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Abs t r ac t .  IE is a model of learning by experimentation in the domain of complex 
devices. In this paper we describe view application, the principal component of that 
model. This mechanism combines abstract knowledge structures into the learner's theory 
of the device. View application organizes complex changes in the learner's theory, thus 
ensuring that the space of theories is searched rapidly and that only coherent theories 
are tried. We evaluate the mechanism along three dimensions - its psychological validity, 
its generality, and its ability to constrain search. We also compare view application to 
other knowledge-rich learning techniques. 

1. Introduct ion  

Humans are often confronted with complex devices in which the inputs 
and outputs are mediated by hidden internal states, and for which there 
is little or no instructional material. Examples of such devices include au- 
tomatic teller machines, computer operating systems, automobile features, 
and microwave ovens. Faced with the problem of learning to operate such 
systems, one can sometimes "figure out" the device by exploration and 
experimentation. We call this the task of inetructionless learning. Our 
overall goal is to construct a theory of learning in such information-limited 
situations. 

There is a great deal of psychological research that, in principle, could 
provide insights into the nature of instructionless learning. This includes 
research on geometric induction (Bruner, Goodnow, & Austin, 1956; Hunt, 
1962); tile induction of mathematical functions (e.g., Huesmann & Cheng, 
1973); sequence extrapolation (e.g., Kotovsky & Simon, 1979); and the 
broad literature in "concept identification" (e.g., Bower & Trabasso, 1963). 
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However, these domains contain no hidden entities or values, and the sub- 
ject generally knows the structure of the stimulus space beforehand (e.g., 
simple geometric figures of various colors). Furthermore, these paradigms 
generally prescribe the actions available to the subject (e.g., indicating 
that an exemplar is or is not a member of the "correct" set). This prevents 
tile subject from changing his data-gathering strategy during the task, and 
from using a favored or novel strategy. In contrast, in instructionless learn- 
ing situations the device to be understood often exhibits complex behaviors 
(e.g., mode-dependent and programmable behavior), and the learner does 
not know the relevant features a priori. Also, there are few constraints on 
the learner's actions; for example, he can try out different data-gathering 
strategies to discover those best suited to the problem at hand. 

The literature on scientific reasoning is more relevant to our goal. In- 
stmctionless learning problems are analogous to scientific induction tasks, 
in which the scientist attempts to understand a complex system contain- 
ing hidden aspects. Unfortunately. scientists make difficult subjects for a 
variety of reasons: it is difficult for them to give verbal protocols, they 
tend to be very familiar with their problem domains, and their behavior 
is entangled with their scientific culture and training. Therefore, theories 
of scientific induction are generally inferred from historical facts and notes 
(e.g., Darden, 1976; Langley, Simon, Bradshaw, & Zytkow, 1987; Zytkow 
& Simon, 1986) or by placing students in model situations (e.g., Mynatt, 
Doherty, & Tweney, 1977). We hope that an improved understanding of in- 
structionless learning will lead us to better underpinnings for a psychology 
of scientific reasoning. 

Elsewhere (Shrager, 1985; Shrager & Klahr, 1983, 1986) we have re- 
ported a psychological experiment in which Carnegie-Mellon University 
undergraduates were asked to "figure out" a complex programmable toy 
tank without instruction or advice. The subjects were permitted to inter- 
act with the toy in virtually any (non-destructive) way. This experiment 
is more appropriate to our goals than the simpler studies that generally 
populate the psychological literature on learning. We developed a theory 
of instructionless learning in this situation, constructing a cognitive sinm- 
lation of our subjects' behavior in order to refine and validate the theory. 

This paper focuses on view application, the principal component in our 
computational model of instructionless learning. This mechanism uses pre- 
existing abstract schemas to restructure the learner's knowledge of the 
device. Although view application is only one of several mechanisms in 
the model, it plays the largest and most interesting role. (Other learning 
mechanisms include structural analogy, causal reformulation, and simple 
generalization.) An important assertion of our theory is that a simple 
theory reformulation mechanism can succeed in complex domains, provided 
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it can draw upon prior knowledge and provided it is embedded in a learning 
system that  (:an interact with the target and so uncover errors. View 
application is such a meeilanism. 

We begin by summarizing our empirical results on instructionless learn- 
ing, which are reported more thoroughly in Shrager and Klahr (1986). We 
then summarize out" theory of instructionless learning and the associated 
computational model, focusing on the role played by view application in 
theory change. We next describe the view apt)lication mechanism in detail, 
giving an example of its functioning. After this, we evaluate this mecha- 
nism in terms of its psychological adequacy, its ability to limit search, and 
its generality. We conclude with remarks on the relation of view application 
to other learning theories, along with some directions for future research. 

2. Psycholog ica l  observat ions  on ins truct ionless  learning 

In our experimental study of instructionless learning (Shrager & Klahn 
1986), we asked seven undergraduates to independently "figure out" the 
BigTrak, a programmable battery-operated tank-like toy vehicle made by 
the Milton Bradley toy corporation. The Bigqhak can be progrannned 
by pressing a sequence of buttons on a keypad attached to its back. For 
instance, pressing the buttons CLR FORWARD 3 R I G H T  1 5 HOLD 5 
0 B A C K W A R D  1 GO will make the BigTrak move forward 3 feet, turn 
right 90 degrees, pause for 5 seconds, then back up one foot. Pressing CLR 
resets the BigTrak's program memory. If CLR is not pressed, new steps 
arc appended to ones already in memory. Turns operate in units analogous 
to minutes on the face of a clock: 15 units represents 90 degrees. HOLD 
operates in tenths of' seeonds. There is also a simple looping construct, as 
welt as ways 1o check and edit the program. 

Several features make instructionless learning in this domain interest- 
ing. The BigTrak is a complex electronic and electromechanical toy. Most 
subjects develop an electromeehanical theory of the workings of the de- 
vice instead of (or in addition to) a description of its grammar. Also. the 
BigTrak produces complex behavior when buttons are pressed, instead of 
simply giving a Yes/No response. Learners use the actions of the device to 
guide them in theory formation. In the instructionless learning paradigm, 
the subject is permitted to interact with the device in virtually any (non- 
destructive) way. Since the cost of experimentation with the Big~Ih'ak is 
low, there is nothing to discourage many such interaet.ion.~. 

In 30 to 45 minutes, each subject developed a theory of the BigTrak 
that  was correct in most aspects. During the session, subjects tried to 
validate the correctness of each theory change by performing %xperiments'" 
that  would confirm the theory. They also performed "exercises," which 
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tested the learner's overall knowledge of the device; and ~'explorations," 
which were used to refine incomplete hypotheses. The protocols contained 
between 33 and 68 interactions with the BigTrak (mean = 52, standard 
deviation = 12.9, n - 7). The mean time between interactions (less BigTrak 
run time) was 27.7 seconds (standard deviation -- 5.7). The interactions 
classified as exercises generally increased in length over the session. 

All subjects seemed to interpret the instruction to "figure out" the Big- 
Trak as a request to assign a particular role to each physical aspect of 
the device. At some level, all the subjects formulated a theory of the de- 
vice. They moved from very general knowledge of the device (as some 
kind of toy) to very specific knowledge that let them predict its behavior 
in detail. Subjects' theories included operational knowledge (e.g., pressing 
FORWARD makes the BigTrak move forward), syntactic knowledge (e.g., 
one must press a direction before a number), and "model" knowledge (e.g., 
the BigTrak has a memory that stores the steps previously entered). Op- 
erational knowledge could apply to the contents of the model as well as to 
the BigTrak as a whole. For instance, the knowledge that the CLR button 
erases the program is an operation on the program memory. The program 
memory itself is an element of model knowledge. 

Most relevant to this discussion, we observed that between certain inter- 
actions with the BigTrak, subjects changed their theory of the device. A 
number of empirical generalizations seem to hold about the nature of these 
changes; see Shrager (1985) and Shrager and Klahr (1986) for more detail: 

• The changes often took place when the BigTrak did something that 
the subject did not expect, or when the subject moved on to consider 
a new aspect of the device (e.g., the function of a new button). 

• Instead of trying to determine in detail what led to a failed predic- 
tion, subjects usually observed what (positive behavior) took place 
and changed their theory according to that observation. 

• The changes could be non-monotonic, in that they appeared to replace 
or delete knowledge that the subject believed before the reformulation. 

• Both monotonic and non-monotonic changes in the learner's knowl- 
edge of the device were non-uniform. In some eases a single piece of 
knowledge was changed (e.g., another operation was learned for the de- 
vice); in others, very large changes occurred (e.g., all of the numerical 
arguments took on new meanings). 

• Changes often seemed to be informed by knowledge that lay outside 
the domain of the BigTrak. This included both particular knowledge, 
such as the numbering on the face of a clock, and abstractions like 
"programmable-device," which describe various devices that maintain 
state information in a memory. Changes that made contact with ex- 
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ternal domains usually brought new concepts into the BigTrak domain. 

• Furthermore, the changes seemed to have a coherent structure. That  
is, instead of changing a number of small parts of the current theory 
in arbitrary ways, learners either made one change that affected many 
different aspects of the device, or else made several changes that  were 
related in some principled way. For instance, learning that BigTrak 
is programmable led to a number of changes in the learner's opera- 
tional and model knowledge. These are all related by the concept of 
programmability, although individually they are very different. 

We concluded from our study that  learners incrementally combined ab- 
stractions in order to formulate and reformulate theories of the BigTrak. 
Sometimes the abstractions were compatible with current knowledge and 
sometimes they were not. In the former case, such combination was a 
simple mat ter  of adding the new knowledge and binding variables where 
necessary. However, introducing a new abstraction that  was incompatible 
with the learner's current theory could lead to significant changes in that  
theory, including replacement of former beliefs. These findings led us to 
propose view application ~ a mechanism for learning through incremental 
combination of abstractions - as the principal mechanism of theory change. 

3. View application in instructionless learning 

View application is one component of our learning theory. To set this 
mechanism in context, we briefly describe the overall theory below. After 
this, we consider the representation of knowledge used in the model, the 
ways in which this knowledge is used, and the details of the view application 
mechanism. Finally, we consider an example of this process at work. 

3.1 A n  o v e r v i e w  of  t h e  IE  m o d e l  

In order to refine and validate our theory of instructionless learning we 
implemented IE (the Instructionless Experimenter),  a computational model 
of this process. The system contains a number of different mechanisms for 
learning and diagnosing failures, bound together by a strategic control com- 
ponent. Many of the details are not relevant here, since our main concern 
is with view application. However, some idea of the model's structure will 
clarify tile role played by that  mechanism. We refer the reader to Shrager 
(1985) for other details of the model. 

The input to IE includes a description of the BigTrak's visible structure, 
including wheels and a keypad with various keys; an auxiliary database of 
terms organized in an abstraction hierarchy, each represented by frames 
with various slots (e.g., the concept of FORWARD is a sort of NOTION with 
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DIRECTION = 0 (degrees)); and a set of independent abstract schemas 
called views for use in theory change. The program interacts with a Big- 
Trak simulator by "pressing" buttons and observing the resulting behavior 
of the simulated BigTrak. This behavior is described in terms found in the 
auxiliary database, such as MOVE FORWARD 9. 

Based on our psychological study, we have given IE the goal of associating 
at least one operation (as described later) with each physical feature of the 
device. The principal features of the BigTrak are its keypad buttons, but 
IE at tempts to assign roles to the other features of the device most of 
which are cosmetic. Subjects do this as well, sometimes finishing the task 
confused by cosmetic aspects. A complete theory of instructionless learning 
must explain how one determines the relevant features of a device, but this 
is not our focus here. 

The system at tempts  to establish connections between operations and 
physical features through three data-gathering activities - experimenta- 
tion, exploration, and ezercise construction. IE formulates experiments to 
test a particular hypothesis in the theory usually about one operation or 
model belief (e.g., that  the BigTrak turns are numbered in minutes of arc). 
Experiments are accompanied by a specific prediction about the BigTrak's 
behavior if the hypothesis is correct. Explorations art used to elicit action 
from the BigTrak that  can be analyzed and lead to theory changes. Ex- 
plorations do not usually make a specific prediction, but they may predict 
some general behavior (e.g., pressing a but ton  should make tile BigTrak 
move in some manner).  Finally, the program uses exercises to validate the 
entire theory. These incorporate a number of the known operations and, 
like experiments, carry a specific prediction about the device's behavior. 
IE halts when it has assigned a role to each physical feature of the BigTrak, 
and when it can construct and correctly predict the outcome of exercises 
that  include all the operations in the learner's current theory of the device. 

When one of IE's predictions fails or when it cannot run an exploration, 
the system tries to use causal analysis to determine why the failure oc- 
curred. It first a t tempts  to assign direct, blaine for the failure, trying to 
assimilate the device's misbehavior into its current knowledge. This is done 
by using knowledge about the operations and the states of various model 
objects, baekchaining from the observed behavior to a set of possible ac- 
counts for that  behavior in terms of the current theory. Specifically, IE 
retains a trace of all the operations that  were carried out in the course 
of tile present experiment. It reads this trace from the end, basing its 
explanations on a set of rules that  are specific to the operation involved. 

For instance, if the BigTrak does not. move at all in response to some 
sequence of but ton presses, IE first examines it.s memory of the operation 
sequence for the last operation used. Suppose that  the last action was 
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to press the GO button. The function of this action was to run off the 
contents of the program that had been previously entered. The causal 
analyzer tries to determine what operations loaded the program and to 
ensure that  the device was not in a state that  aright interfere with them 
(such as the BigTrak being turned off). 

However, causal analysis is not our central concern. In the present imple- 
mentation, IE's causal analyzer can fornmlate only limited types of expla- 
nation. The rules that  control the generation of alternatives and backchain- 
ing were written to handle specific situations from our protocols or specific 
cases that  were encountered in runs of the program. In complicated cases, 
we sometimes manually supply a causal analysis to the system. 

If this process of blame assignment fails (which it often does), then IE 
tries to change the theory in order to explain the failed prediction. To this 
end, the system invokes the view application process, which we describe 
in more detail below. Basically, this involves incorporating an abstraction, 
suggested by the device's structure or behavior, into the theory. 

3.2 The  representat ion  of  theories  and v iews  

Now that  we have considered tile overall structure of the IE model, we 
can turn to the details of view application, the system's primary method 
for theory revision. This process operates by incrementally combining ab- 
stractions, called "views," into the learner's current "theory" of the device. 

Our theory assumes that  the abstractions called "views" exist in memory. 
Views lie outside of the current domain - narrowly construed as the Big- 
Trak. Examples of views include the notions of memory, vector addition, 
"last in, first out" stack manipulation, clock time, and line-numbering in 
BASIC programs. None of these have any direct connection to the BigTrak 
domain, but all can be used to draw inferences about the device. Such an 
abstraction need not be abstract in all its aspects. Thus, one particular 
view of memory could specify the particular operations used to read and 
write the memory, but not the number or contents of memory elements. 

IE represents both its current theory and the views as echemas, which 
are composed of one or more frame~q that  refer to one another. A fl'ame 
is a collection of slots, each of which has a name and a value. The values 
are list structures of terms and relations, which are defined by the aux- 
iliary database mentioned above. The particular frames that  compose a 
schema depend upon what is being represented. In the domain of pro- 
grammable devices, these schemas include planning operations, scripts of 
routine usage, and physical features. Schemas also include model objects, 
which represent inferred components of the device. For instance, switches 
and memories are model objects, along with other abstract objects such 



254 J. SHRAGER 

Table 1. An initial theory of BigTrak. 

Scripts: 
D o  a n  act ion-operat ion.  

Operations: 
Type: Act ion-operat ion.  

Method: Do each user-act ion in some code-sequence. 
Function: Do a Real-World-Action.  

Instance: Forward-9 is an act ion-operat ion.  
Method: Do each user-act ion in Sequence-1. 
Function: Do (MOVE FORWARD 9). ;; a BigTrak action 

Objects: 
Type: Code-sequence. 

Structure: A list of user-actions. 
Instance: Sequence-1 is a code-sequence. 

Structure: Press CLR, Press FORWARD-ARROW,  Press 9, Press GO. 

as "the class of but tons that  cause immediate behaviors to occur." Model 
knowledge includes every object referred to in the scripts and operations, 
as well as objects referred to by other model frames. 

We have simplified our presentation of views and theories, paraphrasing 
them in English for the sake of clarity. Table 1 presents a simple theory in 
terms of its (paraphrased) schema. This theory has one script and one op~ 
eration. The learner knows that: P r e s s i n g  the  b u t t o n  sequence: CLR 
FORWARD-ARROW 9 GO w i l l  cause BigTrak to  MOVE FORWARD 
9 u n i t s .  Each operation has a method (e.g., P re s s  CLR FORWARD~ 
ARROW 9 GO) and a set of f u n c t i o n s  (e.g., MOVE FORWARD 9), 
which express the goals accomplished by the operation. There may be 
many independent functions associated with each method.  All other frames 
have only a s t r u c t u r e  slot. 

Table 2 paraphrases the CODE. AND. STARTUP view. (We will always in- 
dicated a view using capital block letters.) Essentially, this view says 
that  there are two sorts of operations. One sort (memory-operat ion)  sets 
the p rogram-p lan  and then another (the s t a r t u p - o p e r a t i o n )  runs the 
plan. Note that  this view and its contents are not specific to the BigTrak, 
but rather represent general knowledge about programmable devices. The 
other views in the IE model have similar generality. 

Table 3 shows the contents of the CLEAR view. Note that  it does not spec- 
ify programnfing or s tar tup steps. These are not essential to the semantics 
of clearing the memory. What  is crucial are the memory (program-plan)  
and the clear-operation, again a sort of immediate-operation. 

Views do not refer to one another. However, they are "dovetailed" in that  
they are all represented using a common set of primitive terms. Although 
this is the usual AI solution to the problem of common reference, we view 
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Table 2. The CODE. AND. STARTUP view. 

Operations: 
Type: Memory-opera t ion .  

Method: Do each user-action in some code-sequence. 
Function: Set the program-plan  to a Real-World-Act ion.  

Type: Immedia te -opera t ion .  
Method: Do a key-press. 

Instance: S ta r tup-opera t ion  is an immedia te-opera t ion .  
Method: Do a GO-keypress.  
Function: Do each act in the program-plan.  

Objects: 
Type: Code-sequence,  

Structure: A list of key-presses. 
Type: Key-press.  
Instance: GO-Keypress  is a key-press. 

Structure: Press a bu t ton  whose label indicates C O D E . A N D . S T A R T U P .  
Instance: P rogram-p lan  is an action-plan,  

Structure: A list of acts~ each of which is a Real-World-Action.  

it as a temporary simplifying assumption albeit an important  one. The 
particular contents of the view data base were collected fl'om our protocol 
data. When we inferred that  subjects used some view, we added that  view 
to the database. Our final version of IE was provided with eight views: 

CODE. AND. STARTUP: The notion of writing a program and running that  
program. 

CLEAR: The notion of erasing the contents of a memory. 

SIMPLE. CODED. DEVICE : The notion of giving a command and having the 
device carry out some action in response. 

SIMPLE. PROGRAMMING: The notion of adding to an explicit memory. 

COMMAND. ARGUMENT: The notion of commands that have syntactically as- 
sociated arguments. 

MODE.SHIFT: The notion of explicit modes and a way to shift between 
them. (Applying this view adds a mode check to some operation 
frames.) 

BASIC: The notion of an addressable memory, including operations for 
placing things in the memory and for reading them out. 

VECTOR. COMPRESSION : The notion of adding two directions and distances 
(as in vector addition)~ then replacing them with the result. 
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3.3 Using theories to generate interactions 

The IE model uses the frames in its current theory to plan and execute 
interactions with the device in much the same way that top-down planning 
systems operate. Scripts contain goals that are satisfied by the functions 
associated with operations; alternatively, they may contain specific oper- 
ations or operation types. Some operations specify physical interactions 
with the BigTrak (in most cases these are button presses). Other opera- 
tions specify subgoals, sequences of subordinate operations, conditionals, 
or actions on model objects. For instance, one operation might load a 
value into a memory cell. The meinory and its cells are model objects. 
Complex chains of planning and action can be represented by sequences 
of operations, rooted in scripts, and leading through subordinate opera- 
tions to button presses. As the interaction planner expands operations, it 
formulates a prediction by collecting the functions of the operations that 
are used. The resulting prediction includes both external behaviors of the 
device, such as movement, and internal actions, such as the storage and 
retrieval of information from memories. 

Consider the simple initial theory displayed in Table 1. Beginning at 
the script we see that it states one should ~'Do an action-operation." 
The only action-operation is Forward-9. Interaction planning pursues the 
Method slot and records the Funct ion slot as an expectation. In this 
case the Method says to "Do each user-act ion in  Sequence- l"  and the 
Funct ion (i.e., what this method accomplishes in the BigTrak domain) says 
to expect the BigTrak to "Do (MOVE FORWARD 9)." The user-actions for 
our method are obtained from the S t r u c t u r e  slot of Sequence- i .  These 
are the keypresses: CLR, FORWARD-ARROW, 9, and GO, which are 
done at this time. Given a more complex theory, one can see how Funct ion  
slots could lead to further expansion and thus to a richer set of expectations 
by examining the Memory-0peration and S t a r t u p - 0 p e r a t i o n  frames in 
Table 2 (pretending for the moment that this is a theory rather than a 
view). In this case, the flmetions of these operations get and set the struc- 
ture of the program-plan object. More complex theories contain more 
complex objects and operations, possibly including state variables and con- 
ditions, thus leading to more complex experiments and predictions. 

3.4 The process of theory modification by view application 

Now that we have considered the representation of views and their use 
in experimentation, we can examine their role in altering theories. The 
principal assertion underlying view application is that theories are con- 
structed by incrementally combining abstractions encoded as views. Below 
we briefly discuss the selection of views and then detail the process of 
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Table 3. The CLEAR view. 

Operations: 
Type: Immedia te -opera t ion .  

Method: Do a key-press. 
Instance: Clear -opera t lon  is an immedia te-opera t ion .  

Method: Do a clear-keypress. 
Function: Set the program-plan  to NIL. 

Objects: 
Type: Key-press.  
Instance: Clear-keypress is a key-press. 

Structure: Press a bu t ton  whose label i n d i c a t e s  the  view CLEAR.  
Instance: P rogram-p lan  is an action-plan.  

Structure: A llst of acts, each of which is a Real-World-Act ion.  

view application. We also include some comments on the assumptions that  
underlie this process. 

3.3.1 View selection 

There are a number of ways that  a particular view can be selected. 
These include recognizing the view associated with the label on a key (e.g., 
"CLR" suggests CLEAR); noticing that some action of the BigTrak is similar 
to the action that  one would obtain from some particular view (e.g., move- 
ments are mentioned in a "vehicular" view); recognizing that  the BigTrak 
is "doing the same thing as before" and selecting PROGRAMMABLE. DEVICE in 
response. Another important  selection mechanism uses the contents of the 
learner's current theory to trigger view applications. For instance, if the 
theory contains a memory, then the learner might try to apply the CLEAR 
view, guessing that  there is a way to clear the memory. 

Other selection mechanisms certainly exist. Our human subjects seemed 
to retrieve useful views in a variety of ways, and we implemented such 
selection mechanisms as needed to account for their behavior. However, 
we do not believe the set of techniques in IE is comprehensive, nor do we 
have a principled theory of view selection. This is an obvious direction for 
future research, but  our main concern here is with view application. 

3.4.2 View application 

Once IE has retrieved a plausible view from memory, it carries out the 
following five steps in order: 

1. Create a copy of the selected view, duplicating all frames in the view 
along with their contents. We will call this copy the base. 
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2. Merge the current theory with the base. This involves matching all 
frames in the theory schema for which a correlate can be found in 
the base and then copying the remaining unmatched frames from the 
current theory into the base. 

This matching process relates frames from the current theory to frames 
in the view. Each frame has an abstract type (e.g., memory-operation,  
program-plan),  and each major frame type (scripts, operations, etc.) is 
independently matched, so types cannot mix. However, multiple frames 
in a view can have the same type resulting in multiple possible matches. 
If matching is ambiguous, IE selects one of the possibilities at random~ 
we will discuss this design decision later. There might also be unmatched 
frames of a particular type. These frames are simply added to the base. 

3. Coerce all of the frames so that they are appropriate children of their 
new parents. 1 

As a result of step 2, some instance frames that were children of a 
particular frame in the old schema may now be children of a different 
frame from the new view. Numerous heuristics are utilized in this co- 
ercion step; these are cued by the syntax of the frame's slot contents. 
Suppose that an operation contains some relation between movement and 
pressing a particular button; say the operation FORWARD means approx- 
imately: "Pressing FORWARD makes the BigTrak immediately move 
forward." Further suppose that the view imports the concept of a pro- 
gram memory, in which a list of movements can become a program plan, 
and of programming (a memory-operation).  The meaning of this latter 
concept is approximately: "Put some action instruction into a memory 
cell." For instance, if FORWARD is a kind of immediate-operation and the 
new parent frame (imported from a view) is memory-operat ion (replac- 
ing immedia te -opera t ion) ,  this step will coerce FORWARD so that it is an 
appropriate child of memory-operation.  For instance, the coercion might 
result in an operation that saves the forward movement in a memory to be 
executed later, or that moves forward some remembered number of feet. 
Another possible interpretation is that executing FORWARD repeatedly will 
result in the repetition of the indicated movement. Some of the heuris- 
tics used in the coercion are specific to the primitives that compose all 
representations, both general and specific (e.g., l i s t  of). Other coercion 
heuristics refer to domain-specific elements (e.g., forward movement) and 
will differ for different domains. 

~We use the term coercion to suggest data- type coercion in which, for instance, real 
numbers are coerced to integers (by rounding). In essence, this step is "coercing" frames 
whose type (i.e., whose parent frame) has changed so that  they are valid instances of the 
new parent / type.  
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4.  Force frames that are not fully instantiated to be filled in with various 
features and objects fl'om the theory. 

Views contain some frames that are not fully instantiated. Some of 
these will have been instantiated in the match step (2), but some may 
still be unspecified. Continuing the example, the CLEAR view contains a 
program-plan and a c l e a r - o p e r a t i o n ,  neither of which is fully instan- 
tiated. Suppose that the merge operation has bound the program-plan 
appropriately, but that there is nothing for the c l e a r - o p e r a t i o n  frame to 
match in the current theory schema. In this particular case, cues in the 
uninstantiated c l e a r - o p e r a t i o n  frame constrain its binding to a feature 
(e.g., a button) that "indicates" the CLEAR view. This view relies oi1 the 
lexical semantics of the button labels to constrain selection. 

As we mentioned earlier, the frames in a view are described at vari- 
ous degrees of abstraction. For instance, in the CLEAR view, there is an 
object called program-plan whose structure is given only as some un- 
specified list of r e a l - w o r l d - a c t i o n s ;  there is also an operation called 
c l e a r - o p e r a t i o n  whose action is to nullify the s t r u c t u r e  of program- 
plan. When IE applies this view to the current theory, it. copies program- 
plan (or matches it) into the target and instantiates the new program- 
plan's structure with some object out of the theory schema. 

5. Finally, 1E ensures that each object frame plays a role in only one 
operation. 

This implements a "single-function" assumption, which is appropriate 
for the BigTrak, but which may not hold in all complex systems. Suppose 
that the CLR button (as an object) is used in some operation 0p-1. Fur- 
ther suppose that applying the CLEAR view forces CLR to be bound in the 
new c l e a r - o p e r a t i o n  by step 4. In this case, the heuristic in step 5 would 
remove CLR from its place in 0p-1. Certain changes in the operation struc- 
ture must be reflected in the script frames and other operation fl'ames that 
call upon the modified operations as subordinates. This step might entail 
breaking structures into multiple entries where a single operation type has 
now been replaced by a number of operation types. For instance, there are 
now two operations: c l e a r - o p e r a t i o n  and 0p-1 where previously there 
was only 0p-1. Scripts or other operations that used 0p-1 will be changed 
to call upon both the new c l e a r - o p e r a t i o n  and the revised 0p-1. This 
editing is done only where the modified operation is explicitly named. 

3.~.3 The independence of theorie,s from view8 

Some additional comments will help to clarify the assumptions of view 
application. First, only one view is applied in each reformulation step 
and the learner's theory is permanently changed as a result of this view 
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application. Second, the new theory is not connected to the abstractiofi 
(the view) used in the change. This last point distinguishes view applica- 
tion from many classification models of learning. Instead of classifying the 
BigTrak as an instance of a programmable-device and storing this con- 
nection, IE uses the abstraction of programmable device once to modify 
its theory of the BigTrak. After this occurs, the system does not record 
any trace of the reformulation or any connection between the view and 
the theory. This means that IE cannot draw on such knowledge later on, 
and our human subjects did not appear to do so either. For instance, once 
subjects used the concept of BASIC line-numbering, they usually moved 
on to other views rather than importing additional knowledge of BASIC. 

3.~.~ Non-monotonic theory changes 

Our psychological data indicated that subjects made non-monotonic 
changes in the process of learning about the BigTrak. View application 
can lead to such non-monotonic changes in several ways. First, new frames 
brought in with a view can replace conflicting previous frames. (This differs 
from conflict resolution at the frame matching level, which is arbitrarily 
decided.) Second, a frame can be associated with a new parent type; the 
coercion step (3) will then change the frame's contents. IE's experimen- 
tal strategy can also make the system appear to forget certain knowledge. 
Recall that interaction planning and execution always begins at the script 
frames of the current theory. A given script contains a list of functions, 
operations, and operation types. As a result of the changes made by view 
application in scripts and other operations, some operations may no longer 
be mentioned in the extension of any script. That is, during execution 
planning, some operations are not accessed. These operations will never 
appear in any use of the BigTrak. The operations are essentially lost, but 
their frames still exist in the current theory. Before these operations can 
be reused, they must be reattached to the extension of some script. This 
can occur when view application leads to a new script for the device that 
includes these operations, or because they are included in the extension of 
other operations (in step 4). Since these frames are retained in the theory 
schema, they can still play a role in matching and instantiation, and thus 
may come into play again during later learning. Our psychological data are 
ambivalent on this aspect of instructionless learning. People sometimes ap- 
pear to relearn operations and sometimes appear to recover old operations. 
This fact led us to retain inaccessible frames. 2 

2This explanation of non-monotonicity is similar to Simon's (1976) explanation of 
how EPAM-like theories can fail to recognize a new stimulus, even though it has been 
previously stored. ". . .  if one meets, and becomes acquainted with a new John Smith, 
access to information about another John Smith one had known previously may be lost, 
or at least become more di1~cult to recover." (Our italics.) 
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3.4.5 Unreasoned decision making in view application 

View application is an inherently ambiguous process. Steps 2, 3, and 4 
in the above algorithm all involve heuristic decisions about frame match- 
ing and about the bindings of various variables. However, in contrast to 
many problem-solving models (e.g., Laird, Rosenbloom, & Newell, 1986), 
no problem solving for decision-making purposes takes place during view ap- 
plication. If IE cannot distinguish between a number of options, it selects 
one at random. If conflicts arise in step 2, the model randomly resolves 
them as well. This may seem odd, since further reasoning might resolve 
the conflict in a principled way. However, our theory makes the strong 
claim that in low cost situations learners ~eldom think very hard about 
such decisions. Instead they rely upon interaction with the device to work 
out mistakes. If they make a poor decision, they will discover it during 
interaction with the device. Our protocol subjects seemed to make refor- 
mulation decisions without much thought, and they made bad decisions as 
often as they made good ones. Therefore, random resolution seems to be 
a reasonable model of our subjects' behavior. 

A further strong claim of our theory is that the learner retains no memory 
of the decisions made during view application, so no backtracking through 
the space of theories is possible. In our experiments, humans never back- 
tracked through the space of ambiguous views and bindings. They relied 
upon experimentation with the BigTrak to reveal errors, and then used 
information fi'om the failures to patch the theory, perhaps leading to new 
view applications. 

In sum, we argue against the notion that reasoning and problem solving 
play a central role in theory formation or reformulation per se. Instead 
we propose that theory formation and reformulation take place primarily 
by architectural mechanisms (e.g., view application) that do not involve 
problem solving. The learner relies upon the structure of the whole learning 
interaction to find mistakes and (eventually) to generate an appropriate 
theory. The success of this strategy depends crucially upon the low cost and 
high rate of interaction in the instruetionless learning setting. In higher cost 
situations, such as learning about a live air-traffic control system, theory 
formation would presumably take place in precisely the same automatic 
way. However, the learner might take care to consider the implications 
of its theories before actually putting them into practice, and so reject 
theories that would lead to costly or dangerous experiments. 

3.5 An example of view application 

Now that we have examined the view application algorithm and the 
assumptions it relies upon, we turn to an example of the process. The 
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Table 4. The theory after applying CODE.AND. STARTUP. The righthand column 
indicates that the entry in this row came from the view (V), the theory 
(T), or a combination (VT). The "(5)" indicates that step 5 of view 
application changed this entry. 

Scripts: 
Do a memory-ope ra t ion  followed by an immedia te-opera t ion .  T(5) 

Operations: 
Type: Memory-opera t ion .  V 

Method: Do each user-act ion in some code-sequence. V 
Function: Set the program-plan  to a Real-World-Act ion.  V 

Instance: New-Forward-Opera t ion  is a memory-opera t ion .  VT 
Method: Do each user-act ion in sequence-1. T 
Function: Set the program-plan  to (MOVE F O R W A R D  9). VT 

Type: Immedia te -opera t ion .  V 
Method: Do a key-press. V 

Instance: S ta r tup -ope ra t ion  is an immedia te-opera t ion .  V 
Method: Do a GO-keypress.  V 
Function: Do each act in the program-plan.  V 

Objects: 
Type: Code-sequence.  VT 

Structure: A l i s t  of key-presses. VT 
Instance: Sequence-1 is a code-sequence. VT 

Structure: Press CLR,  press F O R W A R D - A R R O W ,  press 9. T(5) 
Type: Key-press.  VT 
Instance: GO-keypress  is a key-press. V 

Structure: Press GO. V 
Instance: P rogram-p lan  is an action-plan.  V 

Structure: A list of acts, each of which is a Real-World-Act ion.  V 

example here demonstrates several view application steps taken from IE 
executions that  are more fully presented in Shrager (1985). We begin 
after the system has obtained some knowledge about the BigTrak, rep- 
resented by the theory in Table 1. IE knows a single BigTrak oper- 
ation: P r e s s i n g  t h e  b u t t o n  sequence: CLR FORWARD-ARROW 9 
GO w i l l  cause BigTrak to  MOVE FORWARD 9 u n i t s .  Note that  at 
this point CLR FORWARD-ARROW 9 GO is a single undifferentiated 
sequence of button-presses. That  is, the bu t ton  presses are not the result 
of setting subgoals and executing other operations. However, this sequence 
of but ton presses is accessible to the learner. 

IE examines the contents of all of the operations in the theory (in this 
case, just the fo rward-9  operation). It considers applying views that  are 
suggested by the labels of keys or by some pat tern in the operator contents. 
The use of the CLR but ton suggests applying CLEAR, GO suggests applying 
the view CODE. AND. STARTUP, and a command arrow followed by a number 
suggests applying the view COMMAND. ARGUMENT. 
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In this run, IE selects the CODE.AND. STARTUP view (paraphrased in Ta- 
ble 2) and incorporates it into the existing theory of BigTrak, giving the 
revised theory shown in Table 4. This modification does not change the 
system's external interactions with the BigTrak. The main difference is 
that the button sequence, initially interpreted as the method of a single 
operation, is now parsed into two separate operations: a programming 
step and a startup step (pressing GO). But this step has introduced sev- 
eral new concepts into tE's theory of the BigTrak, including memory and 
memory-loading operations, the distinction between memory operations 
and immediate operations, and the notion of an action sequence. These 
concepts will affect future interaction and learning in a number of ways: 
they provide suggestions for later view applications; they provide frames 
into which aspects of later view applications can be merged; and they will 
be used in the operation of IE's causal reasoning component to interpret 
BigTrak behaviors. 

The system next applies the view CLEAR (paraphrased above in Table 3), 
as suggested by the occurrence of the CLR button in the new-forward- 
opera t ion .  This time, instead of adding a new type of operation, the CLEAR 
view's immediate-operation type is bound to immediate-operation, a 
component of the theory learned in the preceding application. Similarly, 
the program-plan matches the existing program-plan,  and so forth. A 
new operation instance is generated for c l e a r - o p e r a t i o n  and the c l e a r -  
keypress  is instantiated with the CLR button. This is removed (by step 
5 of the view application process) from the previous code-sequence.  

At. this point, IE proceeded to apply the concept of multiple-step pro- 
gramming. After this, the system incorporated a notion similar to program- 
nfing in BASIC. In this view, slots in the program memory are addressed by 
numbers. In the revised theory, action operations (e.g., FORWARD) have im- 
plicit distances of one foot, and the numerical argument refers to the posi- 
tion in the memory in which this operation is placed. For instance, pressing 
FORWARD-ARROW 9 puts (MOVE FORWARD 1 (foot)) into location 
9 of the program memory. GO causes the memory to be run from the 
beginning until the end. Thus, applying this view has non-monotonically 
changed the semantics of operation arguments (the numbers) to represent 
line nmnbers in memory. The memory is also reformulated by this view 
application so that it can be addressed by the numerical arguments. The 
resulting theory is far too complex to present here, but Shrager (1985) pro- 
vides a detailed description. Although this is not a correct, theory of the 
BigTrak, it is coherent and reasonable. 3 

3At this point the knowledge in IE's causal reasoner is insufficient to handle prediction 
failures for a theory of such complexity. The program fails for this reason. 
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4. Evaluat ing  v i ew  appl icat ion 

Now that we have described the view application algorithm and seen it 
in operation, we can evaluate the mechanism along a variety of dimensions. 
Below we analy~e view application in terms of search through a space of 
theories, showing that  it constrains this search in significant ways. After 
this, we consider the manner in which view application explains results 
from our studies of human instructionless learning. Finally, we consider 
the generality of the mechanism. 

4.1 View application as constrained search 

The view application process is rather complex, and it is only natural 
to question whether the benefits of this mechanism outweigh the price. 
To explore this issue, we will carry out a search-based analysis of view 
application. 4 In search terms, each view application step can be viewed 
as a single operator that  generates a new successor state in the space of 
theories. Each such step may add a number of frames to the existing theory. 
Given an initial theory and a set of views, one can use view application to 
exhaustively generate all theories down to a given level. We will call this 
the view application theory space (or just the view 8pace). We will compare 
this space to an alternative one in which each operator adds only a single 
frame to the current theory. We will call this the simple theory space (or 
just the simple space). 

View application assures that  all theories in the view space are "coher- 
ent." For example, an incoherent theory of the BigTrak might state that  the 
device is programmable but not mention that  it has a memory. Since views 
organize theory changes that  are related to one another, view application 
(together with properly writ ten views) ensures that  such inconsistencies 
never occur. A simpler learning scheme that  ignores the constraints inher- 
ent in views could easily generate an incoherent theory. Thus, the most 
important  difference between the view space and the simple space is that  
the former contains only coherent theories, while the latter contains many 
incoherent ones as well. 

Coherence has both practical and scientific value. The assumption that  
theories are coherent considerably simplifies the rest of the IE system. For 
example, one type of incoherent theory contains unbound frame variables; 
another type mentions frames that  do not exist. Since view application 

4Although IE does not search the theory space in the normal sense of breadth-first or 
depth-first traversal, a search analysis can still lead to useful insights. View application 
does lead the system through a space of theories, but the method is much closer to hill 
climbing than to more thorough search strategies. This observation is due to Pat  Langley 
(personal communication). 
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forbids these possibilities, IE does not need to check for them. One could 
certainly include the necessary tests, but this would greatly complicate the 
system. More important, adding such tests would distribute the process 
of theory generation throughout IE, rather than having the process done 
entirely by view application. Our psychological data suggest that new 
theories are constructed all at once, rather than ill the piecemeal fashion 
required in the distributed version. Subjects rarely change their theory in 
the middle of an interaction with the Big~lYak. 

The differences between the two theory spaces is further revealed by 
examining their respective branching factors. Briefly, the viewspace is 
shallower and wider than the simple space, but it will be useful to consider 
the extent of this effect. Let us assume there exist six views in memory, 
each containing two object frames and two operation frames. One such 
view is the concept, of a stack, whose objects are HEAD and REST and whose 
operations are PUSH and POP. We may ignore script frames, since these 
average less than one script per view. We may also ignore physical feature 
frames, because they are fixed for any given device. 

One can think of a learning sequence as a series of E view application 
events. At each of these events any one of the six views can be applied, 
giving 6 • possible ways of combining views. However, in general there are 
many ways to incorporate a given view into the current theory. Because 
view application never deletes frames, the ~heory can only become more 
complex at each step. Even when the same view is applied more than 
once, the complexity of the theory can increase, since specific matching 
and instantiation decisions can be made in different ways. As a result, the 
branching factor itself increases with the depth of search. 

The very first view application is simple. Since there will be no object or 
operation frames to match in the learner's current theory (algorithm step 
2), all frames from the view will be added to form the new theory and no 
coercion will have to be done in step 3. If there are variables in the view 
that must be instantiated with parts of the current theory (step 4), then 
there is probably ambiguity. For instance; the learner might have to decide 
which of several buttons actually clears the device's memory. However, this 
only multiplies the complexity of view application by a constant factor. 
Therefore, the number of ways to transform the initial theory (with no 
operations or objects) approximates the number of available views - six in 
this case. 

Each of the resulting theories contains two operators and two objects. 
During the second view application event, one will either match a view 
frame to a theory frame or add the view frames (unmatched) to the theory 
(algorithm step 2). As we have noted, the number of possible matches 
increases with the number of frames in the theory. Let us continue with 
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the assumption that  there are two object frames and two operation frames 
in each view, and suppose N is the number of operation and object frames 
in the current theory. In this case, there will be one way to incorporate 
each view into the current theory in which no frames match, there will 
be 2N ways in which two frames match against each other, and there will 
be N ( N  - 1) ways in which only one frame matches. We then square 
this number to take both objects and operations into account, giving the 
expression 

M = (1 + 2N + N ( N  - 1)) 2 = N 4 + 2N a + 3 N  2 + 2 N + 1 

for the number of ways one can match a view against the theory. In other 
words, the number of matches M increases on the order of N 4. 

If we further assume that  the coercion and instantiation decisions (algo- 
r i thm steps 3 and 4) can be done in two ways for each frame, there will be 
a p p r o x i m a t e l y  2 M ways of coercing and instantiating the matched frames. 
However, in practice the views provide a great deal of constraint; for in- 
stance, we saw in Table 2 that  GO-Keypress  was constrained to bind with 
some key that  indicated the CODE.AND. STARTUP view. Therefore, we will 
conservatively estimate that  this ambiguity increases the branching by a 
factor of 10. 

Combining these factors, one can compute the total number of possible 
theories at the second level of the search tree. Assuming N is 2, we have 
M = 24 = 16 ma tch /add  decisions. Multiplying this number by ten gives 
160 theories, and multiplying this by six views comes to 960 successors for 
each theory at the first level. Since there were six of these, we have a total 
of 5760 possible theories after two view application events. The general 
formula for the kth level is difficult to specify analytically, since alternative 
theories at a given level contain different numbers of frames. However, 
a very conservative estimate is 60k 4, where k is the number of view ap- 
plications that  have occurred. Even this estimate makes the conservative 
assumption that  there exist only six initial views with two object frames 
and two operation frames each. 

Naturally, the branching factor in the simple theory space is much smaller. 
In this space, the number of alternatives at each level is determined by the 
number of frames in all the views (6 x 4 = 24 given our assumptions), 
multiplied by the number of ways that  a given frame can be combined into 
the current theory by addition or merging. This latter number will depend 
upon the number of frames in the theory, which remains the same at each 
level (if the fi'ame is combined with an existing frame) or increases by one 
(if the frame is added). Given the set of views we have been assuming, the 
second level of the simple space contains only 96 theories, much less than 
the 5760 number we obtained for the view space. 
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However, recall that  one step in the simple space accomplishes much 
less than a step in the view space. On the average, one view application 
step adds the same number of frames as four steps in the simpler space. 
This means the appropriate comparison is between the second view level 
and the eighth simple level. The latter space contains approximately 124 
million alternative theories after eight simple operations, many more than 
the 5760 in the view application space. This difference only increases with 
deeper levels and more complex views. 

This clarifies the nature of the two theory spaces. At equivalent levels, 
the simple space contains all the theories contained in the view space, as 
well as many others. The vast majority of these theories are incoherent in 
that  they violate constraints that  would be obeyed by the view application 
process. Despite the size of the view space, the simple "hill-climbing" strat- 
egy used by IE is sufficient precisely because all of the theories contained in 
this space make some sort of sense. View application lets the system make 
large, organized leaps in its knowledge about a device, greatly constraining 
the process of theory construction. 

4.2 View application and human instructionless learning 

In section 2 we described several generalizations from our psychological 
experiments in instructionless learning. For instance, we noted that  sub- 
jects learn by observing the positive behavior of the device S when their 
predictions fail, rather than backtracking or doing careful causal reasoning 
about the failure. This led us to propose a simple reformulation mecha- 
nism embedded in a learning system that  takes advantage of the interac- 
tion with the device to uncover erroneous theories. Subjects made comple× 
non-monotonic changes to their theories using knowledge that  seemed to 
lie outside the domain of the BigTrak (e.g., knowledge of vector addition). 
This led us to propose view application as the mechanism for theory refor- 
mulation by incremental combination of abstractions. 

The above results - that  the view application theory space is much shal- 
lower and more dense with coherent theories than the simple theory space 

permit us to make further comparisons with the psychological data. Hu- 
man learners apparently do not try very many different theories. They 
execute only about 52 interactions with the BigTrak. We do not know 
if human learners devise incoherent theories of the device and then reject 
them without an interaction. However, the mean time between interactions 

5In saying that people use the device's "positive" behavior, we mean that they usually 
observe and analyze what the device actually does, rather than analyzing how the device's 
behavior differs from what was exoected. 
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is just 28 seconds, so it seems unlikely that people are internally considering 
very many alternative theories. 

When IE is playing the role of a cognitive model, we try to match a 
particular human protocol and so we make specific decisions about which 
view to apply at each step and about which frames to match between the 
view and the theory. In this mode, all of IE's learning and causal reasoning 
mechanisms are active in addition to view application. This permits the 
system to simulate the complex interaction of mechanisms that play a part 
in human instructionless learning. Elsewhere (Shrager, 1985) we argue that 
as a cognitive model IE's knowledge (captured primarily in the views) can 
account for the expected theories of our subjects. Moreover, the model will 
not overprediet by generating theories that we would find unnatural for 
human learners. IE does not actually simulate long learning sessions by 
itself because its causal reasoner is very limited. However, without invoking 
causal reasoning, we can make IE track subjects' behavior in sessions of 
learning about the BigTrak through as many as six view application steps, 
involving up to 12 interactions with the BigTrak. If we manually give IE 
the results of causal reasoning, it can track sessions of up to three times this 
length (about 30 interactions). Since human protocols contain about 52 
interactions with the BigTrak, some of which do not correlate with theory 
changes, IE comes close to modelling entire learning sessions. 

Some other generalizations arise from view application learning that cor- 
relate closely with our human protocol data. View application generally 
leads the system to incorporate mechanistic notions into its theory because 
such mechanisms are part of the views. IE is not given the goal of discover- 
ing a mechanistic theory of the device under study, but it does this anyway 
as a side effect of view applications. As a result, IE induces a mechanistic 
model for the device. This mechanistic model plays a role in causal rea- 
soning at failures and in later view application. The induced mechanistic 
model thus has a direct impact on later learning. 

The increasing complexity of theories leads IE to engage in increasingly 
complex interactions with the device. We saw that the length of the "exer- 
cise" interactions generally increased in length over the session. IE also hy- 
pothesizes increasingly complex internal machinations in the device model. 
For instance, some devices are not programmable in the sense of putting 
in many steps of the same type before executing any of them. A digital 
watch is such a device. However, if IE applies the BASIC view while study- 
ing such a device, it will expect to be able to store steps in a program 
memory, which is wrong. Thus, theories can become more complex with- 
out necessarily becoming more correct. IE will retain an incorrect theory 
until some view application suggests a different function for the aspects of 
the device that were incorrectly associated with programmability. 
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4.3 Generality of view application 

The main constraints on IE's generality are its representation for the 
BigTrak theory and its initial knowledge base of views. The choice of 
scripts, operations, and model objects is specific to interactive complex 
devices, but is still quite general. This framework was drawn from an 
approach that Moran (1981) applied to a mail system, but other machines 
can easily be represented. In addition to using this representation for the 
BigTrak we have used it with simplified models of a compact-disc player, 
a microwave oven, and a digital watch. 6 Although this is a fairly small set 
of devices, there seems to be no reason, in principle, that IE could not go 
further with an appropriate set of views. 

The IE model also makes a number of assumptions about the nature of 
the device. For instance, it assumes that the device exhibits deterministic 
behavior, an assumption that our subjects seemed to share. Deterministic 
behavior is implicit in the particular views that IE uses, and this leads to 
deterministic theories. But there is no intrinsic constraint that requires 
determinism, and one can create a non-deterministic theory by simply 
applying a non-deterministic view. Such a view might contain internal 
operations that select among subgoals randomly. For instance, one can 
create a view in which commands are placed into random locations in the 
program memory. This could be merged with the learner's current theory 
by view application, leading to a theory that has random command stor- 
age. One would have to add some specific performance rules to interpret 
non-deterministic characteristics, but this does not affect view application. 

Another assumption made by the IE model is that each operation has a 
single associated function. It is more difficult to write views that violate 
this assumption, since it is crucial to view application. The single-function 
assumption assures that appropriate changes are made in the scripts of 
the theory when changes are made in operations (step 5 of the algorithm). 
However, even devices with multiple-function operations can evoke only 
one flmction at a time. One can easily simulate this situation by divid- 
ing the complex single operation into multiple operations and adding state 
information to the model objects. The separate operations would be trig- 
gered according to the mode that the device happens to occupy at the time. 
Therefore, with some effort, one can represent a device that has multiple 
functions associated with its operations. 

aSimulating these devices entailed making certain displays and outputs into explicit 
actions, and this removed much of the richness of the devices' behaviors. For instance, 
our simulations represent the musical output  of a CD player, the ejection of the disc, the 
movement of the BigTrak, and the BigTrak's generation of beeping sounds as behaviors 
of precisely the same kind, using symbolic terms like BEEP and SONG-t. 
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The most important assumptions made by the IE learning model are 
that the device under study is interactive, that interactions will produce 
rich behaviors to cue view applications, and that the cost of interaction is 
low. IE will not do very well in learning how to operate an air-traffic control 
system; perhaps it is more correct to say that the passengers will not do 
very well. The simplicity of view application depends directly on the ability 
of the learning system to work out erroneous decisions by interaction with 
the device, and to learn by observing what occurs when predictions fail. 

5. Discuss ion 

In this section we compare view application with other knowledge-rich 
learning models and models that work in similar domains. We close by 
considering some directions for future work and by summarizing our results. 

5.1 Related approaches to knowledge-rich learning 

IE generates a theory of a complex device through knowledge-based the- 
ory formation, and view application plays the principal role in this process. 
This mechanism is related to a variety of other techniques described in the 
AI literature, including analogy and categorization. Below we compare and 
contrast it with these earlier frameworks. 

In the analogical approach (Gentner & Gentner, 1983; Greiner, 1985), 
one selects a source schema from the schema library and carries over knowl- 
edge into a target schema. At first glance this seems very similar to view 
application, but there are a number of differences. First, analogy maps be- 
tween two instances, whereas view application maps an abstraction (a view) 
onto an instance (the device theory). Second, most analogical learners are 
additive they only add structure from the source into the target; in con- 
trast, view application can both add knowledge and reformulate existing 
knowledge by coercion. Finally, analogical methods typically associate the 
source concept, with the target concept by finding some common abstrac- 
tion. In view application, the source begins as an abstraction. However, 
a view is not an abstraction .from the current theory; rather, it contains 
more or different information that can be applied to the theory. 

Within research on analog3~, Bott's (1979) work on learning the Unix 
editor and Burstein's (1983) work on incremental debugging in learning 
BASIC are most similar to the current effort. Like IE, both Bott's and 
Burstein's systems incrementally incorporate knowledge through successive 
analogies. However, both depend upon a teacher's advice, whereas IE 
reformulates its theories by observing device structure and behavior. Also, 
Burstein's program debugs the current theory when problems arise; in 
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contrast, our model repairs problems mainly by asserting a new view. As a 
result, IE makes broad jumps in its theory space, directed by the features 
and behaviors of the device it is observing. This also departs significantly 
from approaches that use "causal theory retbrmulation" (e.g., Hammond, 
1986), which work primarily by accounting for failed predictions. 

Another related approach involves the notion of categorization. In this 
framework, one infers knowledge about the target by classifying it as an in- 
stance of some more general source concept.. The script applier mechanism 
of SAM (Schank & Abelson, 1977; Cullingford, 1981) is one example of a 
categorization scheme, and view application is similar in many respects. 
However, scripts organize information about story events, whereas views 
organize knowledge about operations, objects, and scripts that make up 
complex systems. Scripts typically represent sequences of events, leading 
to a predictive or interpretive processing mode; special reasoning is in- 
voked only when expectations are violated. Therefore, one continues with 
tile current script, until some problem occurs, without dealing with com- 
binations of scripts or plans. In contrast, IE attempts to understand a 
device's structure in its entirety; this means it. must apply an entire view 
at once and thus deal with the problem of incrementally combining views. 

Wilensky (1983) has provided one account of conceptual combination 
using script-like representations. His PAM/PANDORA model maintains 
multiple goals, each of which might trigger different plans. A recta-planner 
embodies heuristics for resolving goal conflicts and other problems. Thus, 
problem solving (recta-planning) takes place in order to combine goals and 
plans. The theory of view applicat, ion explicitly excludes this technique, 
making decisions arbitrarily and then relying on experimental interactions 
to uncover mistakes. Wilensky's approach is also similar to IE in that it 
continually revises its interpretation of a story, refining its analyses ac- 
cording to later findings. However, in PAM these refinements are required 
because of missing information; this differs fl'om IE, which must reformu- 
late its theories becanse its unreasoned decision-making processes can make 
the wrong choice, r 

Most researchers in the script inference tradition have paid a great deal 
of attention to "getting the inferences right." In contrast, our theory claims 
that in many circumstances, the learner need not expend the time and en- 
ergy to ensure correct inferences, since problems will be worked out during 
interactions. The ability of our learner to succeed without deeply reasoned 
theory changes and without backtracking results from the low cost of in- 
teracting with the BigTrak in the instructionless learning paradigm. 

7Furthermore, Wilensky modelled "idealized" reasoners, whereas IE simulated the 
behavior of actual subjects. 
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The EG system (Dietterich & Buchanan, 1983; Dietterich, 1984) also 
bears a close relation to the current work. This project involves experi- 
menting with (and forming theories about) a live Unix system in the same 
way that IE experiments with (and forms theories about) the BigTrak. 
Since Unix has a large number of internal state variables, inferring these 
variables is one of EG~s major goals. State variables play the same role 
for EG that a device model plays for the IE system. Without a device 
model, state dependencies in the BigTrak would make its description quite 
complicated. 

However, EG also differs from IE in some important ways. The first 
divergence involves methods for inferring state variables. As we showed 
in section 4.1, the introduction of even a simple device model leads to the 
possibility of making incoherent theory changes. View application resolves 
this dilemma for the IE system, but EG actually searches a complex theory 
space with a syntax similar to that of programming languages. It makes 
no attempt to incorporate theories by analogy or script-like instantiation. 
Second, IE relies upon the experimental interactions to uncover problems; 
this lets it avoid much causal analysis or theory-driven interpretation of 
data. In contrast, Dietterich's approach relies heavily on such a data in- 
terpretation module. Finally, experimentation plays a specific role in EG 
with respect to making search decisions. Since IE is not explicitly searching 
a theory space, it uses experimentation to validate theory changes rather 
than to direct them. In this respect, IE is closer to Burstein's use of ex- 
perimentation than to Dietterich's approach. 

5.2 Directions for future research 

Although we believe view application constitutes a significant contri- 
bution, clearly more work remains to be done on instruetionless learning 
and methods for incremental conceptual combination. Below we discuss a 
number of promising research directions. 

The weakest aspect of IE is the interaction between the causal reasoner 
and the view application mechanism. In section 4.1, we saw that the system 
may propose an arbitrary number of model objects in a device as a result 
of repeated view applications. The quest for parsimony seems to prevent 
humans from taking such actions, and this is an obvious criterion to include 
in future theory formation systems. Certain view application steps should 
only be made when they are necessary to account for observed effects. 
Dietterich's EG system incorporates such a heuristic constraint. 

Despite our contrast between knowledge-based and search-based learn- 
ing methods, these two approaches are not mutually exclusive. One can 
imagine a combined approach that used view application to take large steps 
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in tile theory space and a search method to take smaller steps. The view 
application process would impose an overall structure on the search space, 
and a search mechanism could then explore variations on this structure. 

Moreover, view application suggests an approach to revising the struc- 
ture of this space over time. Although IE currently uses views only to form 
concrete theories, it could easily be altered to combine simple views into 
more complex ones. Rather than forcing its theories to be completely in- 
stantiated, the system would simply leave open slots in fl'ames that are not 
flflly instantiated (removing step 4 of the algorithm). This process would 
lead to new abstract views, which would provide more powerful (and more 
constrained) "operators" for future search. Thus, view application does 
more than account tbr knowledge-rich learning; with modification it should 
also explain the acquisition of the knowledge base itself. 

Our present research has gone in a different direction. IE assumes that  
all views and theories are composed fl'om a common set of primitives. This 
assumption pervades artificial intelligence, and is most explicit in systems 
based upon conceptual dependency theory. However, this is an unreason- 
able assnmption for systems with a large amount of complex knowledge. 
It is difficult to find a natural way to express some concepts in an enforced 
ontology of terms and relations. For this reason, we feel that  learning sys- 
tems shoukt be able to combine schemas (views, device theories, etc.) that  
are expressed with different terms and relations. Therefore, we have been 
studying the problem of "framework alignment." That  is, how can views 
that  are cast in different terms and relations be sensibly combined? The 
answer to this question has implications far beyond the task of instruction- 
less learning, and we hope to report on our progress in future papers. 

5.3 S u m m a r y  

In our psychological studies of instructionless learning about complex 
devices, we found that  people sometimes make large coherent changes in 
their theory. We interpreted these reformulations as cases in which the 
learner chose to view the device in a different w a y -  specifically, as an 
instance of some existing abstract knowledge structure. This insight led us 
to implement a theory formation system (IE) whose principal mechanism 
is view application, which carries out this abstract reinterpretation (or re- 
viewing) process. 

View application implements incremental conceptual combination be- 
tween abstract schemas, c.alled views, and a concrete theory of the device 
under study. The mechanism works by classifying the device as an instance 
of an abstract category, based on the device's structure, its behavior, or 
as suggested by the learner's current theory. The learner then selects an 
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abstract schema that is representative of tile category and refornmlates the 
current theory in terms of that schema. No problem solving takes place 
during view application itself. Ambiguities are arbitrarily resolved and 
then worked out during later interactions with the device, either by fur- 
ther view applications or by other aspects of the complete learning system. 
Tile present theory does not specify how views are learned, merely how 
they are used in learning. 

We designed IE and view application tbr the task of understanding com- 
plex devices, and it has been most extensively tested for the BigTrak, a 
programmable toy tank. This was the device that we used in our psycho- 
logical studies. However, we have since tested IE on other devices, such as 
a simulated compact-disc player, a digital watch, and a microwave oven. 
Some additional views had to be added to the system to let it handle 
these new domains, but the basic mechanism of view application remained 
unchanged. 

The theory that IE constructs by view application becomes more complex 
as learning progresses, although it will vary in correctness. The resulting 
theory generally contains a mechanistic model of the device, but this results 
fl'om the particular views we provided, rather than from the process itself. 
In principle, IE can learn about any device for which it has appropriate 
views and for which the cost of interaction is low. 

One clear benefit of view application is that it lets the learning system 
make large, coherent jumps in the theory space. Learning in this way com- 
pares favorably against search in a theory space that is connected by finer 
grained operators. The view application theory of learning also matches our 
psychological data better than the more atomistic search model. The the- 
ory suggests that simple knowledge-rich learning can succeed in very com- 
plex domains, provided the learner is given sutficient background knowl- 
edge, and provided he can interact with the system under study. IE is such 
a learner and view application is its principal mechanism. 
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