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Abstract. The method of estimation of the limits, containing the equator inclination of a celestial 
body, had been developed. In this method it is necessary to know the orbital elements and the mass 
of a celestial body. Another condition is that the axial rotation of a body should be in the resonance 
with its orbital motion. It has been found that the equator inclinations should have the values between 
1V7 and 2V6 for Mercury and between 100 and 1% for the Moon. It also has been found that largest 
harmonics in Mercury’s physical libration are the harmonics sin(4 - 3g), cos(+ - 3g), sing and sin 2~. 

1. Introduction 

At this time there is still no proper determination of Mercury’s equator inclination 
to the ecliptic. Schiaparelli found that the period of rotation of Mercury is equal 
to the orbit period and he also supposed that Mercury’s equator plane coincide 
with its orbital plane. As it was found later, during identification of the spot’s on 
Mercury’s surface using Schiaparelli’s maps and photo of Dollfus (1953), disagree- 
ment in the spot’s latitudes exist. Then Sharonov (1958) pointed out that these 
disagreements may be resolved if it is suggested that Mercury’s equator plane lie 
in the ecliptic plane. 

Radar range observations in 1965 by Pettengill, Dyce and Shapiro (1965, 1967) 
gave more accurate information about Mercury’s rotation. According to these 
measurements, the period of the axial rotation is about 59 ? 3 days, contrary to 
the early determinations (88 days). Colombo (1965) was the first who found that 
this new value of the rotation period is very close to the 3 : 2 resonance with the 
orbital period. This fact had induced few researches to study theoretical basis of 
the Cassini’s laws. So, Colombo (1966) and Peale (1969) generalized the second 
and the third Cassini’s laws. 

The most complete theoretical study of a resonances in the rotations of a 
celestial bodies had been made by Beletskii (1975, 1977). He not only explained 
Cassini’s laws but also made their generalizations. As for the 3:2 spin-orbital 
resonance in Mercury motion, he pointed out that: 

1. such resonance cannot take place on the circle orbit, the orbit must be 
elliptic; 

2. rotation must take place round the smallest axis of the inertia ellipsoid; 
3. the greatest axis of the inertia ellipsoid is in the direction to the orbital semi- 

major axis when passing perihelion; 
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4. the spin axis, the normal to the orbital plane and the perpendicular to the 
ecliptic must lie in one plane, perpendicular to the line of nodes. There are 
four stable positions of Mercury’s spin axis. One of them is placed on the 
meridian F = (I - a) = 90”, where 1 is the mean ecliptic longitude of Mercury 
and Kl is the longitude of ascending node of the orbit on the ecliptic. Another 
three stable positions are on the meridian F = 270”, two in the region po < 7~ 
/2 and one in po < n/2, where po is the obliquity of the equator’s axis to the 
orbital axis. Most probable position for the stable point is the last one. 
According to the radar ranging observations po had been estimated as 
po < 25”, but according to Beletskii (1975) it satisfies to po G i = 7”, where i 
is the orbital inclination. In all three cases ascending node of the equator 
must coincide with the orbit ascending node. 

In this article the limits of possible values of the equator inclination to the ecliptic 
and the main harmonics in physical libration of Mercury had been estimated. 

2. Coordinate Systems 

Let the ecliptic coordinate system OXYZ be a basic coordinate system for the 
further investigations. The origin of this system 0 is placed at the center of mass 
of Mercury and the OX axis is in the direction to the ascending node of the 
orbit on the ecliptic. Let us also introduce “accompanying’‘-coordinate system 
OX’Y ‘Z’, which rotate uniformly around the ecliptic axis OZ with the angular 
rate 

p = 6 + 3/2g. (1) 

The position of the OX’Y’Z’ system relative to the OXYZ is determined by the 
angle 

cp = w + 3/2g ) (2) 

where w is the argument of perihelion, g the mean anomaly of Mercury. Let us 
consider Mercury as a rigid body and let us take the coordinate system Oxyz, 
which is fixed in the body and coincides with the principal inertia axes. So, x axis 
coincides with the greatest axis and is in the direction to the Sun in perihelion, 
mean inertia axis coincides with the y axis and smallest with the z axis. Principal 
inertia moments relative to these axis are denoted as A, B and C respectively and 
satisfy to the condition 

A<B<C. (3) 

The position of the xyz frame relative to the X’Y’Z’ triad are determined by the 
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X 

Fig. 1. Coordinate systems: (X, Y, Z)-ecliptic; (X’, Y’, Z’)-uniformly rotating with angular rate = 
p; (x, y, z)-coinciding with the principal inertia axis. The transformation (X’, Y’, Z’) + (x, y, z) is 

carrying out by the positive turns on the angles II, V, ?r. 

rotation angles: p - around the 2’ axis, v - around the Y” axis and T - around 
the x axis (Figure 1). 

Angular variables, p, V, TT are the components of Mercury’s physical libration. 
Because the values of these variables are the small quantities we can use for the 
further studying only linear part of the differential equation. The coordinate 
system transformation (X’Y’Z’) + (x, y, z) are represented here by the simplified 
formula: 

3. Transformation of Euler’s Equations 

Let (p, q, r) be the projections of the angular velocity vector of Mercury along to 
the axis of the rotating frame (x, y, z) and are determined by the kinematic Euler 
equations 

p=-(p+fi)sinv++, 
q=(p+fi)cosvsin7r+ Scos~, 
r=(p+~)cosvcos7r- tisin7r. 

(5) 
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By use of the leading terms in the force function, describing interaction in 
Mercury-Sun gravitational field in the form 

u= -(~fp)(~~(,,:.Bu~+,,:), (6) 

where f is the gravitational constant; M. is the mass of the Sun; a is the mean 
distance; R is Mercury’s radius vector; ul, u2, u3 is the direction cosines of Mer- 
cury’s radius vector relative to the principal inertia axes and coefficient Q according 
to the third Kepler law 

Q=;fT=’ ” 

2 1+ (MVIM~) ’ (7) 

with n Mercury’s mean motion and h4Z the mass of Mercury. Euler’s dynamical 
equations then are 

Jj + aqr = aQ f 
0 

-3 (2U2U3) , 

4 - @rjJ = -/3Q ’ 
0 

-3 (2U&) , 
a 

i + ypq = yQ t 
0 

-3 (2~~24 ; 

where 

C-B C-A p=-’ B-A 
a=A; B ’ 

Y=- 
c ’ 

(8) 

(9) 

which we call “dynamical flattening”. 
For our further estimations we shall calculate direction cosines ul, u2, u3 using 

unperturbed keplerian Mercury orbit. Direction cosines l’, m’, IZ’ of Mercury’s 
radius-vector in X’Y ‘2 ’ frame are 

and direction cosines relative to the rotating xyz frame are 
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Here IJ is the true anomaly and i, Mercury’s orbital inclination to the ecliptic. 
Using (11) we can produce the following multiplications: 

U~U~ = lfmi - f.L(P - rn’2) + v(m’n’) + Tr(f’n’) , 

U~Uj = Z’n’ + p(m’n’) + 7p - d2) - nfl’m’) , (12) 

u2uz = m’n’ - p(Z’n’) + zfl’m’) - 7r(m” - n’*) . 

The functions in a right sides of these multiplications are determined from (10). 
They have the following trigonometric form: 

1 ‘m’ = - $ sin2 i sin 24 - $ cos4 i sin(3g - 2u) - 

- h sin4 k sin(44 - 3g + 2~) , 

Z’n’=isin2isin4-hsinicos2isin(4-3g+2v)+ 

+ h sin i sir? i sin(34 - 3g + 2u) , 

m’n’ = $ sin 2i cos #I - k sin i cos2 i cos( C/I - 3g + 2u) + 

+ i sin i sin* i cos(34 - 3g + 2~) , 

1’2 - mf2 = - i sin2 i cos 24 + cos4 k cos(3g - 20) + 

+ sin4 i cos(44 - 3g + 2u) , 

+ t sin2 cos(24 - 3g + 2~) + i cos4 i cos(3g - 20) + 

+ i sin4 i cos(4+ - 3g + 2~) , 

(13) 
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+ i sin’ cos(24 - 3g + 2u) - i cos 4 ; cos(3g - 2u) - 

- h sin4 i cos(4+ - 3g + 2u) ; 

where 2w in arguments of trigonometric functions had been substituted by the 
2w=2r#~-3g. 

Let us also introduce the following functions: 

&=2 E I’m’, 0 a -3 

-3 

&=2 E l’n’, 
0 a 

-3 

S3=2 R m’n’, 
0 a 

-3 

s4=2 5 (l’=-rd=), 0 s5=2 E 
a 0 

-3 

(l’= - d2) , 
a 

(14) 

0 
-3 

&=2 E @p-4=), 
a 

which are represented in a form of series with arguments muitiplied to the mean 
anomoly g: i.e., 

R (0 
-3 

a 
= z. Ci3To cos kg, 

R C-J 
-3 

a 
“,“z(x - kg) + kzo; C,‘,“::(x + kg) , 

R 0 
-3 

- 

a 
;$(x T u) = ,z,; (Ci3,’ + Sk3,1)z(~ T kg) + 

+ g ; (ci321 - S,“,‘)::(x + kg) , 

+ ,.,; (c,L3,= - s,3~‘)~s(x + kg) . 

(15) 

The coefficients Ck and Sk are the functions of the orbital eccentricity e. Up to 
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TABLE I 

Trigonometrical expansions of &, &, &, & 

Arg &(sin) S‘t(cos) &(cos) Mws) 
& Ali10-3 A4i10-3 Aw10-3 A6cW3 

0 
g 
% 
% 
24 
24-g 
24-Q 
24-% 
24+g 
24+&T 
24+3g 

648.00 
-530.87 1244.37 

101.51 -101.51 

-7.91 7.91 
-2.40 2.40 

0.71 
-0.21 0.21 
-2.40 2.40 

0.71 
-2.14 0.21 

1687.71 391.70 
1876.78 -611.95 

84.53 287.55 
56.32 56.32 
22.47 6.65 
22.35 17.54 

0.21 -0.21 
10.42 5.61 

0.21 -0.21 

TABLE II 

Trigonometric expansions of &, S3 

A% &(sin), &(cos) 
Yi Ai10m3 

4 49.40 
4-g -69.54 

4 - 2 23.94 

4- 3 3.49 

4+s -4.56 

4+ 2g 11.52 

4 + 32 3.48 

the e2 they can be taken from the Cayley’s (1861) tables. In Tables I and II we 
represent expansion of the 3, function in to the series with multiple to g arguments. 
In these tables the coefficient Aki of a harmonics are in the radians. In calculations 
the values i = 7”OOW’ and e = 0.205632 had been used. 

4. Differential Equations of the Problem in a Linear Approximation 

From the suggestion that the components of Mercury’s physical libration, ,u, Y, 7~ 
are the small quantities, we can write dynamic Equation (8) as 

ii = rQl& - ,4&o + &I+ vs3 + 61, 

i; + n(1 - /?)7j + j3n’v = -pQ[& + ,uS, + <Aso + $5) + ?r&] , (16) 

7j:-n(l-(Y)i+ an% = crQ[S3 - /.L& - v& - n-(Aa + &)I . 

If we retain in the right sides of the equations only secular terms, then we can get 
the following system of a linear differential equations of oscillating motions, 

P + (YQAKJP = rQ& , 
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i;+ n(1 - p)S- + p(~” + QAx,)v = -pQS, , (17) 

7i: - n(1 - ~)ti + a(n* + QA&r = aQ& , 

where Aa, Aso, A6,, are the coefficients of a secular terms in a series &, &, &. 
In (17) the first equation, describing librations in longitude p, may be separated 

from two others. It represents the equation of a forced harmonic oscillations 

/Ii + 02p = 2 YQAli sin Si , 
i 

02= YQAIO; 

(18) 

and its solution has the following form 

p = B sin(wt + 0) + x .yz”“:’ sin & , 
I 

(19) 

where B and 0 are the integration constants. 
In our problem for the determination of a bounds of the equator’s inclination 

to the ecliptic, the main interest is presented by two last equations in (17). They 
present the system with two degrees of freedom and may be written in compact 
form 

i; + ~117j + LY~~V = -C PQAi sin yi , 

7i: - ~2lti + ~22~ = C &QAi COS yi ; 
(20) 

where 

a11 = 4 - P), a,,=n(l-a), 

a12 = P(n’ + Q&o), a22 = a (n’ + Q&O) , 

The full solution of (20) is 

(21) 

v = B1 sin(qr + Ox) + B2 sin(tt + 02) + z Ki sin yi , 

7~ = B~KI COS(‘$ •I 0,) •I B2~2 COS(&f + 02) + 2 Li Sin ‘J’i ; 

where B1, BZ, 01, O2 are constants of a free librations, 

77 = v(n2 + Q&OF 

5 = v/<n2 + Q&o)@ 

proper frequencies , 

(22) 

K1 = 
a2lrl 

-a22 + T2 

I 

coefficients of distribution . 
0215 

K2 = 

-a22 + f2 
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We shall consider further only the forced oscillations. The solutions will be a 
quasi-periodic functions in a simple form 

V= IX Ki sin yi, r= CLj cosyj * 

If we substitute these expressions in (20) and take the coefficients attached to the 
identical trigonometrical functions, then two equations with two unknowns Kj and 
Li can be written for each ith harmonic: i.e., 

Solving this we get 

(23) 

Thus, the problem of determination of a forced oscillations in v and rr in a linear 
approximation may be solved quite easily. 

5. Determination of the v, m and p Component of Mercury’s Physical Libration 

At the moment we know well from the observations the orbital inclination i, 
orbital eccentricity e, mean daily motion IZ, mass ratio m/MO, and mean daily 
angular rate p. But still there is no proper data about Mercury’s moments of 
inertia. 

Nevertheless we are in the position to determine their bounds, containing pos- 
sible values of physical libration of Mercury. 

Beletskii (1975) had proved, that stable resonance (3 : 2) rotation of Mercury is 
taking place around the minimum inertia axis if 

A<B<C. 

This means that the physical libration parameter 

f=aJw-B) 
P A(C-Al 

lies inside the interval 

OSf<l. (26) 

The p value is a characteristic of a inertia ellipsoid flattening in the xz plane. We 
believe that the most probable value of p lies between lop3 and 10P6. From this 
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suggestion we calculated the components of the physical libration of Mercury for 
different values off and j3 to obtain, 

f = 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 

p = 10-3, 10-4, 10-5, lo+ ) 

setting 

i = 7”00’18”, e = 0.205632, n = 0.0714248. 
r&/m= 6000000 ) p = 0.1071374, 

The result of calculations of a main harmonic in v and 7r, using (23), are presented 
in Table III. The forced librations in ZJ had been calculated using (19). In both 
cases the calculations were carried out for the same values of (Y and /3. The value 
of y has been found as 

6. Discussion 

If Mercury is rotating strictly in accordance with Cassini’s laws, then the coordi- 
nates v and 7~ must be the functions of only one argument - namely 4. The mutual 
location of the ecliptic, equator and orbit of Mercury in this case are shown on 
Figure 2. In case of pure Cassini’s motion the pole of the ecliptic, pole of the 
equator and of the orbit (Z, z and P respectively) must be in the plane which is 
perpendicular to the node line. Coordinate ZL in that case must be zero, but 
components v and 7r should have the different signs. If the ascending nodes of the 
orbit and of the equator are coincided, then v will have negative sign and r- 
positive (Mercury case). And vice versa, if the decending node of the equator will 
coincide with ascending node of the orbit, then v win be positive and T-negative 
(Moon case). 

From spherical triangle ZNz it follows that 

tan( - V) = tanZsin4, 

sin7r=sinZcosf$; (28) 

where Z is the inclination of the equator to the ecliptic*. 
So, the mean rotation satisfying to the Cassini’s laws may be presented with the 

enough precision by the functions. 

* Let us note, that negative turn on the Y angle round the Y’O line is correspond to the positive turn 
of I around the node line ClO. 
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TABLE III 

Mercury’s physical libration components for the values off (0.0-0.8) and /3 (1O-3 - 10m6) 

f=O.O 
Arg p = lo-” p = 1om4 p = 1o-5 p = 1om6 p = 10-Z p= 10-a @= 10-5 p= 10-G 

Y ?I 
sin cm 

4 - 6037’144 -6037:‘33 -6037’!33 -6037:‘33 6037’(33 6037:‘33 6037!33 6037”33 
4-g 1.08 0.11 0.01 -3.23 -0.32 -0.03 
4 - 2g -0.37 -0.04 -1.11 -1.11 -0.01 
4- 3g -421.17 -381.55 -196.60 -33.62 -421.17 -381.55 - 196.60 -33.62 
4+L? -0.26 -0.03 0.16 0.02 
f++2g 0.30 0.03 -0.13 -0.01 
4+3tz 0.05 0.01 -0.02 

I = I”667 

Arg p = 1o-3 
sin 

g 1641’42 
28 -7.85 
24 0.27 
24-g 0.19 
24-Q 0.22 
24 - 3g -68.18 
2dJ+.e 0.05 

f=O.O 
p = 1o-4 p = 1om5 p = 10rn6 

P 

16!43 1:‘64 0.16 
-0.79 -0.08 -0.01 

0.03 
0.02 
0.22 

-68.18 -68.18 -68.18 

f=O.l 
Arg p = 1om3 p = 1o-4 6 = 1o-5 p = 1oP p = 1om3 p = 1o-4 p = 10-5 p = 10-e 

Y lr 
sin cos 

4 
4-g 
4 - 2g 
4 - 3&? 
4+g 
4+2g 
4+ 3g 

-649WO4 -6490!38 -6490’!42 - 6490’!42 6489!53 649w33 6490?41 6490!42 
1.40 0.14 0.01 -3.33 -0.33 -0.03 

-0.26 -0.03 -1.07 -0.11 -0.01 
-370.60 -336.41 -175.06 -30.20 -370.66 -336.41 -175.07 -30.20 

-0.27 -0.03 0.18 0.02 
0.31 0.03 -0.16 -0.02 
0.06 0.01 -0.02 

I = l”802 

Arg p = 10-J 
sin 

g 147:‘96 
2g -7.07 
WJ 0.24 
24-g 0.17 
24-Q 0.20 
24 ~ 3g -68.18 
24+g 0.04 

f=O.l 
p = 10-4 p = 10-X p = w6 

IL 

14’(78 1:‘48 0.15 
-0.71 -0.07 -0.01 
0.02 
0.02 
0.02 

-68.18 -68.18 -68.18 
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TABLE III. Continued 

Arg p = lo-” p = 1o-4 
Y 
sin 

4 -6922!79 -6923!36 -6923!41 -6923:42 692Y79 69231’26 6923!‘40 6923:42 
4-g 1.72 0.17 0.02 -3.44 -0.34 -0.03 
+-a -0.15 -0.01 -1.04 -0.10 -0.01 
+-3g -322.23 -293.06 -153.98 -26.80 -322.34 -293.08 -153.98 -26.80 
9+g -0.29 -0.03 0.21 0.02 
4 + &T 0.33 0.03 -0.19 -0.02 
4+3&T 0.06 0.01 -0.03 

f=0.2 
p = 1oP p = 10rn6 p = 10-S p = 10-d p = 10-S p = 10-C 

77 
cm 

I = I”922 

f=0.2 

A% p = 1om3 p = 1o-4 p = 10-S p z 10-d 

sin P 

g 131!51 13”14 131 0.13 
2&T -6.28 -0.63 -0.06 -0.01 
WJ 0.22 0.02 
24-g 0.15 0.01 
W-29 0.18 0.02 
29 - 3g -68.18 -68.18 -68.18 -68.18 
w+g 0.04 

f=0.3 

Arg p = lo-’ p = 1o-4 p = 1o-5 p = W6 p = 1o-3 
v 
sin 

# -7336187 -7337!55 - 7337’!62 -733?:62 7335~41 
4-g 2.04 0.20 0.02 -3.54 
4- % -0.04 -1.00 
4- % -275.92 -251.42 -133.34 -23.41 -276.09 
++s -0.31 -0.03 0.23 
4+ 28 0.34 0.03 -0.22 
4+ 3g 0.06 0.01 -0.03 

p = 10-d p = 10-5 p = 10-G 

77 

cm 

7337r40 7337x0 . 7337’162 
-0.35 -0.04 
-0.10 -0.01 

-251.43 -133.34 -23.41 
0.02 

-0.02 

I = 2”307 

f=0.3 

Arg p = 10-3 p = 10-d p = 1om5 p = 1o-6 
sin /I 

g 1151’06 11:‘50 1:‘15 0.11 
2&T -5.50 -0.55 -0.05 -0.01 
w 0.19 0.02 
24-g 0.13 0.01 
24-Q 0.15 0.02 
24 - 3g -68.18 -68.18 -68.18 -68.18 
w+g 0.03 
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TABLE III. Continued 

p = 1om3 p = 1om4 
Y 
sin 

4 -7733Y47 -7735!16 -7734!23 -7734!24 77311'56 7733:97 7734!21 77341'23 

4-s 2.36 0.24 0.02 -3.65 -0.37 -0.04 

4 - % 0.08 0.01 -0.97 -0.10 -0.01 

4- 3g -231.55 -211.37 -113.11 -20.03 -231.76 -211.39 -113.12 -20.03 

4+&T -0.32 -0.03 0.26 0.03 

4+ % 0.35 0.04 -0.25 -0.02 
4+ 3a 0.06 0.01 -0.04 

f= 0.4 
p = 1o-5 p = 1o-6 p = 1o-3 p = 1om4 p = 1o-5 p = 1o-6 

T 
cm 

I = 2"147 

f= 0.4 

Arg p = 10-X p = 10-d p = 10-S p = 1o-6 
sin I* 

g 98’!61 9:'86 0.99 0.10 
2&z -4.71 -0.47 -0.05 
24 0.16 0.02 
24-g 0.11 0.01 
24-G 0.13 0.01 
2$f- 3g -68.18 -68.18 -68.16 -68.18 
24+&T 0.03 

f= 0.5 

Arg p = lo-? p = 1om4 p = 1om5 p = lomh p = 10-3 p = 10-d p = 10-5 p = 10-e 
Y 57 
sin cm 

4 -8113!67 -8114!29 -8114!35 -8114:‘35 8111’!33 8114’!05 8114:‘32 8114’!35 
4-g 2.68 0.27 0.03 -3.15 -0.38 -0.04 
4 - 2g 0.19 0.02 -0.93 -0.09 -0.01 
4-3&T -188.99 -172.82 -93.30 -16.66 -189.26 -172.85 -93.31 -16.66 
4+g -0.34 -0.03 0.29 0.03 
4+2g 0.37 0.04 -0.28 -0.03 
4+3n 0.06 0.01 -0.04 

I= 2"253 

f= 0.5 

A% p = 1o-3 p = 1o-4 p = 10-5 p = 10-f 

sin l.L 

g 82X7 8’(21 0.82 0.08 
2s -3.93 -0.39 -0.04 
24 0.14 0.01 
24-g 0.09 0.01 
24-2g 0.11 0.01 
24-3g -68.18 -68.18 -68.18 -68.18 
2d+P 0.02 
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TABLE III. Continued 

f=0.6 

Arg p = 1ov p = 1om4 p = 1om5 p = 1o-6 p = 10-3 p = 10-d p = 10-S p = 10-e 
Y 77 
sin COS 

4 -847K46 -8478!93 -8478’!98 -8478!98 8475!71 8478% 84781’95 8478’!98 
4-g 3.00 0.30 0.03 -3.86 -0.39 -0.04 
4 - 2g 0.30 0.03 -0.89 -0.09 -0.01 
+-3g -148.14 -135.70 -73.89 -13.30 -148.45 -135.73 -73.89 -13.30 
4+g -0.35 -0.04 0.31 0.03 
4 + 28 0.38 0.04 -0.31 -0.03 
4+ % 0.06 0.01 -0.05 -0.01 

I = 2”354 

f=0.6 

Arg p = 10-j p = 1o-4 6 = m5 /3 = 1o-6 
sin P 

g 65’!73 6’!57 0.66 0.07 
2s -3.14 -0.31 -0.03 
29 0.11 0.01 
24-g 0.07 0.01 
24 - 2&T 0.07 0.01 
24-3 0.09 -68.18 -68.18 -68.18 
24+g -68.18 

0.02 

f=0.7 

Arg p = 1oP p = 1o-4 p = 1ov p = 1o-6 p=1rJ+ p=10-’ p=10-5 p=10-6 

Y a 
sin CDS 

4 -8828’177 -8829!‘02 -8829105 -88.29!05 8825!‘63 8828!‘71 8829!02 8829!‘05 
4-g 3.32 0.33 0.03 -3.96 -0.40 -0.04 
4-Q 0.41 0.04 -0.86 -0.09 -0.01 
4 - % -108.90 -99.93 -54.87 -9.96 -109.25 -99.96 -54.87 -9.96 
4+s -0.37 -0.04 0.34 0.03 
4+ % 0.39 0.04 -0.34 -0.03 
4+ 3g 0.07 0.01 -0.06 -0.01 

I = 2”451 

A% 
sin 

g 49:‘29 4:‘93 0.49 0.05 

2&T -2.36 -0.24 -0.02 

24 0.08 0.01 

24-g 0.06 0.01 

24-Q 0.07 0.01 

24-3g -68.18 -68.18 -68.18 -68.18 

f= 0.7 
p = 10-3 p = 10-4 p = 10-S p = 1o-6 

CL 
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TABLE III. Continued 

f= 0.8 
A% p = 1o-3 p = w4 p = 1om5 p = 1o-6 p= 10-3 p = 10-a p= 10-x p= 10-G 

Y T 
sin COS 

4 -916Y44 -91651’42 -9165Y42 -916Y42 9161!92 9165’!07 916Y38 9165!‘41 

4-g 3.65 0.37 0.04 -4.07 -0.41 -0.04 

4- 28 0.52 0.05 0.01 -0.82 -0.08 -0.01 

4- 3g -71.17 -65.43 -36.22 -6.63 -71.57 -65.47 -36.22 -6.63 

4+g -0.38 -0.04 0.36 0.04 

4+2g 0.40 0.04 -0.37 -0.04 

4+ 3s 0.07 0.01 -0.06 -0.01 

I = 2”544 

f = 0.8 

Arg p=10-’ p=10-4 p=10-’ p=10-6 

sin P 

8 32!86 3:29 0.33 0.03 
2g -1.57 -0.16 -0.02 
24 0.05 0.01 
24-g 0.04 
24-28 0.04 
24 - 3g -68.18 -68.18 -68.18 -68.19 

Fig. 2. The position of the (x, y, z) triad, which is fixed in Mercury, in accordance with Cassini’s 
laws. 
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TABLE IV 

f 
Mercury 
Moon 

Inclinations of the equator to the ecliptic Km = -I as a function off 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-1”68 -1”80 -1”92 -2704 -2.15 -2v2.25 -2”36 -2”45 -2”54 -2”64 
+l?OO +1”08 +1”17 +1”27 +1”38 +1”46 +1”56 +1”66 +1?76 +1”85 

-v= tanZsin4, 

r=sinZcosf$. 
(29) 

During discussion of results we must emphasize that in the solutions for v and 
the main harmonics are the K, sin 4 and L, cos 4, which describe, as was men- 
tioned above, the mean rotation of Mercury. Other harmonics in solution describes 
oscillations relative to the mean motion*. 

Analyzing the formulas in (25) or the Table III, we found the main property of 
the resonance rotations. That is the inclination Z mainly depends on f and slightly 
on (Y. Approximate formula, without taking into consideration terms containing 
(Y, is written: 

K,= -I= Ad1 +f) 
2(&o + Aad) ’ 

(30) 

In Table IV there are shown the values of inclination of Mercury (in degrees) as 
a function off. 

Thus we can see, that in Mercury’s resonance rotation phenomenon, the only 
pairs of (Y and p may exist, which are satisfied to the condition (0 G f < 1). From 
this fact we can claim that the value of inclination Z is limited by the 1?7 and 2?6 
approximately. In case of f = 0 (C = B) the inertia ellipsoid of Mercury must be 
axially symmetric and inclination of the equator would have the smallest value. 
The value off = 1 (B = A) corresponds to the oblate Mercury’s inertia ellipsoid 
for which the condition (24) is not more valid. It is necessary to note that Mercury’s 
equator cannot coincide with the orbital plane, since the parameter f for Z = +7” 
will exceed the permissible limit (f = 101). Equator of Mercury cannot likewise 
coincide with the ecliptic plane since it corresponds to the negative value off. 

The negative value of inclination Z = K+ automatically corresponds to our values 
of parameters A,, A50 and A 56. And this means that the ascending nodes of the 
equator and of the orbit coincide. 

In order to prove reliability of our conclusions we have made the parallel 
computations for the case of resonance rotation of the Moon. Table IV shows the 
results of these computations. As it follows from this table, the inclination of the 
Moon’s equator lies between + l?OO and + lY88. The accepted value in the 

* It is necessary to note that the coefficients K, and L+ have been obtained only in linear approxi- 
mation. It is possible to calculate them with better accuracy, solving nonlinear differential equations, 
for example by the method of Eckhardt (1981). But in our problem it is enough to put v+ = K+ = 1. 
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“Astronomical Almanac” for inclination is equal to Z = 1542, which roughly 
corresponds to f = 0.6. According to the values of A,, As0, As6 for the Moon the 
sign of K+ is positive. It means that descending node of the equator coincides with 
the ascending node of orbit. 

Now we can make the suggestion that if Mercury - as well as the Moon - has 
the parameter f close to f= 0.6, then the probable value of its inclination of 
equator to the ecliptic lies near the value of Z = 2Y3. 

From all presented above it follows that in case of stable rotation of a body 
under the second and the third generalized Cassini’s laws and if the condition 
A < B < C is satisfied, then the equator plane can not coincide with the orbital 
plane or with the plane of the ecliptic. 

The variations of Mercury’s equator relative to mean position are generally 
small. So, in components v and 7~ the amplitudes of all harmonics are less than 
one arc of second, excluding only harmonics zz($ - 3g), which have the ampli- 
tudes, for different values of f and p, from a few hundreds to a few tens of 
seconds. The frequency of these harmonics, with the opposite sign, is very close 
to the mean angular rate of the Mercury. The signs of harmonics both in v and 
in GT are keeps negative. 

In longitude ZL variations, the only sing harmonic amplitude may be up to 
several tens of arc second (for p = 10e3) and it depends more on fi than on f. 
Especially it is necessary to note the sin(24 - 3g) = sin 2w harmonic. The low 
variation in the argument of the perihelion latitude w causes almost the table value 
of amplitude A.,” = -68”. The rest of a harmonics has the very small amplitudes. 
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