[;;]2 +;j. 
(3.4) 

Clearly, these vectors are mutually orthogonal. Since the unit vectors (c, q, 5) is 
related to the unit vectors (I, J, K) of the inertial frame by the linear system. 

(3.5) 

then by using Equations (2.7) into Equations (3.5) we get by taking account of 
definitions (3.4) that 

6 = A(u)u 2 (3.6.1) 

q=A(u)v, (3.6.2) 

5 =A(u>w, (3.6.3) 

[ 

241 -Ll2 -u3 u4 

A(u) = u2 Ul u4 u3 ’ 1 (3.7) 
Ll3 -u4 Ul -uz 

Note that 

A(L) M = A(M) L , (3.8.1) 



A(L) = ${A(L)] = A(L) ) (3.82) 

where L, M are column vectors in the four-dimensional space. 
The relations between the rates could be obtained from Equations (3.6), (3.8) 

and we get 

k = 2h(U)ti, (3.9.1) 

il= 2A(U)V ) (3.9.2) 

k = 2A(U)ti . (3.9.3) 

3.4. RELATIONS BETWEEN (Cl, z&, z&, z&) AND (w1,w2,wj) 

Differentiating Equations (2.5) with respect to the time t we get 

d,=~9u,mtf-~(IL-a,u2, (3.10.1) 

1 I9 1. . 
zi*=-l9u,cot-+-(~-c$)ul, 

2 2 2 
(3.10.2) 

(3.10.3) 

(3.10.4) 

Using Equations (2.13) into Equations (3.10) we get by the aid of Equations (2.11) 
that 

Zil = $(OJlU4 - W2Ll3 + W3U2) , (3.11.1) 

Zi2 = ~(fd,U3 + W2U4 - W3U1) , (3.11.2) 

& = ;<-qu, + w2u1+ W3U4) ) (3.11.3) 

li4 = ; (- 01Ll1 - w2u2 - w3u3) . (3.11.4) 

These equations can be written in a matrix form as 

ti = $B(ti)u, (3.12.1) 

where 

(3.12.2) 

Note that the matrix B is skew symmetric. 



30 MOHAMMED ADEL SHARAF ET AL. 

Referring to the column vectors defined by Equation (3.4), Equations (3.11) 
could be written in another form as 

li = ;[qq - wzw + ogv] . (3.13.1) 

It follows also that 

+=&olw+w2q- %Ul > (3.13.2) 

fv = &J,v + 6J2u + wgq] . (3.13.3) 

3.5. RELATIONS BETWEEN (f&G, c) AND (wl,w2,w3) 

Using Equations (3.13) into Equations (3.9), then using Equations (3.6) in the 
resulting Equations and the fact that 

Nu)q=O, 

we get 

t = 02q - 025 2 (3.14.1) 

4 = w15 - %E > (3.14.2) 

5= w*t - w1q. (3.14.3) 

By these relations we come to the end of the present section after establishing the 
basic formulations for the connection between orbital and rigid body dynamics. 

4. Satellite Motions in Terms of the Eulerian Parameters 

In this section, the equations of motion in terms of the Eulerian Parameters will 
be derived. 

4.1. FUNDAMENTALEQUATIONS IN RECTANGULARVARIABLES 

The sixth-order system of differential equations in rectangular variables (xi, x2, x3) 
describing- the rate of change of the position and velocity for a satellite orbiting 
the Earth is given by 

ji+Px=p=p*-iil/ 
Y3 ax ’ 

where V is the perturbed time-independent potential, and P* is the resultant of 
all nonconservative perturbing forces and forces derivable from a time-dependent 
potential, the other variables are defined previously. 

The coordinate system is inertially fixed with x1x2 plane corresponding to the 
Earth’s equatorial plane. Associated with Equation (4.1), the energy equations 
and the laws of energy defined, respectively as, 

hk=E - l&jr), 
r 2 

(4.2.1) 
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h=hk-V (4.2.2) 

and 

h, = Z,k - (P”,k)) 
( > 

h = - z - p*, k) ) 

(4.3.1) 

where (-hk) is the Keplerian energy, (-h) the total energy and (a, b) is used to 
denote the scalar product of two vectors a and b. By means of Equations (4.2) 
the decision on the type of the orbit could be made, if h > 0 it is elliptic, if h < 0 
hyperbolic and if h = 0 parabolic. This decision is very important, since the type 
of the orbit is occasionally changed by perturbing forces acting during a finite 
interval of time. 

4.2. EQUATIONS OF MOTION IN TERMS OFTHE EULERIAN PARAMETERS 

Differentiating Equation (3.1) with respect to t, then using Equation (3.2) we get 

using 

and 

x = i-g 

i = I-Q + it 

into Equation (3.3) we obtain 

5 = 2 (E x &) . 

Using the first derivative of Equation (4.6) into Equation (4.1) we get 

rg +2&+ i;+$ E=P. 
( > Y 

Since 

Y 2 = b, x> > 

then 

ri = (x, ;;r) ) 

ri’+ i2 = (x, ji) + (ii, i) . 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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Taking the scalar product of Equation (4.1) with the vector x, then using Equation 
(4.9) we obtain 

P (x,2)= (P,x> - -. 
r 

(4.12) 

Since p is given as 

p = f {(ii, jr) - i”} ) 
P 

(4.13) 

then by using Equations (4.5), (4.12) and (4.13) into Equation (4.11) we get 

y = (p, 6) + e!! - L. 
r3 r* 

(4.14) 

From Equation (4.14) into Equation (4.8), and using the fact. 

p = w, E)E + (P, rlhl + (P> 05 

we deduce that 

7-g + 2i[ = 
( > 

-P$ t+(p,rl)~+(p>5)5. (4.15) 

Now differentiating Equation (4.4) with respect to t we get 

Note that, p is considered variable due to the existence of perturbations. 
Using Equation (3.14.2) in the last equation we obtain 

Comparing Equations (4.15) and (4.16) we get 

_ GP 
3 

r2 
, 

$ = 2r 
J 

E(P, q) = $(P, 0. 

(4.17) 

(4.18) 

(4.19) 



The value of w;? may be obtained by substituting Equation (3.14.3) into Equation 
(4.7) and we get 

using Equation (4.18) into the last equation we get for both the perturbed and 
unperturbed motions that 

64 = 0. 

From the above equations and Equations (3.11) we finally have for perturbed 
motions in terms of the Eulerian Parameters the following equations 

til = &J,u, + oJ3uz) ) (4.20.1) 

ii2 = &w3 - w4) , (4.20.2) 

zig = &o,u, + W3Uq) ) (4.20.3) 

lid = &o,u, - wg43) ) (4.20.4) 

f = (p, 5) + !!!P - I ) 
r3 r2 

r 

(4.20.5) 

(4.20.6) 

(4.20.7) 

G 
03=-. 

r2 
(4.20.8) 

System (4.20) is of the seventh order, general since it includes perturbations which 
can arise from a potential and perturbations which cannot be derived from a 
potential, and uniform in the sense that it is valid for all values of the energy (that 
is, the same equations describe the motion whether it is elliptic, parabolic, or 
hyperbolic). 

It is noted that in the pure Keplerian motion (P = V = P* = 0) we have 

Wl = 0; %P _ d+ 
w3=--Ttdt r2 

where p = constant, is the semi-latus rectum of osculating orbit. The components 
of the perturbing forces P(P = P* - dV/ax) in terms of the Eulerian Parameters 
could be obtained from Equations (3.6), (3.8.1) and we get 

p, = P, 5) = (P, A(u)4 = W(U)P, 4, 
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P, = (P, d = (P, A(u)v> = W(U)P, v> 2 
P, = (P, g> = (P, A(u)w) = (AT(U)P, w) . 

Using Equations (3.4) and (3.7) into the above equations we get: 

p, = PlGl + P2G2 + p3c13, 

p, = PI c21 + p2 c22 + p3 G3 , 

p, = PlC31 + p2c32 + p3c33, 

where 

(4.22.1) 

(4.22.2) 

(4.22.3) 

and C’s are given in terms of u’s by Equations (2.7). In general Pi, j = 1,2,3 and 
eV/& are functions of(x, x, t) (see for example Sharaf et al., 1989) and hence 
they can be expressed in terms of the Eulerian parameters throughout the relations 
between x, x and these parameters. A typical example of such application will 
be considered in the following section. Finally it is worth mentioning that, Equa- 
tion (2.6) and the condition that w2 = 0 [Equation (2.19)] could be used as checks 
for numerical integration accuracies of the Equations (4.20). 

5. Satellite Motions in the Earth’s Gravitational Field with Axial Symmetry 

In this section, the initial value problem of the Eulerian Parameters will be 
considered in full detail for satellite motions in the Earth’s gravitational field with 
axial symmetry. A general, recursive and stable computational algorithm of this 
problem will be established for any conic motion and for any number N 2 2 of 
the zonal harmonic coefficients of the Earth’s gravitational potential. Applications 
of the algorithm are considered for the two cases of short and long term predic- 
tions. For the short-term prediction, we consider the final state prediction of some 
typical ballistic missiles in the geopotential model with zonal harmonic terms up 
to J36, while for the long-term prediction, we consider the perturbed Jz motion of 
Explorer 28 over 100 revolutions (about 580 days). 

5.1. EXPRESSIONS OF V, aV/ax AND (PC, P,, Pr) 

For the case of axial symmetry we have 

av 
P”=O, -=o, 

at 

V= E kg2 Jk(Rlr)k+lPk(sin I’) , 0 

(5.1) 

(5.2) 
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where V is the Earth’s gravitational field with axial symmetry, R is the Earth’s 
mean equatorial radius; F the latitude of the satellite, Jk, k = 2(1)N are dimension- 
less numerical coefficients (note that the infinite series of Equation (5.2) is trun- 
cated at some positive integer N) and P,(Z) is the Legendre polynomial in 2 of 
order I defined VZ E [-1, l] as 

p(z) =L 'y (-1)k(2z- W! ZI-2k 
I 

2’k=ok!(&k)!(&2k)! ’ 
(5.3) 

[q] denotes the largest interger G 4. 
By the same argument that has been established by Sharaf and Awad (1985) 

for the economical and stable recurrent computations of V and dV/ax in terms of 
x, we can derive for the corresponding computations of these functions in terms 
of the Eulerian Parameters the following formulations: 

‘= ; k~2Jk!&, 0 (5.4) 

where 

IYV -=- ~ 
( > 

&1P2 G 

8x1 1- c:, ’ 

8V -=- 
( >> 

E”G*P2 G 

8x2 1 - c:, 

aV 
-= -yp2s, 
8x3 

p=L; G= f$ IkF,; 
r k=2 

(5.5) 

(5.6) 

(5.7) 

s= ii z&k; Ik=(k+l)Jk, (5.8) 
k=2 

Q’s and D’s satisfy economical and stable recurrence formulae of the forms 

Qk = Qo{&Qk-1 - QoQk-2 + cd&-l - (cd&l - QoQk-d/k) , 
(5.9) 

Dk= &o@'oDk--l- QoDk-2+DODk--l -(DoDk-I - 

- QoDk--2)l(k + I>>, (5.10) 

Fk = QoDk-1 - DOD/.x, (5.11) 

Qo = Rp; Ql = Q;C13; Do = C13, D1 = 0.5Qo(3D”, - 1)) (5.12) 

C’s are given in terms of U’S by Equations (2.7). 
Finally, by using Equations (5.5), (5.6) and (5.7) into Equations (4.22) (note 

that Pi = - (aV)l(dxj) ; j = 1,2,3) we get by means of Equations (2.8) that 
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f’, = pup2Qo 5 IkDk--l , 
k=2 

(5.13) 

pv=~k~21kiDk- D&oDk-l}, 

PC = s kg2 @h - &QoDk-l}. 

(5.14) 

(5.15) 

5.1.1. The Special Case of N = 2 

Particularization of the above equations for the case N = 2 gives for the J2 gravity 
perturbed motions the following formulations 

V = ; J2pR2p3(3Cz3 - 1) , 

av 3 
- = ; J2pR2p4C11(1 - 5C:,) , 
ax1 

E = ; JzpR2p4C&1 - 5C:,) , 

E = ; J2,uR2p4C13(3 - 5C:,) , 

P, = - ;JzpR2p4(l - 3C:3) , 

P, = - 3J2,uR2p4C13C23 , 

P, = - 3J2pR2p4C33C13 . 

(5.16) 

(5.18) 

(5.20) 

(5.21) 

(5.22) 

From these equations it is clear that 

C~~~+c~2~+C~j~+3vp=O. 
1 2 3 

(5.23) 

5.2. THE INITIAL-VALUE PROBLEM 

In this subsection, we shall develop a general, economical and stable recursive 
computational algorithm of the initial value problem of the Eulerian Parameters 
for zonal gravity perturbed orbital motions. The algorithm is general in the sense 
that it could be used for any type of orbital motion (elliptic, hyperbolic, or 
parabolic) and for any number N 3 2 of the zonal harmonic coefficients of the 
Earth’s gravitational potential. Its recursive, economical and stability are due to 
the usage of the fundamental equations of Section 5.1. With the substitutions 

u5 = r; 4 = i; UT = v pp, (5.24) 
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Equations (4.20) reduced by means of Equations (5.13), (5.14) and (5.15) to the 
system 

zil = ;<u,u, + wg42), (5.25.1) 

Liz = ;<w,u, - wg61), (5.25.2) 

zi3 = &w,u, + w3uq) ) (5.25.3) 

zi.4 = $(-oJ,u, - wgL3), (525.4) 

ti5 = &j 
N 

tie = Ll;z PQO z IkDk--l + L&U;’ - p , 
k=2 

(5.25.5) 

(5.25.6) 

li, = pc23 : zk{& - DoQoDk-l}, 
Ug(l - CT,) k-2 

(5.25.7) 

where 

PC33 
c.01 = 2 Ik{Dk - DoQoDk-1) , 

U$L,(l - c:,) k=2 

(5.26.1) 

03 = u,u;2. (5.26.2) 

The initial conditions of the above differential system could be computed from 
the initial position x0 = x(to) and velocity rio = ir(to) at the epoch to throughout 
the following two main steps. 

STEP 1: To compute the initial value of V (= Vo). 
1. Compute 

ro = (& + x& + xg3y2 

Q = Rlr, 

E = x&r0 

HI = Q;E 

2. Set 

s=o 

Ho = Qo 
H2 = HI 

3. For all k = 2(1)N, compute 

A = QoHo 
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G=EH:! 

B=G-A 

Hz = Qo(B f G - Blk) 

Ho +H, 

HI +H, 

StS+JkH2 

4. Compute V. from 

vo = (p/R) * s 

STEP 2. To compute the initial values of Uj, j = 1(1)8. 
5. us = ro. 

6. Compute 

U6 = (xOliO1 + xOZiO2 + xO3iO3)/uS 

u7 = U&l + i& f ii& - Ll: + 2V()) l/2 

Cl1 = X01/& 

Cl2 = Xo2lUs 

Cl3 = xo3lu5 

7. For all i = 1,2,3, compute 

Czi = (USiOi - 246 XlJi)IU7 

8. Compute 

c31 = c12c23 - cl3 c22 

c32 = c13c21 - cl1 c23 

c 33 = GlC22 - c12c21 

9. Compute 

U4 = (1 + cl1 + c2, + c33)1’2/2 

ui = 0.25(&, - c&.44 

u2 = 0.25(G1 - c13)/u4 

u3 = 0.25(& - c2#uq 

10. Set 

ug = to . 
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The position and velocity in Cartesian space could be computed at any time t # 
to from U’S and their derivatives as follows 

& = 2r(z44 - ug.i2 - u3ti3 + l&&) + x1u& ) 

i2 = 2r(uztil + u1ti2 + u4zi3 + u3ti4) + xzu61r, 

i.3 = 2Y(U34 + Ulz.23 - u& - ug.i&$) +x32&h. 

The accuracy of the computed values during the numerical integration could be 
checked by the conditions 

u: + l.4; + u: + 242 = 1) (5.27) 

02 = u2ti4 + U3til - 242 - Ulti3 = 0. (5.28) 

In addition to these two general conditions, the present problem provides a third 
one which is the constancy of the total energy (since the potential with axial 
symmetry is conservative), that is 

Ah = h(t) - h(O) = 0, (5.29) 

where h(t) and h(O) are the values of the total energy h at any time t and at the 
initial epoch t = 0, respectively. 

5.3. NUMERICAL APPLICATIONS 

5.3.1. Test Cases 

For the purposes of the numerical applications of our algorithm we consider two 
types of test cases, the first type for short-term predications, while the second type 
for long-term predications. For the first type, we consider four fractional orbit 
cases typical of ballistic missiles all with the same initial time to = 0, while the 
other initial values are listed for each case in the first column of Table I to IV. In 
each of these columns, the type of the orbit, the initial values of x, ri and Ej; j = 
1,2, . . . ,7 are given, where 

El = 
I 

a = (semi-major axis for elliptic or hyperbolic orbit), 
q = (Pericentre distance for parabolic orbit); 

E2 = y1 (mean motion); E3 = e (eccentricity); E4 = i (Orbital inclina- 
tion); E5 = Sz (longitude of the ascending node); E6 = r (argument of 
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TABLE I 

Initial and final states with zonal harmonics UD to Jqn for the test case No. 1 

Initial Final Accuracy checks 

Elliptic orbit 
to = 0.0000000000 + 00 
x1 = 0.6478OOOOOOD + 04 
x* = 0.00000000000 + 00 
xg = 0.00000000000 + 00 
11 = 0.70000000000 + 01 
i.2 = 0.10000000000 + 01 
.I$ = 0.3000000000D + 01 
El = 0.62220204130 + 04 
Es = 0.12863878680 - 02 
E3 = 0.91147975930 + 00 
Ed = 0.12490457720 + 01 
E5 = 0.00000000000 + 00 
Eg=0.3547320780D+ 01 
E,= 0.70539725270 + 00 

Elliptic orbit CHECK1 = 0.10000000000 + 01 
TF = 0.18000009000 + 04 CHECK2= 0.98599929020 -21 
x1 = 0.10970919330 + 05 CHECK3 = 0.26297605170 - 11 
x1 = 0.14354795810 + 04 
x3 =0.43049358160 +04 
il = -0.44468577600 + 00 
i2 = 0.53228562470 + 00 
3i3 = 0.15953305250 + 01 
El = 0.62163601700 + 04 
E2 = 0.12881452290 - 02 
E3 = 0.91154501650 + 00 
E4 = 0.12487767420 + 01 
E5 = 0.62831136650 f 01 
E6 = 0.35468853110 + 01 
&=0.30255660730 + 01 

TABLE II 

Initial and final states with zonal harmonics LID to J?h for the test case No. 2 

Initial Final Accuracy checks 

Elliptic orbit 
to =O.OOOOOOOOOOD + 00 
x1 = -0.76629075200 + 03 
xz=0.9227347132D+03 
x3 = -0.57256394750 + 04 
n'l= -0.66670709980 +00 
i2 = 0.85237905550 + 01 
i.3 =0.82535227880 + 00 
El =0.6378135OOOD+O4 
EZ= 0.12394486020 - 02 
E3 = 0.1100000000 + 00 
E4 = 0.16891296500 + 01 
E5 = 0.16603317170 + 00 
E,=O.40879101740 + 01 
E,= 0.64597947850 + 00 

Elliptic orbit CHECKl= 0.10000000000 + 01 
TF = 0.190056OOOD + 04 CHECK2 = 0.16096802370 - 17 
x1 = 0.18380846680 + 03 CHECK3 = -0.34426991950 - 13 
x2 = 0.48388986170 + 04 
x3 = 0.51960346640 + 04 
i1 = 0.10307537220 + 01 
i2 = -50530606490 + 01 
.i3 = 0.48253944870 + 01 
El =0.63919443960 +04 
Ez = 0.12354341460 - 02 
E3=0.1123414668D +00 
Ed = 0.16890324600 + 01 
Es = 0.16606423100 + 01 
&=0.40980466850 +Ol 
E,= 0.29819882900 + 01 

perigree); E7 = A4 (mean anomaly). The adopted units of the time, 
distances and angles are respectively second, kilometer and radian. 

For the second type of the test cases, we consider a typical highly eccentric satellite 
orbit - Explorer 28. The satellite was launched on May 29, 1965. Orbital period 
about 5.8 days, the initial values of x and x (Lowrey, 1972) are, 

x1 = 6099.5844, x2 = 602.05128, x3 = 2409.1608 

il = 1.1047527, i2 = 9.8556127, i3 = - 4.4520836 
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TABLE III 

Initial and final states with zonal harmonics up to J36 for the test case No. 3 

Initial 

Parabolic orbit 
to = 0.00000000000 + 00 
x1 = 0.95921517980 + 04 
x2 = 0.45392105470 + 04 
x3 = -0.21980983250 + 04 
il = -0.62174772830 + 01 
& = 0.41849912100 + 01 
i3 = 0.4170160618D + 01 
El = 0.47836012500 + 04 
Ez=0.6313483983D+ 03 
E3 = 0.1000000000 + 01 
E4 = 0.17650514730 + 01 
Eg=0.2658834582D + 01 
E6 = 0.43867105420 + 01 
E7=0.2447259744D + 01 

Final Accuracy checks 

Parabolic orbit CHECKl= 0.10000000000 + 01 
iT'= 0.194625OOOOD + 04 CHECK2= 0.23946878730 -20 
x1 = -0.18353308310 + 05 CHECK3 = -0.304914111OD - 08 
nZ = 0.10956138530 + 05 
x3 = 0.60184075460 + 04 
i1 = -0.34657379040 +Ol 
i2 = 0.27184056540 + 01 
i3 =0.40606049390 + 01 
El = 0.36720184021 + 08 
EZ =0.28373428040 - 08 
&=0.99986972060 +00 
Ed = 0.17650520940 + 01 
E5 =0.26588362570+01 
Es=0.4386673859D+01 
E7=0.8885995428D - 05 

TABLE IV 

Initial and final states with zonal harmonics up to Jx6 for the test case No. 4 

Initial Final Accuracy checks 

Hyperbolic orbit Hyperbolic orbit CHECK1 = 0.10000000000 + 01 
to= 0.00000000000 + 00 TF= 0.97534OOOOOD + 03 CHECK2 = 0.25477162870 - 20 
x1 = -0.75153318450 + 03 x1 = -0.20631619600 + 04 CHECK3 = -0.16713151730 - 13 
x2 = -0.17195326940 + 05 x2 = -0.93849601030 + 04 
x3 = -0.19228536050 +05 x3 = -0.24342551910 + 05 
i1 = -0.13584416280 + 01 k1 = -0.13264420610 + 01 
& = 0.78402117280 + 01 iZ = 0.81440147260 + 01 
XI3 = -0.54837926810 +Ol .f3 = -0.49871274840 + 01 
El = -0.63781350000 +04 El = -0.63782251760 + 04 
EZ = 0.12394486020 - 02 EZ = 0.12394223170 - 02 
& = 0.50146846740 + 01 E3 = 0.50146257340 + 01 
Ed = 0.16891296500 + 01 Ed = 0.16891302650 + 01 
E5 = 0.16603317170 + 01 E5 = 0.16603327650 + 01 
Es= 0.41267729600 + 01 Es = 0.41267645120 + 01 
&=0.58328337930 + 01 ET = 0.75854451860 + 00 

5.3.2. The adopted Physical Constants 

p = 398600.8 km3 sP2; R = 6378.135 km. 

The numerical values of the Earth’s zonal harmonic coefficients Jk; k = 
2,3, . . . ,36 are taken from Hough (1981). 

5.3.3. Numerical Results 

The previous equations of the present section were programmed and applied with 
fixed step size, fourth-order Runge-Kutta-Gill method, together with the basic 
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equations (see for example, Escobal, 1965) for converting x, ir to the orbital 
elements of any conic motion. Conditions (5.27), (5.28) and (5.29) are used for 
checking the accuracies of numerical integration. Although the program is de- 
veloped to include up to any number of Earth’s zonal harmonic terms J,, however, 
the numerical computations are done with terms up to J3+ The output of the 
program was arranged for each case study in the second and the third columns of 
Tables I to IV, where CHECK 1, 2, 3 correspond respectively to the conditions 
(5.27), (5.28) and (5.29). Tables V and VI represent the applications of our 
algorithm for long-term predication of the J2 perturbed motion of Explorer 28 
Satellite during 100 revolutions given at every 10 revolutions. The accuracy of the 
computed values is also checked by the conditions (5.27) to (5.29). The first 
condition is exactly satisfied, while the second and the third conditions are satisfied 
respectively up to 10-l’ and lo-’ at least. 

In concluding this paper, the connections between orbit dynamics and rigid 
body dynamics are developed throughout the Eulerian redundant Parameters and 
utilized to establish special perturbation technique for the initial value problem 
for any conic motion of artificial satellites. A motion prediction algorithm using 
the Eulerian Parameters has been developed for the motions in the Earth’s gravi- 
tational field with axial symmetry. The algorithm is of recursive nature, and 
moreover could be applied for any conic motion whatever the number of zonal 
harmonic coefficients may be. 
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