ANALYTICAL EXTENSION OF LUNAR LIBRATION TABLES

NATASHA PETROVA
Department of Astronomy, Kazan State University, Lenin str. 18, Kazan, 420008, Rep. of Tatarstan, Russia

(Received 19 September 1995)

Abstract

Tables of lunar physical libration defining the analytical dependence upon the parameters of the lunar gravitational field are presented. The tables are obtained on the framework of the "main problem" in lunar libration by integration of the Hamilton equations reduced to the harmonic oscillator equations.

The variables of physical libration have been obtained in the form of Poisson series. The distinguishing feature of the tables is that these series are the analytical extension of semianalytical solution computed for a number of dynamical parameters LURE2.

A comparison with the Eckhardt's solution is briefly presented. The previously revealed disagreement of the mean inclination of lunar equator to ecliptic with that in Eckhardt's "solution 500" has been maintained.

Key words: Lunar rotation, physical libration

Glossary of Principle Terms

A, B, C	lunar principal moments of inertia.
a, a_{\odot}	mean Earth-Moon and Earth-Sun distances.
M, M_{\odot}, M_{\oplus}	masses of Moon, Sun and Earth.
ρ, ρ_{\oplus}	mean radius of Moon and equatorial radius of Earth.
λ	correction factor for applying Kepler's third low to lunar orbit.
n, n_{\odot}	mean rates of lunar and solar orbital motion.
\bar{L}, \bar{L}_{\odot}	mean longitude of Moon and of Sun.
$r, \tilde{r}_{\odot} r_{\odot}$	Earth-Moon, Earth-Sun and Moon-Sun distances.
l, l^{\prime}, F, D	Delaunay arguments.
L, b, π^{*}	lunar ecliptical longitude, latitude and sine parallax.
π_{0}^{*}	constant part of sine parallax.
$\Lambda=L-\bar{L}$	inequality in lunar ecliptical longitude.
Λ_{\odot}	the same for Sun.
f	gravitational constant.
$I,(\bar{\Theta})$	inclination of lunar equator to the ecliptic.
$U, U^{\odot}, U_{2}, U_{3}, U_{2}^{\odot}$	gravitational potentials of the Moon and of the Sun, its second and third degree
T^{\prime}	components.

μ, ν, π	variables of physical libration, that are the angles defining the position of the principal axes of inertia in the uniformly rotating coordinate system.
P_{1}, P_{2}	direction cosines of ecliptic pole in Dynamical System of Coordinate (DSC).
τ	libration in longitude.
u_{1}, u_{2}, u_{3}	direction cosines of lunar radius-vector in ecliptical coordinate system.
$u_{\odot 1}, u_{\odot 2}, u_{\odot 3}$	direction cosines of solar radius-vector in ecliptical coordinate system.
$\begin{aligned} & \Omega, \Omega_{x}, \Omega_{y}, \Omega_{z} \\ & \gamma=\frac{B-A}{C} \end{aligned}$	angular rate of lunar rotation and its components on the DSC-axes.
$\beta=\frac{C-A}{B}$	ratios of moments or dimensionless moments of inertia.
$\left.\begin{array}{l} \chi_{1}=\frac{C-B}{B} \\ \chi_{2}=\frac{C-A}{A} \end{array}\right\}$	or dimensionless moments of inertia.
$C_{i j}, S_{i j}$	Stockes coefficients of spherical harmonic (degree i, order j) in expansion of lunar gravity potential.

1. Introduction

This article is the continuation of our earlier work (Petrova, 1993) in which the semianalytical tables based on the incomplete Schmidt's tables (1980) of lunar motion was presented. These tables are analogous the "solution 500 " of Eckhardt(1981). The semianalytical tables of lunar physical libration (LPhL-tables) give the analytical dependence of LPhL-components upon the time t in the form of trigonometric series. Using these tables the physical libration may be computed on the sufficiently large time intervals.

Semianalytical tables are computed with the certain chosen set of characteristics of the gravitational field of the Moon which is known as the dynamical parameters or the dynamical model of lunar gravity field. The list of these parameters includes among other factors the Stockes coefficients $S_{i j}$ and $\mathrm{C}_{i j}$ as well as the dimensionless moments of inertia γ, β. Because their numerical values are obtained from different quality observations it is natural that they possess a certain degree of inaccuracy and will be changed as the observations are perfected.

Practically all modern models of lunar gravitational field are considered in the paper of Kisljuk (1988) where a set of values of dynamical parameters together with their mean square errors are presented (Table I). It is obvious that the scatter in these data is sufficiently large. Hence the semianalytical tables computed for a certain model will not satisfy another model.

In order for this problem to be solved Migus (1980) and later Moons (1982a, 1982b, 1982a) have constructed more universal LPhL-tables which provide the analytical dependence not only on time but on the dynamical parameters as well. These tables were named the analytical lunar libration tables.

The availability of different tables which are computed by different mathematical methods and which are based on the different lunar motion tables give

TABLE Ia
Harmonics of selenopotential of the second order obtained from data of different models (in units of 10^{-6}).

No	C_{21}	S_{21}	S_{22}	C_{20}	C_{22}	Observation type
1	$+15.7 \pm 5.9$	3.61 ± 3.58	-1.39 ± 1.45	-206.0 ± 2.28	14.0 ± 1.2	L
2	$-16,6 \pm 5.1$	0.8 ± 3.9	-3.42 ± 2.5	-205.96 ± 14.1	20.42 ± 2.9	LO;LA
3	-8.8 ± 1.31	1.5 ± 1.39	-13.10 ± 3.36	-202.63 ± 1.43	21.91 ± 2.49	LO;LA
4	-9.0	-5.56	-3.91	-219.2	32.93	LO;SA
5	-0.4	-4.57	+0.21	-207.07	22.42	LO;SA
6	-12.8	12.90	+10.14	-195.64	15.87	LO
7^{*}	-	-	-	204.8 ± 3.0	22.1 ± 0.5	LO
8^{*}	$+8.2 \pm 2.4$	6.33 ± 1.9	$+4.54 \pm 6.0$	-199.6 ± 2.0	23.59 ± 5.3	LO
9	+11.0	+13.01	-0.01	-203.79	24.84	LO;SA
10	+5.4	6.17	-0.17	-205.60	22.58	LO
11	$+4.6 \pm 2.0$	1.95 ± 1.80	$+4.85 \pm 1.90$	-20124 ± 019	209 ± 19	F
12^{*}	-	-	-	202.72 ± 1.48	-	E
13^{*}	-	-	-	-203.82	22.4	LLR-LURE2
14^{*}	-	-	-	-203.82	22.4	LLR,VLBI
15^{*}	-	-	-	203.82	22.3	LLR
16^{*}	-	-	-	-202.19 ± 0.91	22.21 ± 1.23	E
17	$+2.63 \pm 2.31$	-0.03 ± 2.98	0	-204.64 ± 3.8	21.73 ± 1.16	LO.SSA
18	+7.2	-0.77	+2.90	-210.86	22.08	LO;SSA
19	+7.7	+3.8	+7.5	-192.7	25.3	LO;LA
20	+0.5	+6.9	+3.4	-193.8	27.1	The same
21	+7.3	+3.9	+7.2	-200.1	25.0	LO;LA
22	+0.2	+6.8	-0.6	-201.0	27.0	The same
23	+7.9	+3.8	+8.5	-203.8	22.6	LO;LA
24	0	+6.6	+5.8	-203.7	22.5	The same
25^{*}	-0.09	0	+0.02	-202.43 ± 1.14	22.26 ± 0.13	LO;LLR
26^{*}	$+0.10 \pm 0.35$	0	$+0.02 \pm 0.01$	-202.15 ± 1.2	22.30 ± 0.13	LO;LLR
27	0.9	+6.1	+11.3	-202.6	27.9	LO;LA+SA
28	-0.3 ± 0.2	$+5.53 \pm 1.6$	$+11.0 \pm 7.4$	-207.0 ± 6.6	24.3 ± 7.2	LO:LA+SA
29	+0.2	+4.6	+11.30	-196.8	27.8	The same
30	-3.46 ± 1.91	$+6.78 \pm 2.56$	-1.49 ± 0.54	-204.33 ± 1.54	22.79 ± 0.12	LOS,PM
31	+0.48	+5.11	+2.01	-202.6 ± 3.0	21.9 ± 0.4	LOS
32	-	-	-	-202.23 ± 0.26	22.27 ± 0.04	Extend. model

The Table 1 is the compilation of the tables represented in the book of (Kisljuk, 1988).
The type of measurement is denoted by : L-'Luna", LO-"Lunar Orbiter", E-"Explorer",SSAsubsatellites of "Appola",LLR-Lunar Laser Ranging,VLBI - Very-Long-Base-Interferometry of ALSEP, A-"Appolo", SA-short arches,LA- long arches,LOS-Line-Of-Site acceleration of command modules, PM-point masses. The models used in (Kisljuk, 1988) for determination of extended model of dynamical parameters are denoted by $*$.This model has the number 32.

TABLE Ib
Harmonics of selenopotential of the third order obtained from data of different models (in units of 10^{-6}).

No	C_{30}	C_{31}	C_{32}	C_{33}	S_{31}	S_{32}	S_{33}
1	-36.3 ± 9.9	$+56.8 \pm 2.6$	11.8 ± 4.7	-	$+17.8 \pm 3.2$	-0.7 ± 4.60	-
2	-37.73 ± 18.0	$+30.12 \pm 2.6$	$+12.94 \pm 2.8$	3.17 ± 1.5	$+17.62 \pm 5.3$	-1.47 ± 3.3	-0.43 ± 1.8
3	-22.23 ± 2.62	$+36.36 \pm 0.25$	-2.57 ± 0.58	-2.65 ± 0.79	$+7.40 \pm 0.32$	-2.00 ± 0.63	-4.96 ± 1.14
4	-19.53	+27.18	+6.93	+2.58	+4.07	+4.41	+0.63
5	-6.30	+24.37	+5.02	+1.66	+2.30	+2.03	-0.68
6	-12.99	+34.93	+0.76	+2.84	+9.48	+2.83	-4.47
7	-10.7 ± 9.0	$+31.6 \pm 0.5$	$+5.5 \pm 1.0$	$+1.8 \pm 0.3$	$+4.3 \pm 12.0$	$+2.7 \pm 1.0$	-0.99 ± 0.2
8	-5.88 ± 2.9	$+30.01 \pm 2.7$	$+4.70 \pm 2.8$	$+4.85 \pm 2.2$	$+1.42 \pm 3.2$	$+0.57 \pm 1.7$	-2.92 ± 1.3
9	+28.44	+24.15	+7.63	+1.41	+20.81	+2.27	-0.31
10	+22.16	+35.75	+2.10	+3.01	+8.20	+3.40	+0.55
11	-21.5 ± 1.4	$+29.3 \pm 1.7$	$+5.89 \pm 0.64$	$+1.99 \pm 0.17$	$+9.52 \pm 1.0$	$+3.84 \pm 0.44$	$+0.29 \pm 0.19$
12	-	-	-	-	-	-	-
13	-10.44 ± 4	+28.6	$+4.82 \pm 0.15$	+2.7	+8.8	$+1.71 \pm 0.15$	-1.14 ± 0.7
14	-3 ± 20	$+26.0 \pm 4$	$+4.7 \pm 0.2$	$+2.0 \pm 2$	-1.0 ± 30	$+1.8 \pm 0.3$	-0.3 ± 1
15	-7.6	+28.6	+4.7	+2.9	+8.8	+1.6	-1.3
16	-33.83 ± 25.9	-	-	-	-	-	-
17	-12.95 ± 11.9	$+29.21 \pm 1.6$	$+3.93 \pm 1.3$	$+3.48 \pm 1.84$	$+6.48 \pm 1.84$	$+0.40 \pm 1.61$	-1.26 ± 0.95
18	-2.91	+23.43	+0.89	+0.31	+7.67	+0.89	+1.39
19	-12.2	+24.5	+2.5	-0.5	+8.4	+4.1	-5.6
20	-12.9	+26.4	+2.1	-2.0	+6.9	+4.4	-6.9
21	-2.1	+27.6	+3.3	-1.2	+8.8	+4.1	-4.8
22	-3.1	+29.8	+2.9	-2.4	+7.0	+4.4	-5.8
23	-12.7	+24.6	+3.1	-1.4	+7.5	+4.8	-5.2
24	-13.0	+26.5	+2.6	-2.1	+6.2	+4.6	-6.4
25	-8.89 ± 1.51	$+23.72 \pm 1.12$	$+4.83 \pm 0.05$	$+2.21 \pm 0.14$	$+7.16 \pm 1.29$	$+1.63 \pm 0.04$	-0.34 ± 0.13
26	-12.13 ± 1.8	$+30.71 \pm 1.9$	$+4.89 \pm 0.05$	$+1.44 \pm 0.17$	$+5.61 \pm 2.59$	$+1.69 \pm 0.04$	-0.33 ± 0.17
27	-6.7	+34.6	+1.5	+0.4	+8.2	+1.1	-3.5
28	-4.9 ± 7.1	$+28.3 \pm 3.2$	$+3.4 \pm 1.8$	-0.4 ± 1.74	$+7.4 \pm 3.1$	$+3.3 \pm 1.8$	-3.6 ± 1.7
29	-12.4	+25.5	-1.0	+1.9	+10.7	+2.6	-1.4
30	-7.01 ± 1.4	$+24.5 \pm 1.14$	$+4.1 \pm 0.3$	$+5.34 \pm 0.11$	$+5.45 \pm 0.79$	$+2.14 \pm 0.26$	-1.14 ± 0.06
31	-3.7 ± 4.2	$+28.4 \pm 1.6$	$+2.5 \pm 0.5$	$+2.9 \pm 0.2$	$+3.4 \pm 1.6$	$+2.5 \pm 0.5$	-1.2 ± 0.2
32	-12.17 ± 1.09	$+25.84 \pm 1.40$	$+4.853 \pm 0.023$	$+1.92 \pm 0.14$	$+1.97 \pm 0.94$	$+1.661 \pm 0.018$	-0.474 ± 0.120

a possibility of obtaining a more objective accuracy estimation of physical libration.

This is one of the motives stimulating us to develop one more analytical LPhLtables based on the lunar motion as computed by the method of Hill, Brown, Eckert under assumption of the "main problem"(Gutzwiller, Schmidt, 1986). Analytical dependence of the lunar coordinates $\left(\Lambda(t), b(t), \pi^{*}(t)\right)$ upon time is represented by

TABLE Ic
Dimensionless moments of inertia obtained from data of different models (in units of 10^{-6}).

No	β	γ	Observation type
13^{*}	631.26 ± 0.3	227.37 ± 0.7	LLR-LURE2
14^{*}	631.27 ± 0.03	227.7 ± 0.7	LLR,VLBI
15^{*}	631.28	227.18	$L L R$
26^{*}	631.687 ± 0.132	228.022 ± 0.100	LO;LLR
32	631.325 ± 0.112	227.735 ± 0.080	Extend. model

trigonometrical series whose numerical coefficients and trigonometrical indices of Delaunay arguments (l, l^{\prime}, F, D) are given by the tables called by us HBE-tables.

Furthermore when constructing our tables we have taken into account the fact that semianalytical tables computed for dynamical model LURE2 (e.g. "solution 500 " of Ekchardt(1981)) are widely used in modern selenodetic practice. Because of this we have made our tables as the analytical extension of this semianalytical solution.

2. Canonical Form of Rotation Equations

In order to describe lunar rotation the Moon is commonly considered as a rigid body. In this case the frame of reference ($x y z$) is determined by lunar axes of inertia and it is rigidly bound with lunar body. Let's call this system the Dynamical System of Coordinates.

Take the right-hand selenocentric ecliptical coordinate system whose axes X and Y are respectively oriented towards the vernal equinox point Υ and the pole P of ecliptic at epoch JD2000.0 as inertial coordinate system ($X Y Z$) (Figure 1).

Introduce an intermediate coordinate system $(\bar{X} \bar{Y} \bar{Z})$ which uniformly rotates around the axis directed toward the pole P. The rate of the rotation equal to the mean velocity of lunar orbital motion $n=d \bar{L} / d t$. Then the position of DSC relative to $(\bar{X} \bar{Y} \bar{Z})$-system may be determined by the transformation matrix \mathbf{d} :

$$
\left(\begin{array}{l}
x \tag{1}\\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right)\left(\begin{array}{l}
\bar{X} \\
\bar{Y} \\
\bar{Z}
\end{array}\right)
$$

Here the matrix \mathbf{d} is obtained as a product of rotation matrices:

$$
\mathbf{d}=\mathbf{m}_{x}(-\pi) \cdot \mathbf{m}_{\bar{Y}}(\nu) \cdot \mathbf{m}_{Z}(\mu)
$$

and $\mathbf{m}_{v}(\alpha)$ is the rotation matrix around the axis v, the deflection angle α is positive if the rotation is executed in anti-clockwise direction. The matrix elements $d_{i j}$ are

Fig. 1. Selenocentrical coordinate system. $X Y Z$ - ecliptical coordinate system, X is directed towards the equinox point, Z-towards the ecliptic north pole ; $\bar{X} \bar{Y} \bar{Z}$ - uniformly rotating coordinate system; $x y z$ - dynamical coordinate system, x is directed towards the minimal moments of inertia A, z towards the maximal moments $C ; \mu, \nu, \pi-$ libration angles.
the functions of μ, ν, π-angles (Figure 1):

$$
\begin{array}{ll}
d_{11}=\cos \mu \cos \nu & d_{12}=\sin \mu \cos \nu \\
d_{21}=-\cos \mu \sin \nu \sin \pi-\sin \mu \cos \pi & d_{22}=-\sin \mu \sin \nu \sin \pi+\cos \mu \cos \pi \\
d_{31}=\cos \mu \sin \nu \cos \pi-\sin \mu \sin \pi & d_{32}=\sin \mu \sin \nu \cos \pi+\cos \mu \sin \pi \\
& \\
d_{13}=-\sin \nu & \tag{2}\\
d_{23}=-\cos \nu \sin \pi \\
d_{33}=\cos \nu \cos \pi
\end{array}
$$

These angles describe the deviation of lunar rotation from uniform one or, in other words, the physical libration.

So the final purpose of this problem is the construction of the functional dependence of μ, ν, π-angles upon time t and the dynamical parameters. The Hamilton equations are constructed for handling the problem.

To use the Hamilton-technique it is necessary, firstly, to introduce the canonical variables $\mathbf{q}=\left(q_{1}, q_{2}, q_{3}\right)^{T}$ and $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)^{T}$ which are the functions of time t and of libration angles and of its derivatives. And then we can construct the Hamiltonian $H(q, p ; t)=T-U$.

Let us write the kinematic equations of lunar rotation. These equations describe the dependence of rotation rate $\boldsymbol{\Omega}$ projections onto the axes of inertial system $(X Y Z)$ as a function of libration angles and of its derivatives:

$$
\left\{\begin{array}{l}
\Omega_{x}=-\dot{\mathcal{M}} \cdot \sin \nu+\dot{\pi} \\
\Omega_{y}=-\dot{\mathcal{M}} \cdot \cos \nu \sin \pi+\dot{\nu} \cos \pi \\
\Omega_{z}=-\dot{\mathcal{M}} \cdot \cos \nu \cos \pi+\dot{\nu} \sin \pi
\end{array}\right.
$$

where $\mathcal{M}=\bar{L}+\Lambda$ and $\dot{\mathcal{M}}=n+\dot{\mu}$.
The kinetic energy of lunar rotation may be expressed in the form

$$
T=\frac{1}{2}\left(A \Omega_{x}^{2}+B \Omega_{y}^{2}+C \Omega_{z}^{2}\right)=T(\nu, \pi, \dot{\mathcal{M}}, \dot{\nu}, \dot{\pi})
$$

Let us now introduce the canonical variables in the following manner:

$$
\bar{q}_{1}=\mathcal{M} \quad \bar{q}_{2}=\sin \nu \quad \bar{q}_{3}=\sin \pi
$$

The conjugated impulses $\overline{\mathbf{p}}=\left(\bar{p}_{1} \bar{p}_{2} \bar{p}_{3}\right)^{T}$ are respectively determined by the formulae:

$$
\bar{p}_{1}-\frac{\partial(T)}{\partial\left(\dot{\bar{q}}_{1}\right)} \quad \bar{p}_{2}=\frac{\partial(T)}{\partial\left(\dot{q}_{2}\right)} \quad \bar{p}_{3}=\frac{\partial(T)}{\partial\left(\dot{\bar{q}}_{3}\right)}
$$

Since the expression for kinetic energy is the polynomial of the second degree in generalized rates then

$$
\bar{p}_{i}=\sum_{s=1}^{3} A_{s i} \cdot \dot{\bar{q}}_{s}+B_{i}
$$

The determinant $\left|A_{s i}\right|$ can be shown to be not zero and this fact allows us to perform the Legendre's transformation and to express the kinetic energy as a function of canonical variables:

$$
\begin{align*}
T= & \frac{1}{2 C}\left\{\left(1+\chi_{1}\right) \bar{p}_{3}^{2}\left(1-\bar{q}_{3}^{2}\right)+\left(1+\chi_{2}\right)\left[-\bar{p}_{1} \bar{q}_{3}\left(1-\bar{q}_{2}^{2}\right)^{-\frac{1}{2}}+\right.\right. \\
& \left.+\bar{p}_{2}\left(1-\bar{q}_{2}^{2}\right)^{\frac{1}{2}}\left(1-\bar{q}_{3}^{2}\right)^{\frac{1}{2}}+\bar{p}_{3} \bar{q}_{2} \bar{q}_{3}\left(1-\bar{q}_{3}^{2}\right)^{\frac{1}{2}}\left(1-\bar{q}_{2}^{2}\right)^{-\frac{1}{2}}\right]^{2}+ \\
& +\left[\bar{p}_{1}\left(1-\bar{q}_{3}^{2}\right)^{\frac{1}{2}}\left(1-\bar{q}_{2}^{2}\right)^{-\frac{1}{2}}+\bar{p}_{2}\left(1-\bar{q}_{2}^{2}\right)^{\frac{1}{2}} \bar{q}_{3}-\right. \\
& \left.\left.-\bar{p}_{3} \bar{q}_{2}\left(1-\bar{q}_{2}^{2}\right)^{-\frac{1}{2}}\left(1-\bar{q}_{3}^{2}\right)\right]^{2}\right\} \tag{3}
\end{align*}
$$

Let us now go to the second term of Hamiltonian. The lunar potential energy U is represented through its second U_{2} and third U_{3} degree harmonics for interaction with the Earth and through the second degree harmonic U_{2}^{\odot} with the Sun:

$$
U=U_{2}+U_{3}+U_{2}^{\odot}+\ldots
$$

These terms are computed through the known expansion over the spherical functions.

$$
\begin{align*}
U_{2}= & \left(\frac{3}{2} \lambda \frac{f M_{\oplus}}{a^{3}}\right)\left(\frac{a}{r}\right)^{3}\left[(C-B) u_{1}^{2}-(C-A) u_{3}^{2}\right] \\
U_{3}= & -\left(\frac{3}{2} \lambda \frac{f M_{\oplus}}{a^{3}}\right) M \rho^{2}\left(\frac{\rho}{a}\right)\left(\frac{a}{r}\right)^{4}\left[C_{31} u_{1}-S_{31} u_{2}+C_{30} u_{3}-\right. \\
& -10 C_{33} u_{1}^{3}+10 S_{33} u_{2}^{3}-\frac{5}{3} C_{30} u_{3}^{3}+ \\
& +30 C_{33} u_{1} u_{2}^{2}-30 S_{33} u_{1}^{2} u_{2}-5 C_{31} u_{1} u_{3}^{2}-10 C_{32} u_{1}^{2} u_{3}- \tag{4}\\
& \left.-5 C_{31} u_{2} u_{2}^{2}+10 C_{32} u_{2}^{2} u_{3}-20 S_{32} u_{1} u_{2} u_{3}\right] \\
U_{2}^{\odot}= & \left(\frac{3}{2} \frac{f M_{\odot}}{a_{\odot}^{3}}\right)\left(\frac{a \odot}{r_{\odot}}\right)^{3}\left[(C-B) u_{\odot 1}^{2}-(C-A) u_{\odot 3}^{2}\right] .
\end{align*}
$$

The direction cosines of the Earth's and Sun's radius vectors in the DSC according to (1) may be written in the form:

$$
\begin{aligned}
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) & =\frac{1}{r}\left(\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right)\left(\begin{array}{l}
\bar{X} \\
\bar{Y} \\
\bar{Z}
\end{array}\right)\left(\begin{array}{l}
u_{\odot 1} \\
u_{\odot 2} \\
u_{\odot 3}
\end{array}\right) \\
& =\frac{1}{r_{\odot}}\left(\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right)\left(\begin{array}{l}
\bar{X}_{\odot} \\
\bar{Y}_{\odot} \\
\bar{Z}_{\odot}
\end{array}\right)
\end{aligned}
$$

From geometry of spherical triangles (Figure 1) it can be shown that:

$$
\begin{aligned}
& \left(\begin{array}{c}
\bar{X} \\
\bar{Y} \\
\bar{Z}
\end{array}\right)=r\left(\begin{array}{c}
\cos b \cos \Lambda \\
\cos b \sin \Lambda \\
-\sin b
\end{array}\right) \\
& \left(\begin{array}{c}
\bar{X}_{\odot} \\
\overline{\bar{C}}_{\odot} \\
\bar{Z}_{\odot}
\end{array}\right)=\left(\begin{array}{c}
r \cos b \cos \Lambda-\tilde{r}_{\odot} \cos (D \\
\left.r \cos b \sin \Lambda+\Lambda_{\odot}\right) \\
-r \sin b
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{r}{r_{\odot}}=\left(\frac{r}{\tilde{r}_{\odot}}\right)\left(\frac{\tilde{r}_{\odot}}{r_{\odot}}\right) ; \quad \frac{r}{\tilde{r}_{\odot}}=\left(\frac{a}{a_{\odot}}\right)\left(\frac{r}{a}\right)\left(\frac{a_{\odot}}{\tilde{r}_{\odot}}\right) ; \\
& \frac{\tilde{r}_{\odot}}{r_{\odot}}=1-\frac{1}{2}\left(\frac{r}{\tilde{r}_{\odot}}\right)^{2}-\left(\frac{r}{\tilde{r}_{\odot}}\right) \cos b \cos \left(D+\Lambda-\Lambda_{\odot}\right)
\end{aligned}
$$

The trigonometrical functions of b, Λ and also the a / r (or r / a) appeared in the expressions for $u_{i}, u_{\odot i}$ and for U (4) are calculated as functions of time in the form

TABLE II
Numerical values of constants and parameters of physical libration.

Notation	Value used	Notation	Value used
$\frac{M}{M_{\oplus}}$	$1.230002 \cdot 10^{-2}$	$\left(\frac{C}{M \rho^{2}}\right)^{0}$	0.392
$\frac{M_{\odot}}{M}+M_{\oplus}$	328900.5	γ^{0}	$2.2737 \cdot 10^{-4}$
$\frac{\rho}{a}$	$4.521 \cdot 10^{-3}$	β^{0}	$6.3126 \cdot 10^{-4}$
$\frac{a_{a}}{a_{\odot}}$	$2.5718814 \cdot 10^{-3}$	C_{20}^{0}	$-2.027 \cdot 10^{-4}$
$n(\mathrm{rad} /$ day $)$	$2.299708345 \cdot 10^{-1}$	C_{22}^{0}	$2.23 \cdot 10^{-5}$
$n_{\odot}(\mathrm{rad} / \mathrm{day})$	$1.7202785 \cdot 10^{-2}$	C_{30}^{3}	$-1.04 \cdot 10^{-5}$
π_{0}^{*} arc. sec	3422.452	C_{31}^{0}	$2.86 \cdot 10^{-5}$
λ	1.002723	C_{32}^{0}	$4.8 \cdot 10^{-6}$
$\dot{i}(\mathrm{rad} /$ day $)$	$2.280271372 \cdot 10^{-1}$	C_{33}^{0}	$2.7 \cdot 10^{-6}$
$i^{\prime}(\mathrm{rad} /$ day $)$	$1.720196956 \cdot 10^{-2}$	S_{31}^{0}	$8.8 \cdot 10^{-6}$
$\dot{F}(\mathrm{rad} /$ day $)$	$2.308957130 \cdot 10^{-1}$	S_{32}^{0}	$1.7 \cdot 10^{-6}$
$\dot{D}(\mathrm{rad} /$ day $)$	$2.127087043 \cdot 10^{-1}$	S_{33}^{0}	$-1.1 \cdot 10^{-6}$

of trigonometrical series whose numerical coefficients and trigonometrical indices are given by HBE-tables. The value $a / a_{\odot}=$ const (Table II).

Using the known expansions for radius-vector and for true anomaly in two bodies problem (Abalakin et al., 1976) we have computed the solar coordinates $\frac{a_{\odot}}{r_{\odot}}$ and Λ_{\odot} in the form of trigonometrical series also. We have applied the third Kepler law for determination of the factors:

$$
\frac{f M_{\oplus}}{a^{3}}=\frac{n^{2}}{1+\frac{M}{M_{\oplus}}} \quad \frac{f M_{\odot}}{a_{\odot}^{3}}=\frac{n_{\odot}^{2}}{1+\frac{M+M_{\oplus}}{M_{\odot}}}
$$

Hence the potential function $U=U\left(\bar{q}_{1}-\bar{L}, \bar{q}_{2}, \bar{q}_{3} ; t\right)$ depends of time via the lunar and solar coordinates. Its dependence of the libration angles (or of the canonical variables $\overline{\mathbf{q}}$) is executed via the elements of matrix \mathbf{d} :

Let us perform the following canonical transformation:

$$
\begin{array}{lll}
q_{1}=\bar{q}_{1}-\bar{L}(t) & q_{2}=\bar{q}_{2} & q_{3}=\bar{q}_{3} \\
p_{1}=\bar{p}_{1}-C n^{2} & p_{2}=\bar{p}_{2} & p_{3}=\bar{p}_{3}
\end{array}
$$

The new Hamiltonian H is connected with old Hamiltonian \bar{H} which is written via the new variables \mathbf{q} and \mathbf{p} in the following manner:

$$
H=\bar{H}(\bar{q}, \bar{p} ; t)_{\bar{q}, \bar{p} \rightarrow q, p}-p_{1} \frac{d \bar{L}}{d t}=\bar{H}(q, p ; t)-p_{1} n
$$

According to Kassini laws the Moon is rotated almost uniformly and its equator place has a small inclination $(I \sim 5555$.") to the ecliptic. Under these conditions the variables q_{i} are small :

$$
q_{1} \sim 2 \cdot 10^{-5} \quad q_{2} \sim-2.7 \cdot 10^{-4} \sin F \quad q_{3} \sim-2.7 \cdot 10^{-4} \cos F
$$

This fact allows us to develop the fractional and negative degrees in T (3) and the trigonometrical functions in $\mathbf{d}(2)$ in the power series. To satisfy the required accuracy $\varepsilon=0 .{ }^{\prime \prime} 001$ for libration angles it is sufficient to develop the obtained expression up to the fourth degree relative to \mathbf{q}. Then we have:

$$
\begin{align*}
T= & p_{1} n+\frac{1}{2 C}\left[p_{1}^{2}+\left(1+\chi_{1}\right) p_{2}^{2}+\left(1+\chi_{2}\right) p_{3}^{2}\right] \\
& +\frac{1}{2} \chi_{1} C n^{2} q_{3}^{2}+C n^{2} q_{2}^{2}+q_{2}\left[-n p_{3}-\frac{1}{C} p_{1} p_{3}\right] \\
& -q_{3}\left[\frac{\chi_{1}}{C} p_{1} p_{2}+\chi_{1} n p_{2}\right]+\cdots \\
= & p_{1} n+C \sum G_{i j k l m}\left(\chi_{1}, \chi_{2}\right) q_{2}^{i} q_{3}^{j} \frac{p_{1}}{C} \frac{k}{C} \frac{p_{2}^{l}}{C} p_{3}{ }^{m} \tag{5}
\end{align*}
$$

We have following expansion for the elements $d_{i j}(2)$:

$$
d_{i j}=\sum_{i, j, k=0}^{(i+j+k) \leq 4} S_{i j k} q_{1}^{i} q_{2}^{j} q_{3}^{k}
$$

where the $S_{i j k}$ are numerical coefficients resulting from the expansion.
Then we have expressed the potential energy in this fashion:

$$
U=C \sum_{\langle U\rangle} Q_{i j k}\left(\gamma, \beta, S_{i j}, C_{i j}, t\right) q_{1}^{i} q_{2}^{j} q_{3}^{k}
$$

Here the parameters of the dynamical figure of the Moon are maintained in the literal form, and the lunar coordinates are presented in the form of trigonometrical series. The functions $Q_{i j k}$ are derived on the basis of formulae for U (4), for direction cosines $u_{i}, u_{\odot i}$ and for elements $d_{i j}$ and they may be written in the following common form:

$$
\begin{equation*}
Q_{i j k}=\sum_{m=2}^{3} \Psi_{m} \sum_{r=1}^{\infty} R_{r}^{i j k} \sin _{\cos }\left(k_{r 1} l+k_{r 2} l^{\prime}+k_{r 3} F+k_{r 4} D\right) \tag{6}
\end{equation*}
$$

The summation index m relates to m-harmonic of selenopotential. The coefficients $\Psi_{m}\left(\gamma, \beta, C_{3 n}, S_{3 n}, \rho / a, C / M \rho^{2}\right)$ in (6) and $G_{i j k l m}\left(\chi_{1}, \chi_{2}\right)$ in (5) have a form of power polynomial on the parameters indicated in parentheses. The $R_{r}^{i j k}$ are numerical coefficients.

Let us take the maximum lunar moment of inertia C as the unit of measurement of principal moments and of impulses p_{i}. In the subsequent discussion we
can use the following relations between the principal moments of inertia and the dimensionless one:

$$
\begin{equation*}
A=\frac{1-\gamma \beta}{1+\beta} \sim 1 \quad B=\frac{1+\gamma}{1+\beta} \sim 1 \tag{7}
\end{equation*}
$$

The Hamiltonian H is finally represented as a power polynomial:

$$
\begin{equation*}
H=\sum_{\langle T\rangle} G_{i j k l m}\left(\chi_{1}, \chi_{2}\right) q_{2}^{i} q_{3}^{j} p_{1}^{k} p_{2}^{l} p_{3}^{m}+\sum_{\langle U\rangle} Q_{i j k}\left(\gamma, \beta, S_{i j}, C_{i j}, t\right) q_{1}^{i} q_{2}^{j} q_{3}^{k} \tag{8}
\end{equation*}
$$

where summation limits are defined in the following manner

$$
<T>=\left\{\begin{array}{l}
i, j=0 \div 4 \\
k, l, m=0 \div 2 \\
(i+j) \leq 4
\end{array} \quad<U>=\left\{\begin{array}{l}
i, j, k=0 \div 4 \\
(i+j+k) \leq 4
\end{array}\right.\right.
$$

Note that the first term in (8) obtained from expression for kinetic energy is not dcpendent on the q_{1} whereas the second term obtained from potential energy is not dependent on the impulses \mathbf{p}. This fact is important for solution of Hamilton equations.

On the basis of Hamiltonian (8) we have constructed the equations system associated with it.

$$
\left\{\begin{array}{l}
\dot{q}_{i}=+\frac{\partial(H)}{\partial\left(p_{i}\right)}=\tilde{F}_{q_{i}}(\mathbf{q}, \mathbf{p})+\tilde{\Phi}_{q_{i}}(t, \mathbf{q}) \tag{9}\\
\dot{p}_{i}=-\frac{\partial(H)}{\partial\left(q_{i}\right)}=\tilde{F}_{p_{i}}(\mathbf{q}, \mathbf{p})+\tilde{\Phi}_{p_{i}}(t, \mathbf{q})
\end{array}\right.
$$

On the right-hand side of these equations the functions $\tilde{F}_{q_{i}} \tilde{F}_{p_{i}}$ and $\tilde{\Phi}_{q_{i}} \tilde{\Phi}_{p_{i}}$ are respectively the partial derivatives from kinetic and potential parts of Hamiltonian (8) with respect to canonical variables.

3. Construction of analytical parameters

Analytical form of right-hand side of Equations (9) is analogous to that of Hamiltonian (8). The Stockes coefficients $C_{i j}, S_{i j}$ and the dimensionless moments of inertia $\gamma, \beta, \chi_{1}, \chi_{2}$ enter into the equations as parameters. In addition, they are the power factors at the unknowns \mathbf{q} and \mathbf{p}.

For the obtained system to be solved it is necessary to bring these dynamical parameters to the form which for one makes it possible to integrate the equations and for another is convenient for practical use.

When choosing the analytical parameters we are guided by the following two principles:
(1) The solution must be defined as an analytical extension of the semianalytical solution with LURE2-parameters;
(2) The power part of the solution must have a rapid convergence for the most dynamical models of selenopotential represented in Table I.

To satisfy these concepts we have introduced the analytical parameters E_{i} as the differences between any potential value of the dynamical parameter and its value given by the model LURE2. Denote the LURE2-values of parameters by the subscript $\left({ }^{0}\right)$.

For the second harmonic of potential we have defined the analytical parameters with the following relationships:

$$
\begin{equation*}
E_{1}=\frac{A-A^{0}}{\Delta_{1}} \quad E_{2}=\frac{B-B^{0}}{\Delta_{2}} \tag{10}
\end{equation*}
$$

For the third harmonic we have :

$$
\begin{array}{rr}
h=\frac{\left(C / M \rho^{2}\right)^{0}}{\left(C / M \rho^{2}\right)}=\frac{0.392}{\left(C / M \rho^{2}\right)} & E_{3}=\frac{h C_{30}-C_{30}^{0}}{\Delta_{3}} \\
E_{4}=\frac{h C_{31}-C_{31}^{0}}{\Delta_{4}} & E_{5}=\frac{h C_{32}-C_{32}^{0}}{\Delta_{5}} \\
E_{6}=\frac{h C_{33}-C_{33}^{0}}{\Delta_{6}} & E_{7}=\frac{h S_{31}-S_{31}^{0}}{\Delta_{7}} \tag{11}\\
E_{8}=\frac{h S_{32}-S_{32}^{0}}{\Delta_{8}} & E_{9}=\frac{h S_{33}-S_{33}^{0}}{\Delta_{9}}
\end{array}
$$

Here the Δ_{i} are the coefficients whose numerical values must be chosen on the basis of principles in hand.

With these new notations both the functions $Q_{i j k}$ in(6) and hence the solution for \mathbf{q} and \mathbf{p} is represented as the Poisson series (Brumberg, 1980):

$$
\begin{equation*}
\sum_{r=1}^{\infty} C O E F_{r} \cdot F A C T O R_{r} \cdot\binom{s i n}{\cos }\left(k_{r 1} l+k_{r 2} l^{\prime}+k_{r 3} F+k_{r 4} D\right) \tag{12}
\end{equation*}
$$

here:
$C O E F_{r}$ is a numerical amplitude in arc seconds, $F A C T O R_{r}=\prod_{i=1}^{9} E_{i}^{m_{r i}}$ is a power polynomial, $k_{r j}, m_{r i}$ are the integer trigonometric and power indices respectively.

The problem is to obtain all numerical values of these quantities by integrating (9) and to represent them in table form.

When substituting the concrete numerical values for the dynamical parameters all analytical parameters must satisfy the following condition:

$$
\begin{equation*}
\left|E_{i}\right| \leq 1 \quad \text { where } i=1 \div 9 \tag{13}
\end{equation*}
$$

This criterion allows us to cut the terms with the high degrees m_{i} when operating with the Poisson series.

The coefficients Δ_{i} in (10), (11) must be on the one hand sufficiently large in order for the condition (13) to be satisfied for the most models in Table I. And on the other hand they must be sufficiently small because $C O E F_{r}$ in (12) are directly proportional to the adopted values Δ_{i} and hence must also be small in itself for the series (12) to have a limited length within the assigned accuracy.

For the optimal choice of Δ_{i} for E_{1} and E_{2} we have used " $3 \sigma^{\prime \prime}$-criterion where σ_{i} is the mean square dispersion of γ and β.

Under condition that $\gamma, \beta \sim 10^{-4} \ll 1$ and using (7) it is easy to obtain

$$
E_{1} \simeq-\frac{\Delta \beta}{\Delta_{1}} \quad E_{2} \simeq \frac{\Delta \gamma-\Delta \beta}{\Delta_{2}}, \quad \text { where } \quad \Delta \gamma=\gamma-\gamma^{0}, \quad \Delta \beta=\beta-\beta^{0}
$$

To satisfy (13) we must assume:

$$
\begin{aligned}
\Delta_{1} & =\max |\Delta \beta|=\left|3 \sigma_{\beta^{0}}\right|=1 \cdot 10^{-6} \\
\Delta_{2} & =\max |\Delta \beta|+\max |\Delta \gamma|=\left|3 \sigma_{\beta^{0}}\right|+\left|3 \sigma_{\gamma^{0}}\right|=3 \cdot 10^{-6}
\end{aligned}
$$

In the case that only the Stockes coefficients C_{20} and C_{22} are determined from observations the dimensionless moments γ and β may be obtained by following relationships:

$$
\gamma=\frac{4 C_{22}}{\left(C / M \rho^{2}\right)} \quad \beta=\frac{\delta+\gamma}{2+\gamma-\delta}, \quad \text { where } \delta=-\frac{2 C_{20}}{\left(C / M \rho^{2}\right)}
$$

We draw attention to the disagreement between the values of γ, β obtained through C_{20}, C_{22} and that obtained directly from observations. This causes the difference in coefficients of semianalytical series calculated with the use of C_{20}, C_{22} and with the γ, β only. So, for instance, both Stockes coefficients and dimensionless moments are given in the model $N 26$ of Table I (Ferrari et al., 1980). The former were obtained from Doppler tracing data and the latter were obtained from laser ranging data. As result the coefficient in harmonic $\sin F$ for variable ν is equal to ~ 5540." with the use of C_{20}, C_{22} and to ~ 5562." with γ, β.

This far exceeds the allowed discrepancy. On account of this great care must be exercised when different-type observational data are used in order for the analytical tables to be brought into semianalytical tables.

For the third harmonic the nearest rounding off to the first significant figure of Stockes coefficient value by itself was taken as Δ_{i}. The formulae for practical use may finally be written in the following form:

$$
\begin{array}{cl}
E_{1}=-\frac{\beta \cdot 10^{4}-6.3126}{10^{-2}} & E_{2}=-\frac{\left(\gamma \cdot 10^{4}-2.2737\right)-\left(\beta \cdot 10^{4}-6.3126\right)}{3 \cdot 10^{-2}} \\
\hbar=\frac{0.392}{\left(C / M p^{2}\right)} & E_{3}=\frac{h C_{30} \cdot 10^{5}+1.044}{-2} \\
E_{4}=\frac{h C_{31} \cdot 10^{5}-2.86}{3} & E_{5}=\frac{h C_{32} \cdot 10^{5}-0.48}{0.5} \tag{14}\\
E_{6}=\frac{h C_{33} \cdot 10^{5}-0.27}{0.3} & E_{7}=\frac{h C_{31} \cdot 10^{5}-0.88}{1.0} \\
E_{8}=\frac{h C_{32} \cdot 10^{5}-0.17}{0.2} & E_{9}=\frac{h S_{33} \cdot 10^{5}+0.11}{-0.2}
\end{array}
$$

By this means the choice of the analytical parameters in the form(14) satisfies the laid down conditions, namely:
-if the LURE2-model matches our requirements then the powers terms may be eliminated from treatment: the harmonics whose power indexes are equal to zero $(F A C T O R=1)$ represent the semianalytical solution analogous to "solution 500" of Eckhardt;

- the terms that have $F A C T O R \neq 1$ directly demonstrate the influence of distinction between values of dynamical parameters on physical libration;
- the condition (13) is fulfilled for most of the dynamical models represented in Table I; this provides a rapid convergence of the power part of the libration series.

4. Derivation and solution of differential equations

The technique developed in (Petrova, 1993) was used for the solution of system (9). By differentiating both left and right sides of (9) with respect to t the obtained equations are reduced to the form of the equations which describe the harmonic oscillator motion.

$$
\left\{\begin{array}{l}
\ddot{q}_{i}+\omega_{i}^{2} q_{i}=\Phi_{q_{i}}(t, \mathbf{q})+F_{q_{i}}(t, \mathbf{q}, \mathbf{p}) \tag{15}\\
\ddot{p}_{i}+\omega_{i}^{2} p_{i}=\Phi_{p_{i}}(t, \mathbf{q})+F_{p_{i}}(t, \mathbf{q}, \mathbf{p})
\end{array}\right.
$$

Here the functions $\Phi_{q / p}$ and $F_{q / p}$ are the linear combinations of derivatives of $\tilde{\Phi}_{q / p}$ and of $\tilde{F}_{q / p}$ with respect to t from which the terms of the form

$$
\left(a_{i}+b_{i} \bar{q}+c_{i} \bar{q}^{2}+\cdots\right) \cdot q_{i}
$$

are previously removed and rearranged on the left side of the equations. The coefficients a_{i}, b_{i}, c_{i} are defined by numerical values of parameters n, γ^{0}, β_{0},$\chi_{1}^{0}, \chi_{2}^{0}, C_{3 n}^{0}, S_{3 n}^{0}$, as well as of amplitudes of trigonometrical series L, b, r. The constant terms in series $\mathbf{q}, \mathbf{q}^{2}$ are denoted by $(-)$, they have all trigonometrical and power indexes equal to zero. These terms determinc, in fact, the fundamental frequencies(eigenfrequencies) ω_{i} of harmonic oscillators described formally by the equation (15):

$$
\begin{align*}
& \omega_{1}^{2}=-2 \bar{Q}_{200}\left(\gamma^{0}, \beta^{0}, C_{3 n}^{0}, S_{3 n}^{0}\right)+b_{1} \bar{q}+c_{1} \bar{q}^{2}+\cdots \\
& \omega_{2}^{2}=n^{2}-2\left(1+\chi_{1}^{0}\right) \bar{Q}_{020}\left(\gamma^{0}, \beta^{0}, C_{3 n}^{0}, S_{3 n}^{0}\right)+b_{2} \bar{q}+c_{2} \bar{q}^{2}+\cdots \tag{16}\\
& \omega_{3}^{2}=\chi_{1}^{0} \chi_{2}^{0} n^{2}-2\left(1+\chi_{2}^{0}\right) \bar{Q}_{002}\left(\gamma^{0}, \beta^{0}, C_{3 n}^{0}, S_{3 n}^{0}\right)+b_{3} \bar{q}+c_{3} \bar{q}^{2}+\cdots
\end{align*}
$$

The system (15) is solved iteratively. The semianalytical series obtained in (Petrova, 1993) was taken as the zero approximation $\left(\mathbf{q}^{\mathbf{0}}, \mathbf{p}^{\mathbf{0}}\right)$. When substituting
them for \mathbf{q}, \mathbf{p} in (15) and(16) the right-hand side of equations become the form of Poisson series. In this case the frequencies ω_{i} take the concrete numerical values. Every n-approximation $\mathbf{q}^{\mathbf{n}}, \mathbf{p}^{\mathbf{n}}$ is computed through the ($\mathrm{n}-1$)-solution:

In this form the equations are easily integrated. The solution of respective homogeneous system corresponds to the free libration that may be taken to be zero when data of observations are considered (Calame, 1976).

The solution for the forced libration is written in the following manner :

$$
\left\{\begin{array}{l}
q_{i}=\sum_{r} X_{r}^{\prime} \Pi_{s} E_{s}^{m_{s r}} \cdot\left(\begin{array}{c}
\left(\frac{s i n}{c o s}\right)
\end{array}\right)\left(k_{r 1} l+k_{r 2} l^{\prime}+k_{r 3} F+k_{r 4} D\right) \tag{18}\\
p_{i}=\sum_{r} Y_{r}^{\prime} \prod_{s} E_{s}^{n_{s r}} \cdot\binom{s i n}{\cos }\left(k_{r 1} l+k_{r 2} l^{\prime}+k_{r 3} F+k_{r 4} D\right)
\end{array}\right.
$$

where the numerical coefficients X_{r}^{\prime} and Y_{r}^{\prime} are deduced from the expressions:

$$
\left\{\begin{array}{l}
X_{r}^{\prime}=\frac{X_{r}}{\bar{\omega}_{i}^{2}-\left(k_{r 1} i+k_{r} i^{\prime}+k_{r} \dot{F}+k_{r 4} \dot{D}\right)^{2}} \tag{19}\\
Y_{r}^{\prime}=\frac{\bar{w}_{i}^{2}-\left(k_{r 1} i+k_{r} i^{\prime}+k_{r 3} \dot{F}+k_{r 4} \dot{D}\right)^{2}}{}
\end{array}\right.
$$

The derivatives $l, l^{\prime}, \dot{F}, \dot{D}$ in (19) are constant, because we have taken only the linear dependence on the time t of Delaunay arguments. The iterative process continues until the difference in numerical coefficients of n-iteration $\left(X^{\prime}\right)^{n},\left(Y^{\prime}\right)^{n}$ and $(n-1)$-iteration $\left(X^{\prime}\right)^{n-1},\left(Y^{\prime}\right)^{n-1}$ do not exceed the preassigned value $\varepsilon=0 .{ }^{\prime \prime} 001$, that is until the following condition

$$
\begin{align*}
& \left|\left(X_{i}^{\prime}\right)^{n}-\left(X_{i}^{\prime}\right)^{(n-1)}\right| \leq 0 .^{\prime \prime} 001 \\
& \left|\left(Y_{i}^{\prime}\right)^{n}-\left(Y_{i}^{\prime}\right)^{(n-1)}\right| \leq 0 .^{\prime \prime} 001 \tag{20}
\end{align*}
$$

is fulfilled for each i-harmonic of series(18).
The angles ν and π were obtained by the expansion of $\arcsin q_{i}$ in the power series up to the q_{i}^{5} :

$$
\arcsin q=q+\frac{q^{3}}{2 \cdot 3}+\frac{1 \cdot 3 q^{5}}{2 \cdot 4 \cdot 6 \cdot 7}+\cdots
$$

5. Computer Realization of the Problem and Analysis of Obtained Solution

The performance of great number operations with Poisson series is required for the solution of problem in hand. For this purpose Universal Poisson Processor (UPP)
(Tarasevich, 1979) was used. This subroutine package was adapted for FORTRANIV of ES-electronic computer and was favorably placed at our disposal by Dr.Titov V.B.(St-Petersburg University, Russia). A part of the UPP-program was rewritten by us in Assembler with the view to speeding the performance. Nevertheless the calculation process still remained very laborious, processor time and memory consuming. This is explained by the fact that in the calculations the length of intermediate worked series may be related up to two thousand terms.

After 2-3 iterations the condition (20) was fulfilled for the most of harmonics in series (18). But it has taken 6-7 iterations before the required accuracy was reached for the resonant terms and for the harmonics having small denominators.

The final result for μ, ν, π and for P_{1}, P_{2}, τ is represented in Table III. As it shown in (Petrova, 1993) the former are convenient to use for the transformation of observed coordinates of lunar craters to DSC. But the variables P_{1}, P_{2}, τ are widely used for the description of physical libration: the position of ecliptic pole in DSC and libration in longitude are given by these variables. They are little different from μ, ν, π :

$$
\begin{align*}
& P_{1}=-\sin \nu=-\nu+o\left(\nu^{2}\right) \\
& P_{2}=-\sin \pi \cos \nu=-\pi+o\left(\pi^{2}\right) \tag{21}\\
& \tau=\mu+\tan \frac{\Theta}{2}^{2} \sin [2(F+\mu-\sigma)]+\circ\left(\frac{\Theta}{2}^{2}\right)
\end{align*}
$$

The angular variable $\Theta=\arcsin \left(P_{1}^{2}+P_{2}^{2}\right)$ defines the inclination of the lunar equator to the ecliptic and its value averaged over time $I=\bar{\Theta}$ is the mean inclination.

The terms that have the power indexes equal to zero give the semianalytical solution corresponding to the dynamical model LURE2. These terms are emphasized in Table III by bold type.

The terms having the non-zero power indexes produce a correction to the semianalytical solution. This correction is caused by the deviation of chosen dynamical parameter values from those of the LURE2-model.

Let us now turn to the discussion of the obtained results. In this work we have all over again deduced U_{3}-expansion (4) with the use of analytical system REDUCE. Consequently two coefficients were refined. This fact and also the use of the HBEtables which are more complete and accurate than the tables of Schmidt (1980) have yielded a better agreement (as compared with (Petrova, 1993)) between the present results and the results of Moons (1982b) and Ekchardt (1981). The harmonics which give the difference of amplitudes exceeding $0 .{ }^{\prime \prime} 01$ on the comparison are presented in Table IV. It is the harmonics that have small denominators.

But it should be noticed that the discrepancy between the value of the mean inclination of the lunar equator obtained in our calculations I^{P} and the value

TABLE III.
Physical libration tables

TRIG\qquad 0000	FACTOR		$\begin{aligned} & \begin{array}{l} \text { COEF } \\ \sin \end{array} \\ & \hline \end{aligned}$	COEF				
	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		\cos		\sin	\cos	
	00	0000000		214.352	τ		214.352	μ
0000	00	0000001		307.822	τ		307.87 ?	μ
	00	0000010		-. 081	τ		-. 081	μ
	00	0000100		51.281	τ		51.281	μ
	00	0001000		-1.441	τ		-1.441	μ
	00	0010000		-. 059	τ		-. 059	μ
	00	0100000		. 162	τ		. 162	μ
	01	0000000		-2.813	τ		-2.813	μ
	10	0000000		. 938	τ		. 938	μ
	00	0001001		-2.069	τ		-2.069	μ
	00	0001100		-. 345	τ		-. 345	μ
	01	0000001		-4.040	τ		-4.040	μ
	01	0000100		-. 673	τ		-. 673	μ
0001	00	0000000	. 098		τ	. 098		${ }^{\mu}$
	01	0000000	. 001		τ	. 001		μ
0002	00	0000000	-. 487		τ	-. 447		μ
	00	0001000	-. 004		τ	-. 0004		μ
	01	0000000	-. 006		τ	-. 006		${ }^{\mu}$
	10	0000000	. 002		τ	. 002		${ }^{\mu}$
0004	00	0000000	-. 0004		τ	-. 004		μ
00 1-2	00	0000000			Ј		-. 001	${ }^{\mu}$
00 1-1	00	0000000		-. 003	τ		-. 003	μ
	00	0010000		-. 004	τ		-. 004	${ }^{\mu}$
0010	00	0000000	-. 010	1.087	τ	-. 016	2.171	${ }_{H}$
	00	0000001	-. 001		τ	-.003		μ
	00	0000010	-. 016		T	-. 016		${ }^{\mu}$
	00	0001000		. 001	τ		. 002	μ
	00	0010000	-. 002	1.394	τ	-. 002	1.860	μ
	00	0100000		-. 001	τ		-. 008	μ
	00	1000000		. 558	τ		. 744	μ
	01	0000000		-. 003	τ		-. 003	μ
	10	0000000			τ		-. 004	μ
00 2-2	00	0000000	1.669	. 001	τ	1.670	. 001	μ
	00	0000100		. 002	,		. 002	μ
	00	0001000	. 013		T	. 013		μ
	00	0100000	-. 002		τ	-. 002		μ
	01	0000000	. 022		τ	. 022		μ
	10	0000000	-. 006		τ	-. 006		μ
$002-1$	00	0000000	-. 001		τ	-. 002		μ
0020	00	0000000	-. 027	. 000	τ	-37.380	-. 078	μ
	00	0000001		-. 112	τ		-. 112	μ
	00	0000100		-. 019	τ		-. 019	μ
	00	0001000			τ	-. 079		μ
	00	0010000	. 014		τ			μ
	00	0100000			τ	. 290		μ
	00	1000000	. 005		τ			μ
	01	0000000	. 001		τ	. 001		μ
	10	0000000			τ	. 153		μ
0022	00	0000000			τ	-.001		μ
0030	00	0000000		. 002	τ			μ
	00	0000001	. 002		τ			μ
	00	0001000		-. 001	τ			μ
	00	0010000		. 466	τ			μ
	00	0100000		. 002	τ			μ

TABLE III.
Continued

TRIG	FACTOR		$\begin{aligned} & \hline \text { COEF } \\ & \text { sin } \end{aligned}$	COEF				
$\triangle l^{\prime} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		\cos		\sin	\cos	
0040	00	1000000		. 187	τ			μ
	10	0000000		. 001	τ			μ
	00	0000000	-. 0003		τ	-.003		μ
	00	0010000	. 007		τ			μ
	00	1000000	. 003		τ			μ
01-41	00	0000000	-. 022		τ			μ
01-2 0	00	0000000	. 001			-. 013		μ
$01-21$	00	0000000	-. 004		τ	-. 004		μ
01-2 2	00	0000000	. 145		τ	. 145		μ
01-11	00	0000000		. 004	τ		-. 004	μ
$010-4$	00	0000000	. 001		τ	. 001		μ
$010-2$	00	0000000	. 038		τ	. 037		μ
$010-1$	00	0000000	-. 001		τ	-. 0001		μ
0100	00	0000000	90.704	. 005	τ	90.705	. 005	μ
	00	0000001		. 009	τ		. 009	μ
	00	0001000	. 694		τ	. 694		μ
	00	0100000	-. 078		τ	-. 078		μ
	01	0000000	1.355		τ	1.355		μ
	10	0000000	-. 452		τ	-. 452		μ
0101	00	0000000	-. 017		T	-. 016		μ
0102	00	0000000	. 007		τ	. 006		μ
0110	00	0000000		. 001	τ		. 001	\ldots
$012-2$	00	0000000	. 032		τ	. 032		μ
0120	00	0000000	. 001		τ	. 017		μ
0121	00	0000000	-. 002		τ			μ
02-22	00	0000000	-. 025		τ	-. 025		μ
$020-2$	00	0000000	. 002		τ	. 002		μ
0200	00	0000000	. 225		τ	. 225		μ
	00	0001000	. 002		τ	. 002		μ
	01	0000000	. 003		τ	. 003		μ
022.2	00	0000000	. 001		τ	. 001		μ
0300	00	0000000	. 001		τ	. 001		μ
1-2 0-2	00	0000000	-. 001		τ	-. 001		μ
1-200	00	0000000	-. 003		τ	-. 003		μ
1-2 2-2	00	0000000			τ	. 001		μ
1-1-2 0	00	0000000	-. 0001		τ	.. 003		μ
1-1-10	00	0000000	. 001	. 004	τ	. 001	. 004	μ
	00	0010000		. 006	τ		. 006	μ
1-10-2	00	0000000	-. 031		τ	-. 031		μ
1-1 0-1	00	0000000	-1.148	-. 005	τ	-1.148	-. 005	μ
1-100	00	0000000	-. 164		τ	-. 164		μ
	00	0001000	-. 001		τ	-. 001		μ
	01	0000000	-. 002		τ	-. 002		μ
1-102	00	0000000	-. 005		τ	-. 005		μ
1-1 1-2	00	0000000		-. 002	τ		-. 002	μ
1-1 2-2	00	0000000			τ	-. 001		${ }^{2}$
$10-50$	00	0010000		-. 002	τ		-. 002	μ
10.40	00	0000000	. 000		τ			μ
10-40	00	0001000	. 002		τ			μ
	00	0100000	. 001		τ			μ
	01	0000000	. 004		τ			μ
10-30	00	0000000			τ		. 0001	μ
	00	0000010	. 005		τ			μ
	00	0010000		-. 013	τ			μ

TABLE III.
Continued

$\begin{aligned} & \hline \text { TRIG } \\ & t v^{\prime} F^{\prime} D \end{aligned}$	FACTOR		$\begin{aligned} & \hline \text { COEF } \\ & \text { sin } \\ & \hline \end{aligned}$	COEF				
	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		cos		\sin	\cos	
	00	1000000		-. 004	τ			μ
10-2-2	00	0000000	. 001		τ	. 004		μ
10-2-1	00	0000000			τ	. 001		μ
10-20	00	0000000	-. 426	. 002	τ	-1.771	. 003	μ
	00	0000001		. 005	τ		. 005	μ
	00	0001000	. 003		τ	. 001		μ
	00	0100000	. 004		τ	. 015		μ
	01	0000000	. 009		τ	. 011		μ
	10	0000000			τ	. 005		μ
10-21	00	0000000	. 008		τ	. 008		μ
10-22	00	0000000	. 005		τ	. 006		μ
10-10	00	0000000	-1.397	-6.620	τ	-1.397	-6.635	μ
	00	0000010	-1.619		τ	-1.619		μ
	00	0001000		. 058	τ		. 058	μ
	00	0010000		-7.186	τ		-7.192	μ
	00	1000000		. 585	τ		. 583	μ
	01	0000000		. 113	τ		. 113	μ
$100-4$	00	0000000	. 014		τ	. 014		μ
$100-3$	00	0000000	-. 002		τ	-. 002		μ
$100-2$	00	0000000	4.130	-. 002	τ	4.140	-. 002	μ
	00	0000001		-. 002	τ		-. 002	μ
	00	0001000	. 027		τ	. 027		μ
	00	0100000	-. 003		τ	-. 003		μ
	01	0000000	. 054		τ	. 054		μ
	10	0000000	-. 018		τ	-. 018		μ
$100-1$	00	0000000	-3.453	-. 003	τ	-3.453	-. 003	μ
	00	0000001		-. 008	τ		-. 008	μ
	00	0001000	-. 024		τ	-. 024		μ
	01	0000000	-. 054		τ	-. 054		μ
1000	00	0000000	-16.795	-. 009	7	-17.131	-. 008	μ
	00	0000001		. 012	τ		. 012	μ
	00	0000100		-. 002	τ		-. 002	μ
	00	0001000	-. 104		τ	-. 102		μ
	00	0100000	. 025		τ	. 027		μ
	01	0000000	-. 194		τ	-. 190		μ
	10	0000000	. 072		τ	. 072		μ
1001	00	0000000	. 005		τ	. 005		μ
1002	00	0000000	-. 063		τ	-. 063		μ
1004	00	0000000	-. 0001		τ	.. 0001		μ
101-2	00	0000000	-. 006	. 038	τ	-. 006	. 037	μ
	00	0000010	-. 007		τ	-. 007		μ
	00	0010000		. 040	τ		. 040	μ
	00	1000000		-. 004	τ		-. 004	μ
1010	00	0000000	-. 0001	-. 001	τ	. 009	. 010	μ
	00	0000010	. 005		τ	. 010		μ
	00	0010000		. 007	τ		. 007	μ
	00	1000000		. 003	τ		. 003	μ
$102-4$	00	0000000	. 001		τ	. 001		${ }^{\mu}$
102.3	00	0000000	-. 001		τ	-. 001		μ
$102-2$	00	0000000	. 022		τ	. 051		μ
$102-1$	00	0000000			τ	. 001		μ
1020	00	0000000	-. 005		τ	-. 016		μ
	00	0001000	. 001		τ			μ
	00	0100000	. 001		τ			μ

TABLE III.
Continued

TRIG	FACTOR		$\begin{aligned} & \text { COEF } \\ & \text { sin } \end{aligned}$	COEF				
$l t^{\prime} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		\cos		\sin	\cos	
	01	0000000	. 003		τ			μ
	10	0000000	-. 001		τ			μ
1030	00	0010000		. 009	τ		. 009	μ
	00	1000000		. 003	τ		. 003	μ
11-2 0	00	0000000	. 001		τ	-. 0001		μ
11-21	00	0000000	. 008		τ	. 008		μ
11-1 0	00	0000000	-. 002	-. 0007	τ	-. 002	-. 007	μ
	00	0010000		-. 010	τ		-. 010	μ
$110-4$	00	0000000	. 002		τ	. 002		μ
$110-2$	00	0000000	. 231		τ	. 231		μ
	00	0001000	. 002		τ	. 002		μ
	01	0000000	. 003		τ	. 003		μ
	10	0000000	-. 001		τ	-.001		μ
110-1	00	0000000	-. 002		τ	-. 002		μ
1100	00	0000000	. 102		τ	. 103		μ
	01	0000000	. 001		τ	. 001		μ
1101	00	0000000	-. 001		τ	-. 0001		μ
1102	00	0000000	. 001		τ	. 001		μ
$111-2$	00	0000000		. 001	τ		. 001	μ
	00	0010000		. 001	τ		. 001	μ
112-2	00	0000000	. 001		τ	. 002		μ
$120-2$	00	0000000	. 010		τ	. 010		μ
1200	00	0000000	. 001		τ	. 001		μ
2-2 0-2	00	0000000	. 405		τ	. 405		μ
2-1-2 0	00	0000000	-. 005		τ	-. 0005		μ
2-1 0-2	00	0000000	. 950	. 001	τ	. 950	. 001	μ
	00	0001000	. 009		τ	. 009		μ
	01	0000000	. 012		τ	. 012		μ
2-100	00	0000000	-. 008		τ	-. 008		μ
$20-40$	00	0000000	. 001		τ	-. 003		μ
20-2-2	00	0000000	-. 001		τ	-. 004		μ
20-20	00	0000000	16.858	. 530	τ	16.870	. 530	μ
	00	0000001		1.049	τ		1.049	μ
	00	0001000	-1.017		τ	-1.017		μ
	01	0000000	-3.047		τ	-3.047		μ
$200-4$	00	0000000	. 022		τ	. 022		μ
$200-3$	00	0000000	-. 001		τ	-.001		μ
$200-2$	00	0000000	9.940	. 022	τ	9.940	. 022	μ
	00	0000001		. 057	τ		. 057	μ
	00	0000100		-. 011	τ		-. 011	μ
	00	0001000	. 075		τ	. 075		μ
	00	0100000	-. 007		τ	-. 007		μ
	01	0000000	. 136		τ	. 136		μ
	10	0000000	-. 044		τ	-. 044		μ
$200-1$	00	0000000	-. 003		τ	-. 0003		μ
2000	00	0000000	-. 445	-. 001	τ	-. 451	-. 0001	μ
	00	0000001		. 001	\%		. 001	μ
	00	0001000	-. 004		τ	-. 004		μ
	01	0000000	-. 006		τ	-. 006		μ
	10	0000000	. 002		τ	. 002		μ
2002	00	0000000	-. 006		τ	-. 0006		μ
20 2-2	00	0000000	. 001		τ	-. 0001		${ }^{\mu}$
2020	00	0000000			τ	-. 001		μ
21-20	00	0000000	. 018		τ	. 018		μ

TABLE III.
Continued

TRIG	FACTOR		$\begin{aligned} & \text { COEF } \\ & \sin \end{aligned}$	COEF				
$1 l^{\prime} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		\cos		\sin	\cos	
$210-4$	00	0000000	. 002		τ	. 002		μ
$210-2$	00	0000000	. 154		τ	. 154		μ
	00	0001000	. 001		τ	. 001		${ }^{\mu}$
	01	0000000	. 002		τ	. 002		μ
2100	00	0000000	. 006		τ	. 006		μ
$220-2$	00	0000000	. 003		τ	. 003		μ
3-10-2	00	0000000	. 001		τ	. 001		${ }^{\mu}$
3-100	00	0000000	-. 001		τ	-. 001		μ
30-20	00	0000000	. 000		τ	-. 0001		μ
$300-4$	00	0000000	-. 0001		τ	-. 001		μ
$300-2$	00	0000000	. 034		τ	. 034		μ
3000	00	0000000	-. 022		τ	-. 022		μ
$310-2$	00	0000000	. 001		τ	. 001		μ
40-2-2	00	0000000	-. 002		τ	-. 002		μ
$400-4$	00	0000000	-. 004		τ	-. 0004		μ
$400-2$	00	0000000	. 002		τ	. 002		μ
4000	00	0000000	-. 001		τ	-. 001		μ
0000	00	0000000		-80.803	P_{1}		80.818	ν
	00	0010000		-69.220	P_{1}		69.233	ν
	00	0100000		-. 029	P_{1}		. 029	ν
	00	1000000		-27.698	P_{1}		27.703	ν
	01	0000000		. 105	P_{1}		-. 105	ν
	10	0000000		-. 006	P_{1}		. 006	ν
	01	0010000		. 020	P_{1}		-. 020	ν
	01	1000000		. 032	P_{1}		-. 032	ν
0001	00	0000000		. 001	$P_{\text {I }}$		-. 001	ν
0002	00	0000000	. 001	. 002	P_{1}	-. 001	-. 002	ν
	00	0010000		. 002	P_{1}		-. 002	ν
001.4	00	0000000	-. 003		P_{1}	. 003		ν
001 -3	00	0000000	. 001		P_{1}	-. 001		ν
001 1-2	00	0000000	2.910		P_{1}	-2.911		ν
	00	0100000	-. 003		P_{1}	. 003		ν
	10	0000000	-. 003		P_{1}	. 003		ν
$001-1$	00	0000000	. 116		P_{1}	-. 116		ν
0010	00	0000000	5561.491	5.754	P_{1}	-5561.997	-5.754	ν
	00	0000001	. 014	8.270	P_{1}	-. 014	-8.270	ν
	00	0000100	. 010	1.378	P_{1}	-. 010	-1.378	ν
	00	0001000	5.880	. 014	P_{1}	-5.880	-. 014	ν
	00	0010000	. 020	. 001	P_{1}	-. 020	-. 001	ν
	00	0100000	-21.509	-. 001	P_{1}	21.515	. 001	ν
	00	1000000	. 011		P_{1}	-. 011		ν
	01	0000000	. 034	. 028	P_{1}	-. 034	-. 028	ν
	10	0000000	-11.417	-. 006	P_{1}	11.419	. 006	ν
	00	0100001		-. 010	P_{1}		. 010	ν
	00	0101000	-. 027		P_{1}	. 027		ν
	00	0200000	. 065		P_{1}	-. 065		ν
	00	2000000	-. 022		P_{1}	. 022		2
	10	0100000	. 069		P_{1}	-. 069		ν
	20	0000000	. 014		P_{1}	-. 014		ν
0011	00	0000000	-. 009		P_{1}	. 009		ν
0012	00	0000000	. 119		P_{1}	-. 119		ν
0014	00	0000000	. 001		P_{1}	-. 001		ν
0020	00	0000000		. 001	P_{1}		-. 016	ν
	00	0010000			P_{1}		-. 013	ν

TABLE III.
Continued

TRIG	FACTOR		COEF		COEF			
$l l^{\prime} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$	sin	\cos		\sin	\cos	
	00	1000000			P_{1}		-. 006	ν
$003-2$	00	0000000	-. 018		P_{1}	. 019		ν
0030	00	0000000	. 013		P_{1}	. 156	. 001	ν
	00	0100000			P_{1}	-. 002		ν
0 1-1-2	00	0000000	-. 008		P_{1}	. 008		ν
0 1-1 0	00	0000000	1.021	.. 002	P_{1}	-1.021	. 002	ν
	00	0000001		-. 002	P_{1}		. 002	ν
	00	0001000	. 011		P_{1}	-. 011		ν
	00	0100000	-. 006		P_{1}	. 006		ν
	01	0000000	. 019		P_{1}	-. 019		ν
	10	0000000	-. 009		P_{1}	. 009		ν
$01-11$	00	0000000	. 308		P_{1}	-. 308		ν
$01-12$	00	0000000	. 113		P_{1}	-. 113		ν
0100	00	0000000		-. 003	P_{1}		. 003	ν
	00	0010000		-. 002	P_{1}		. 002	ν
0101	00	0000000	-. 004	-. 007	P_{1}	. 004	. 007	ν
	00	0010000		. 003	μ_{1}		-. 003	ν
	00	1000000		. 001	P_{1}		-. 001	ν
011 -2	00	0000000	. 081		P_{1}	-. 081		ν
0110	00	0000000	1.244	. 001	P_{1}	-1.244	-. 001	ν
	00	0000001		. 002	P_{1}		-. 002	ν
	00	0001000	. 010		P_{1}	-. 010		ν
	00	0100000	-. 004		P_{1}	. 004		ν
	01	0000000	. 017		P_{1}	-. 017		ν
	10	0000000	-. 008		P_{1}	. 008		ν
0111	00	0000000	. 002		P_{1}	.. 002		ν
0112	00	0000000	-. 002		P_{1}	. 002		ν
$013-2$	00	0000000	-. 001		P_{1}	. 001		ν
02.32	00	0000000	-. 001		P_{1}	. 001		ν
02-10	00	0000000	. 003		P_{1}	-. 003		ν
0 2-12	00	0000000	. 019		P_{1}	-. 019		ν
021 -2	00	0000000	. 001		P_{1}	. 0001		ν
0210	00	0000000	. 002		P_{1}	. 0002		ν
1-21-2	00	0000000	-. 048		P_{1}	. 048		ν
1-1-1-2	00	0000000	. 003		P_{1}	-. 003		ν
1-1-1-1	00	0000000	. 004		P_{1}	-. 004		ν
1-1-10	00	0000000	. 128		P_{1}	-. 128		ν
1-1-12	00	0000000	. 002		P_{1}	-. 002		ν
1-100	00	0000000	-. 001	. 0002	P_{1}	. 001	. 002	ν
	00	0010000		-. 002	P_{1}		. 002	ν
1-1 1-2	00	0000000	. 038		P_{1}	. 0338		ν
1-1 1-1	00	0000000	. 001		P_{1}	-. 001		ν
1-1 10	00	0000000	. 011		P_{1}	-. 011		ν
1-112	00	0000000	. 001		P_{1}	.. 001		ν
10.30	00	0000000	. 007		P_{1}	. 004		ν
10-32	00	0000000	-. 007		P_{1}	. 007		ν
10-20	00	0000000		-. 053	P_{1}		. 053	ν
	00	0000010	. 026		P_{1}	-. 026		ν
	00	0010000		. 031	P_{1}		-. 031	ν
	00	1000000		. 009	P_{1}		-. 009	ν
10-1-4	00	0000000	-. 003		P_{1}	. 003		ν
10-1-2	00	0000000	-. 350		$P_{\text {I }}$. 349		ν
	00	0100000	. 002		P_{1}	-. 002		ν
10-1-1	00	0000000	-. 050		P_{1}	. 050		ν

TABLE III.
Continued

TRIG	FACTOR		$\begin{aligned} & \mathrm{COEF} \\ & \sin \end{aligned}$	COEF				
$l l^{\prime} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		\cos		\sin	\cos	
10-10	00	0000000	124.477	-. 123	P_{1}	-124.499	. 123	ν
	00	0000001		-. 172	P_{1}		. 172	ν
	00	0000100		-. 032	P_{1}		. 032	"
	00	0001000	-. 301		P_{1}	. 301		ν
	00	0100000	-. 640		P_{1}	. 640		ν
	01	0000000	-. 933		P_{1}	. 933		ν
	10	0000000	-. 054		P_{1}	. 054		ν
10-1 1	00	0000000	-. 004		P_{1}	. 004		ν
10-12	00	0000000	. 036		P_{1}	-. 036		ν
$100-2$	00	0000000	. 010	-. 0008	P_{1}	-. 010	. 008	ν
	00	0000010	. 011		P_{1}	-. 011		ν
	00	0010000		-. 006	P_{1}		. 006	ν
	00	1000000		-. 0007	P_{1}		. 007	"
1000	00	0000000	-. 704	-. 822	P_{1}	. 704	. 822	ν
	00	0000001	-. 008	. 002	P_{1}	. 008	-. 002	ν
	00	0000010	-. 778	. 002	P_{1}	. 778	-. 002	ν
	00	0000100	-. 001		P_{1}	. 001		ν
	00	0010000	-. 004	-. 573	P_{1}	. 004	. 573	ν
	00	0100000		-. 005	P_{1}		. 005	ν
	00	1000000		-. 246	P_{1}		. 246	ν
	01	0000000		-. 005	P_{1}		. 005	ν
	10	0000000		. 001	P_{1}		-. 001	ν
101.4	00	0000000	-. 008		P_{1}	. 008		ν
101-2	00	0000000	-2.678		P_{1}	2.678		ν
	00	0000001		-. 003	P_{1}		. 003	ν
	00	0001000	. 006		P_{1}	-. 006		ν
	00	0100000	. 014		P_{1}	-. 014		ν
	01	0000000	. 020		P_{1}	-. 020		ν
101 -1.	00	0000000	-. 052		P_{1}	. 052		ν
1010	00	0000000	1.575	. 001	P_{1}	-1.564	. 001	ν
	00	0100000	-. 007		P_{1}	. 007		ν
	10	0000000	-. 003		P_{1}	. 003		ν
1011	00	0000000	-. 001		P_{1}	. 001		ν
1012	00	0000000	. 013		P_{1}	-. 013		ν
$103-2$	00	0000000	-. 001		P_{1}	. 001		ν
1030	00	0000000	. 001		P_{1}	-. 001		ν
11-1-2	00	0000000	-. 017		P_{1}	. 017		ν
11-10	00	0000000	. 116		P_{1}	-. 116		ν
11-11	00	0000000	. 008		P_{1}	-. 0008		ν
11-1. 2	00	0000000	-.002		P_{1}	. 002		ν
$110-2$	00	0000000		-. 001	P_{1}		. 001	ν
1100	00	0000000	-. 0001	-. 002	P_{1}	. 001	. 002	ν
	00	0000010	-. 001		P_{1}	. 001		ν
	00	0010000		-. 002	P_{1}		. 002	ν
111.4	00	0000000	-. 001		P_{1}	. 001		ν
111 -2	00	0000000	-. 083		P_{1}	. 083		ν
1110	00	0000000	-.008		P_{1}	. 008		ν
12-1-2	00	0000000	-. 001		P_{1}	. 001		ν
2-1-1-2	00	0000000	. 016		P_{1}	-. 016		ν
2-1-1 0	00	0000000	. 009		P_{1}	-.009		2
2-1 1-2	00	0000000	. 009		P_{1}	-. 009		ν
2-110	00	0000000	. 001		P_{1}	-. 001		ν
20.30	00	0000000	. 200		P_{1}	-. 200		ν
20-1-4	00	0000000	-. 003		P_{1}	. 003		ν

TABLE III.
Continued

TRIG $l l^{\prime} F D$	FACTOR		$\begin{aligned} & \hline \text { COEF } \\ & \sin \end{aligned}$	COEF				
	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$		\cos		sin	\cos	
20-1-2	00	0000000	. 231		P_{1}	-. 231		ν
	00	0001000	. 001		P_{1}	-. 001		ν
	01	0000000	. 002		P_{1}	-. 002		ν
20-10	00	0000000	. 338	. 005	P_{1}	-. 338	-. 005	ν
	00	0000001		. 001	P_{1}		-. 001	ν
	00	0000100		. 003	P_{1}		-. 003	ν
	00	0001000	. 010		P_{1}	-. 010		ν
	00	0100000	-. 019		P_{1}	. 019		ν
	01	0000000	. 002		P_{1}	-. 002		ν
	10	0000000	-. 004		P_{1}	. 004		ν
20-12	00	0000000	. 002		P_{1}	-. 002		ν
$200-2$	00	0000000	-. 002	. 001	P_{1}	. 002	-. 001	ν
	00	0000010	-. 002		P_{1}	. 002		ν
2000	00	0000000	. 001	. 001	P_{1}	-. 001	-. 001	ν
	00	0010000		. 001	P_{1}		-. 001	ν
$201-4$	00	0000000	. 002		P_{1}	-. 002		ν
$201-2$	00	0000000	. 152		P_{1}	-. 152		ν
	00	0000001		-. 001	P_{1}		. 001	ν
	01	0000000	. 002		P_{1}	-. 002		ν
2010	00	0000000	. 073		Γ_{1}	.. 073		ν
2012	00	0000000	. 001		P_{1}	-. 001		ν
21-1-2	00	0000000	. 002		P_{1}	-. 002		ν
21-10	00	0000000	. 011		P_{1}	-. 011		ν
$211-4$	00	0000000	-. 001		P_{1}	. 001		ν
$211-2$	00	0000000	-. 002		P_{1}	. 002		ν
2110	00	0000000	-. 001		P_{1}	. 001		ν
30-1-2	00	0000000	-.004		P_{1}	. 004		ν
30-10	00	0000000	-. 001		P_{1}	. 001		ν
$301-4$	00	0000000	-. 001		P_{1}	. 001		ν
$301-2$	00	0000000	-. 002		P_{1}	. 002		ν
3010	00	0000000	. 004		P_{1}	-. 004		ν
0000	00	0000000		. 373	P_{2}		-. 373	π
	00	0000001		. 417	P_{2}		-. 417	π
	00	0000010		. 014	P_{2}		-. 014	π
	00	0000100		. 115	P_{2}		-. 115	π
	00	0010000		-. 074	P_{2}		. 074	π
	00	1000000		. 123	P_{2}		-. 123	π
	00	0010001		. 623	P_{2}		-. 623	π
	01	0000001		-. 165	P_{2}		. 165	π
	01	0010000		-. 137	P_{2}		. 137	π
00 1-4	00	0000000		. 001	P_{2}		-. 001	π
$001-2$	00	0000000	. 001	-3.198	P_{2}	-. 001	3.200	π
	00	0000001	-. 003		P_{2}	. 003		π
	00	0100000		. 007	P_{2}		-. 007	π
	01	0000000		. 004	P_{2}		-. 004	π
	10	0000000		. 003	P_{2}		-. 003	π
$001-1$	00	0000000	. 002	. 097	P_{2}	-. 002	-. 097	π
	00	0100000		. 005	P_{2}		-. 005	π
	01	0000000		. 011	P_{2}		-. 011	π
0010	00	0000000	-5.777	5539.366	P_{2}	5.778	-5540.370	π
	00	0000001	-8.304	. 017	P_{2}	8.304	-. 017	π
	00	0000100	-1.384	. 010	P_{2}	1.384	-. 010	π
	00	0001000	. 027	5.793	P_{2}	-. 027	-5.795	π
	00	0010000		. 022	P_{2}		-. 022	π

TABLE III.
Continued

TRIG	FACTOR		COEF			COEF		
$l l^{\prime} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$	sin	\cos		sin	cos	
	00	0100000	. 021	-21.542	P_{2}	-. 021	21.554	π
	00	1000000		. 011	P_{2}		-. 011	π
	01	0000000	. 070	-. 150	P_{2}	-. 070	. 150	π
	10	0000000	-. 010	-11.373	P_{2}	. 010	11.378	π
	00	0001001	. 033		P_{2}	-. 033		π
	00	0100001	. 010		P_{2}	-. 010		π
	00	0101000		-. 027	P_{2}		. 027	π
	00	0200000		. 065	P_{2}		-. 065	π
	00	2000000		-. 022	P_{2}		. 022	π
	01	0000001	. 099		P_{2}	-. 099		π
	10	0100000		. 069	P_{2}		-. 069	π
	20	0000000		. 014	P_{2}		-. 014	π
0011	00	0000000		-. 002	P_{2}		. 002	π
0012	00	0000000		. 008	P_{2}		-. 008	π
002.2	00	0000000	-. 001	-. 002	P_{2}	. 001	. 002	π
	00	0000010		-. 002	P_{2}		. 002	π
	00	1000000	-. 001		P_{2}	. 001		π
0020	00	0000000	. 000		P_{2}	. 030		π
	00	0010000			P_{2}	. 025		π
	00	1000000			P_{2}	. 010		π
$003-2$	00	0000000		-. 006	P_{2}		. 007	π
0030	00	0000000		. 011	P_{2}	-. 001	. 326	π
	00	0000001			P_{2}	-. 002		π
	00	0001000			P_{2}		. 002	π
	00	0100000			P_{2}		-. 004	π
	10	0000000			P_{2}		-. 003	π
0 1-1-2	00	0000000		. 001	P_{2}		.. 001	π
01-10	00	0000000		-1.059	P_{2}		1.059	π
	00	0001000		-. 012	P_{2}		. 012	π
	00	0100000		. 004	Γ_{2}		-. 004	π
	01	0000000		-. 021	P_{2}		. 021	π
	10	0000000		. 009	P_{2}		-. 009	π
01-1 1	00	0000000		-. 029	P_{2}		. 029	π
	00	0010000		-. 003	P_{2}		. 003	π
	00	1000000		-. 007	P_{2}		. 007	π
$01-12$	00	0000000		. 128	P_{2}		-. 128	π
0100	00	0000000	-. 034	. 001	μ_{2}	. 034	-. 001	π
	00	0010000	-. 029		P_{2}	. 029		π
	00	1000000	-. 015		P_{2}	. 015		π
0101	00	0000000		-. 004	P_{2}		. 004	π
	00	0010000	-. 003		P_{2}	. 003		π
011 -2	00	0000000		-. 086	P_{2}		. 086	π
0110	00	0000000		1.284	P_{2}		-1.284	π
	00	0001000		. 010	P_{2}		-. 010	π
	00	0100000		-. 005	P_{2}		. 005	π
	01	0000000		. 016	P_{2}		-. 016	π
	10	0000000		-. 008	P_{2}		. 008	π
$02-12$	00	0000000		. 022	P_{2}		-. 022	π
$021-2$	00	0000000		. 001	P_{2}		-. 001	π
0210	00	0000000		. 004	P_{2}		-. 004	π
1-2-1 0	00	0000000		. 007	P_{2}		-. 007	π
1-2 1-2	00	0000000		-. 066	P_{2}		. 066	π
1-1-3 0	00	0000000		-. 001	P_{2}		. 001	π
1-1-1 0	00	0000000	. 001	-. 136	P_{2}	-. 0001	. 136	π

TABLE III.
Continued

TRIG	FACTOR		COEF		COEF			
$i l^{t} F D$	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$	\sin	\cos		\sin	cos	
	00	0001000		-. 003	P_{2}		. 003	π
	00	0100000		-. 009	P_{2}		. 009	π
	01	0000000		-. 012	P_{2}		. 012	π
1-1-12	00	0000000		. 001	P_{2}		-. 001	π
1-1 1-2	00	0000000		. 029	P_{2}		-. 029	π
1-1 1-1	00	0000000		-. 012	P_{2}		. 012	π
10.30	00	0000000		-. 002	P_{2}		. 021	π
10-32	00	0000000		-. 038	P_{2}		. 038	π
10-20	00	0000000	-. 079		P_{2}	. 080		π
	00	0000010		-. 024	P_{2}		. 024	π
	00	0010000	. 003		P_{2}	-. 003		π
	00	1000000	. 010		P_{2}	-. 010		π
10-1-2	00	0000000		. 078	P_{2}		-. 078	π
10-1-1	00	0000000		. 047	P_{2}		. 0477	π
$10-10$	00	0000000	. 092	-75.449	P_{2}	-. 092	75.476	π
	00	0000001	-. 059		P_{2}	. 059		π
	00	0000100	. 138		P_{2}	-. 138		π
	00	0001000		-. 226	P_{2}		. 226	π
	00	0010000		-. 004	P_{2}		. 004	π
	00	0100000		. 504	P_{2}		-. 504	π
	00	1000000	-. 001	-. 003	P_{2}	. 001	. 003	π
	01	0000000	. 004	-. 184	P_{2}	-. 004	. 184	π
	10	0000000		. 152	P_{2}		-. 152	π
10-11	00	0000000		. 002	P_{2}		-. 002	π
10-12	00	0000000		. 019	P_{2}		-. 019	π
$100-2$	00	0000000	-. 011	-. 012	P_{2}	. 011	. 012	π
	00	0000010		-. 013	P_{2}		. 013	π
	00	0010000	-. 009		P_{2}	. 009		π
	00	1000000	-. 004		P_{2}	. 004		π
100-1	00	0000000	. 002	-. 002	P_{2}	-. 002	. 002	π
	00	0010000	-. 001		P_{2}	. 001		π
1000	00	0000000	. 834	-. 703	P_{2}	-. 834	. 703	π
	00	0000001		-. 005	P_{2}		. 005	π
	00	0000010		-. 779	P_{2}		. 779	π
	00	0010000	. 583		P_{2}	-. 583		π
	00	0100000	. 003		P_{2}	-. 003		π
	00	1000000	. 250		P_{2}	-. 250		π
$101-4$	00	0000000		. 005	P_{2}		-. 005	π
$101-3$	00	0000000		-. 001	P_{2}		. 001	π
101 -2	00	0000000	. 01014	-1.612	P_{2}	. 014	1.613	π
	00	0000001	-. 018		P_{2}	. 018		π
	00	0000100	-. 004		P_{2}	. 004		π
	00	0001000		-. 043	P_{2}		. 043	π
	00	0100000		-. 086	P_{2}		. 086	π
	01	0000000		. 003	P_{2}		-. 003	π
	10	0000000		-. 005	P_{2}		. 005	π
101 -1	00	0000000		-. 054	P_{2}		. 054	π
1010	00	0000000	-. 002	. 299	P_{2}	. 002	-. 276	π
	00	0000001	-. 002		P_{2}	. 002		π
	01.	0000000		. 002	P_{2}		-. 002	π
1012	00	0000000		-. 002	P_{2}		. 002	π
$103-4$	00	0000000		-. 001	P_{2}		. 001	π
$103-2$	00	0000000			P_{2}		-. 001	π
1030	00	0000000		. 001	P_{2}		-. 001	π

TABLE III.
Continued

$\begin{aligned} & \mathrm{TRIG} \\ & l^{\prime} l^{\prime} F D \end{aligned}$	FACTOR		$\begin{aligned} & \hline \text { COEF } \\ & \sin \end{aligned}$	\cos		$\begin{aligned} & \text { COEF } \\ & \text { sin } \end{aligned}$	cos	
	$E_{1} E_{2}$	$E_{3} E_{4} E_{5} E_{6} E_{7} E_{8} E_{9}$						
11-32	00	0000000		. 003	P_{2}		-. 003	π
11-1-2	00	0000000		. 004	P_{2}		-. 004	π
11-10	00	0000000	-.003	-. 161	P_{2}	. 003	. 161	π
	00	0001000		. 005	P_{2}		-. 005	π
	00	0100000		. 014	P_{2}		-. 014	π
	01	0000000		. 018	P_{2}		-. 018	π
11-11	00	0000000		. 002	P_{2}		-. 002	π
11-12	00	0000000		-. 0001	P_{2}		. 001	π
111 -2	00	0000000		-. 053	P_{2}		. 053	π
	00	0100000		-. 002	Γ_{2}		. 002	\%
	01	0000000		-. 003	P_{2}		. 003	π
12-10	00	0000000		-. 004	P_{2}		. 004	π
121.2	00	0000000		. 006	P_{2}		-. 006	π
2-1-1-2	00	0000000		-. 013	P_{2}		. 013	π
2-1-1-1	00	0000000		-. 057	P_{2}		. 057	π
2-1-1 0	00	0000000		-. 002	P_{2}		. 002	π
2-1 0-2	00	0000000	-. 001		P_{2}	. 001		π
2-1 1-2	00	0000000		. 011	P_{2}		. 011	π
$20-30$	00	0000000		-. 201	P_{2}		. 201	π
	01	0000000		. 003	P_{2}		-. 003	π
20-20	00	0000000	. 002	.. 001	P_{2}	-.002	. 001	π
	00	0010000	. 005		P_{2}	-. 005		π
20.1-2	00	0000000		-. 212	P_{2}		. 212	π
20-1-1	00	0000000		. 030	P_{2}		. 0330	π
$20-10$	00	0000000	-.006	. 441	P_{2}	. 006	-. 441	π
	00	0000001	-.007		P_{2}	. 007		π
	00	0001000		. 018	P_{2}		-. 018	π
	00	0100000		-. 006	P_{2}		. 006	π
	01	0000000		. 022	P_{2}		-. 022	π
	10	0000000		. 003	P_{2}		. 003	π
$200-2$	00	0000000	-. 005	. 017	P_{2}	. 005	-. 017	π
	00	0000010		. 020	P_{2}		-. 020	π
	00	0010000	-. 004		P_{2}	. 004		π
	00	1000000	-. 001		P_{2}	. 001		π
2014	00	0000000		. 009	P_{2}		. 0009	π
201.3	00	0000000		-. 0003	P_{2}		. 003	π
$201-2$	00	0000000		. 192	P_{2}		-. 192	π
2010	00	0000000		-. 009	P_{2}		. 009	π
21-1-2	00	0000000		-. 0004	P_{2}		. 004	π

obtained by Eckhardt I^{E} or Moons $I^{\hat{i}}$ takes place again, as well as it was in (Petrova, 1993):

$$
\left|I^{P}-I^{E}\right|=0 . " 965 \quad\left|I^{P}-I^{M}\right|=0 . .^{\prime \prime} 966
$$

We have used the same set of parameters and of constants (Table II) as Eckhardt and Moons.The comparison of HBE-tables and ELP2000 (Chapront, Chapront-Toze,

TABLE IV
Comparison of obtained results with Moon's and Eckhardt's data: the harmonics whose amplitudes are different by more than 0.01 are only presented.

$\begin{aligned} & \text { TRIG } \\ & 1 l^{\prime} \mathrm{F} \text { D } \end{aligned}$	COEF * FACTOR(sin)			$C O E F * F A C T O R(\cos)$			
	Eckhardt	Moons	Petrova	Eckhardt	Moons	Petrova	
0000				214.170	214.187	214.352	τ
$002-2$	1.647	1.646	1.669				τ
10-10	-1.394	-1.394	-1.397	-6.594	-6.597	-6.620	τ
$100-1$	-3.460	-3.463	-3.453				τ
$20-20$	17.014	17.020	16.858	0.495	0.494	0530	τ
0000				-80.724	-80.644	-80.803	p_{1}
10-20	-0.011	-0.011		-0.077	-0.078	-0.053	p_{1}
0010	5562.462	5562.459	5561.491	5.746	5.752	5.754	p_{1}
10-10	124.492	124.483	124.477				p_{1}
20-30	0.231	0.232	0.200				p_{1}
$20-10$	0.379	0.379	0.338	0.014	0.013	0.005	p_{1}
0000				0.392	0.390	0.373	p_{2}
0010	-5.769	-5.775	-5.777	$\mathbf{5 5 4 0 . 3 3 4}$	5540.330	5539.366	p_{2}
01-11				-0.62	-0.60	-0.029	p_{2}
10-10	0.082	0.082	0.092	-75.458	-75.433	-75.449	p_{2}
1000	0.836	0.835	0.833	-0.723	-0.721	-0.703	p_{2}
$20-30$				-0.232	-0.233	-0.201	p_{2}
20-10	-0.014	-0.013	-0.006	0.482	0.483	0.441	p_{2}

1983) does not show some essential deviations. The reality of the revealed effect may be validated by the high-accuracy observations.

As a whole the analysis of the Table IV leads one to believe that within the assigned accuracy 0.01 our solution may be used in practice.

Acknowledgements

The work was written under the direction of Prof. Khabibullin Sh.T. (Kazan University, Russia). The author is grateful to him for his help and helpful discussion of this article. The author is indebted to Dr.Titov V.B.(St-Petersburg University, Russia) for the UPP-subroutine package favorably placed at our disposal and also to Dr.Elkin A.V. for the help in the work with this package.

References

Abalakin, V. K., Aksenov, E. P., Grebenikov, E. A., Demin, V. G., and Rjabov, Ju. A.: 1976, 'Handbook of Celestial Mechanics', Moscow, Nauka, (in Russian).

Brumberg, V. A.: 1980, 'Analytical Methods of Celestial Mechanics', Moscow, Nauka, (in Russian).
Calame, O.: 1976,'Free Librations of the Moon Determined by Analysis of Laser Range Measurements', Moon. 15, 343.
Chapront, J. and Chapront-Toze, M.: 1983, 'The Lunar Ephemeris ELP 2000', Astron. and Astrophys. 124, 50.
Eckhardt, D. H.: 1981, 'Theory of the Libration of the Moon', The Moon and the Planets 25, 3.
Ferrary, A. J., Sinclair, W. S., and Sjogern, W. L.: 1980, 'Geophysical Parameters of the Earth-Moon System', J. Geophys. Res. 85, 3939.
Gutzwiller, M. C., Schmidt, D. S.: 1986, 'The Motion of the Moon as Computed by the Method of Hill, Brown, and Eckert', Astronomical Papers XXIII(1).
Henrard, J.: 1972, 'Analytical Lunar Ephemeris(ALE)', A Report. Publicat. of Dept. of Mathematics University of Namur, Bclgique.
King, R. W., Counselman, C. C., Shapiro, J. J., and Williams, J. G.: 1975, 'Lunar Dynamics and Selenodesy: Results from Analysis of VLBI and Laser Data (LURE2)', J. Geophys. Res. 81, 6251.

Kisljuk, V. S.: 1988, 'Geometrical and Dynamical Lunar Characteristics', Kiew, Naukova dumka.
Migus, A.: 1980, 'Analytical Lunar Libration Tables’, The Moon and the Planets 23, 391.
Moons, M.: 1982a, 'Analytical Theory of Libration of the Moon', Celest. Mech. 26, 131.
Moons, M.: 1982b, 'Analytical Theory of Libration of the Moon', The Moon and the Planets 27, 257.
Moons, M.: 1984, 'Planetary Perturbations on the Libration of the Moon', Celest. Mech. 34, 263.
Petrova, N. K.: 1993, 'Tables of Physical Libration Based on the Schmidt's Theory of Lunar Motion (Main Problem)', Trudy Kazanskoy Observ. 53, 48 (in Russian).
Schmidt, D. S.: 1980, 'The Main Problem of Lunar Theory Solved by the Method of Brown', The Moon and the Planets 23, 135.
Tarasevich, S. V.: 1979, 'UPP-the Universal Poissonian Processor', Algorythm. of Celest. Mech. 27, 1 (in Russian).

