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Abstract. An important feature observed in the wake of the Jupiter-comet clash was the appearance 
of the ring structure axisymmetrically positioned around the center of the impact. The persistent 
expansion of the dark rings and its speed indicated an outward propagating gravity wave (Benka, 
1995). We employ an analytical model of constant density, uniform finite depth and inviscid fluid layer 
to investigate the wave motion produced by the impact of Comet Shoemaker-Levy 9 on the Jovian 
atmosphere. The relevant thermal effects are neglected and an explosion resulting from the collision 
is then described by an initial impulsive pressure at the surface of the Jovian atmosphere. Under the 
assumption that all the kinetic energy of a comet fragment is completely converted into the energy 
of wave motions in the Jovian atmosphere, an analytical formula describing the relationship between 
the resulting wave motion in the atmosphere and the parameters of a comet fragment (the radius, 
density and speed) is derived. Results from the present simple analytical model give a qualitative 
agreement with observations regarding the distance and speed of the waves. 
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1. Introduction 

The cosmic collision between Comet Shoemaker-Levy 9 and Jupiter provides per- 
haps the unique opportunity to study cosmic impacts in the solar system, which 
may have taken place frequently in its evolution. A familiar feature as a conse- 
quence of such cosmic impacts is perhaps the ring structure on the Moon’s surface. 
It was believed that the collisions between the Moon and small bodies like aster- 
oids may produce outward propagating waves due to the fluidized lunar crust and 
subsequently created the ring structure as the waves were frozen at a latter time 
(Van Dom, 1968). Noting the difference between the Moon’s solid surface and 
the Jovian fluid atmosphere, it is remarkable that the similar ring structure around 
the center of the impact was observed in the wake of the Jupiter-comet clash (see, 
for example, Benka, 1995). The persistent expansion of the dark rings was seen 
for several hours with the speed of order lOOOm/s. It was suggested that the ring 
structure represents an outward propagating gravity waves (Benka, 1995). The 
group speed of a gravity wave is given by 

where H is the depth of the atmosphere layer and 0 < f < 1. Note that f - 1 
corresponds to the limit of an infinitely long wavelength. In the atmosphere of 
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Jupiter, the thickness of the outer layer is H = 0( 1000) km with g = 23 m/s2, 
giving the correct order of magnitude for wave speed. The primary aim of this 
paper is at providing some insight into the basic fluid dynamic process of the 
gravity waves generated by the comet-Jupiter collision through the examination of 
a relatively simple analytical model. 

A complete understanding of the cosmic collision is certainly difficult, involving 
complicated thermal, fluid dynamical, chemical and nonlinear processes. In this 
paper, we attempt to understand the some fundamental fluid dynamical processes 
after the comet collision. It is of importance to note that a realistic fluid dynamical 
modelling for the comet collision can be extremely complex. Spherical geometry, 
nonlinearity and inhomogeneous density of the Jovian atmosphere may have some 
influences. Since the spots caused by the impact were observed for a few days, 
rotational effects may also play a role in the dynamical processes. To include all 
these effects in a realistic model, a numerical approach must be adopted, which have 
been discussed (see, for example, the special June issue of Geophysical Research 
Letter, 1994). However, the fragments of the comet are quite small, estimated 
from less than half a kilometer to almost 5 kilometers. The radius of Jupiter is 
about 7 x lo4 kilometers while the Jovian gaseous atmosphere above the liquid 
hydrogen is only about 1000 kilometers thick. It is also likely that the amplitude 
of wave motions in the Jovian atmosphere generated by the collision is likely to be 
much smaller compared to the depth of the atmosphere. In addition, the value of 
viscosity of the Jovian atmosphere is of secondary importance for this short-time- 
scale phenomenon. It is thus expected that a linear inviscid theory in a uniform 
finite fluid layer may give a reasonable description of the collision with regard to 
the dynamical aspect of the event. 

In this paper, we presents an analytical model describing the amplitude and 
time-dependent profile of wave motions generated by the comet impact in the 
Jovian atmosphere in a non-rotating fluid layer of uniform depth, inviscid and 
constant density. The relevant thermal effects are not included in this simple fluid 
dynamical model, an explosion caused by the collision is described by an initial 
impulsive pressure prescribed at the surface of Jupiter. Upon assuming that all the 
kinetic energy of a comet fragment is completely converted into the energy of wave 
motions in the Jovian atmosphere, an analytical formula describing the relationship 
between the resulting wave motions after the collision and the parameters of a comet 
fragment (the radius, density and speed of the collision) is obtained. The results 
from this simple analytical model apparently show a qualitative agreement with 
observations in some important aspects. 

This paper is arranged as follows. Section 2 presents a model of the comet 
impact. This is followed by a discussion of solutions of the model and comparison 
with observations in section 3. The paper closes in section 4 with some remarks. 
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2. Description of the model 

On the basis of the thin atmospheric layer of Jupiter and the small size of a comet 
fragment, we assume that the effect of spherical curvature is small so that the Jovian 
atmosphere can be modeled by a fluid layer of uniform finite depth H. We also 
assume that the fragment of Comet Shoemaker-Levy 9 has spherical symmetry with 
the radius R and uniform density po. The relative speed at the time of the impact 
on the Jovian surface is denoted by U. An initial impulsive pressure on the Jovian 
surface at z = 0 generated by the comet impact action produces wave motions 
propagating outward from the origin T = 0 of the impact, where cylindrical polar 
coordinates (T, #, .z) are used. The form of the initial impulse caused by the comet 
collision is assumed to be 

I(T) = I()e-(‘l”)2, 2 = 0, (2.1) 

which describes the exponentially diminishing effect of the impact from the cen- 
ter with a characteristic length-scale of the size of the fragment. Additionally, we 
assume that the resulting wave motions are axisymmetric, k-rotational and incom- 
pressible, which lead to 

v = -V@, (2.2) 

where V is the velocity and @ is the velocity potential satisfying 

(2.3) 

The effect of compressibility of the fluid has been neglected since we are only 
interested in gravity waves rather than acoustic waves. At the interface .z = -H 
between the atmosphere and the internal liquid hydrogen, we may impose 

z.v= 0, (2.4) 

where Z is a vertical unit vector. The vertical fluid motion is described by the 
z-component of momentum equation 

a2@ - “p+py=o, -Patdz + dz (2.5) 

where p is the average density of the Jovian atmosphere and P is the pressure field. 
Integrating (2.5) once and noting that 
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at the free surface, where 17 is the amplitude (elevation) of a wave, we obtain the 
boundary condition at z = 0 

d2cp Y@-+Y~=O. (2.6) 

Here we have assumed the wave amplitude is sufficiently small so that the nonlinear 
effects can be neglected. We may write two initial conditions, a still atmosphere, 
7 = 0, before th e impact and an impulsive pressure, I(T), at the impact t = 0, in 
terms of the velocity potential Q, 

da 
Jp$- = 0; fly?-, 0,O) = I(r)/p = I,e-(‘.!“)*/p. 

Under the assumptions that the wave motions are produced originally from the 
rest and that all the kinetic energy of a comet fragment is converted into the wave 
motions in the Jovian atmosphere, we are able to relate the value of the parameter 10 
to the observational parameters of the comet fragment (see section 3 for detail) 

with 

I{ = 
s 

O” s2ehS212 tanh(sH/R)ds. 
0 

(2.9) 

Our problem is thus defined by the governing Equation (2.3) subject to the boundary 
conditions (2.4) and (2.6) and initial conditions (2.7). 

3. Solution and discussion 

To solve Equation (2.3) subject to the relevant boundary and initial conditions, we 
introduce the zero-order Hankel transform (Lamb, 1932; Whitham, 1974) 

of the velocity potential @, where Jo is the zero-order Bessel function. Upon 
multiplying Equation (2.3) throughout by TJo([T) and integrating with respect to 
T, we find that a* satisfies 

(3.2) 
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where the assumption that there are no influences of the impact at T + cc is made. 
The boundary condition for W at the bottom of the fluid layer z = -H is then 

m?* o 
dz : (3.3) 

while the boundary condition on the free surface may be expressed as 

d2fb* a@* Tg+g7=0. 
2 (3.4) 

It is straightforward to show that the solution of Equation (3.2) satisfying Equations 
(3.3) and (3.4) is 

where the dispersion relation between w and E is given by 

~3~ = g{ tanh([H). (3.6) 

It follows that the velocity potential ct)( T, z, t) can be expressed as 

Using the initial condition (2.7a), it can be shown that 

while the initial condition (2.7b) associated with the impulsive pressure at the time 
of the impact on the surface 2 = 0 (2.6b) gives rise to 

with its inverse transform given by 

(3.8) 

(3.9) 

Consequently, we may write the velocity potential @ and the elevation 7 of the 
corresponding wave as 

m cosh[w + 41 JO(IT) cos(~t),-w”~~~. 
P cosh(Efl) 

(3.10) 
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and 

-IiJR2 

s 

O” 
rl(r7 4 = 2 

w sin(wt) 

0 
ps Jo(@)e-E2R214~d& (3.11) 

We will focus on the profile of the free surface n( r, t) as it represents an observable 
quantity. 

To make further progress of the problem, we must connect the unknown param- 
eter 10 in Equations (3.10-3.11) with the observable variables of a comet. Since 
the viscosity of the atmosphere is small and the time-scale of the waves is much 
shorter compared to the diffusion time-scale, it appears appropriate to assume that 
the energy of a fragment is completely converted into the kinetic energy of the 
waves. The total kinetic energy of the wave motions resulting from an impact is 

Ew = ; 
s 

r12R4 w 

V 
plV@12dV = -&- i J2e-R2t2/2 tanh(EH)d[. (3.12) 

Let s = [R, we then have 

7iI;RK 
E, = _____ 

4P ’ 

where K is defined by Equation (2.9). Equating E, to the kinetic energy of a 
spherical fragment, we obtain 

F([)/e = I*([) = R3U 
J 

$-R2t2~4. (3.13) 

Making use of Equation (3.1 l), we obtain for the elevation of the free surface 

UR3 

77(r, t, = -7 
2PO O” 

J /’ - 3Kp 0 
e-R2t2/4~ sin(&) Jo({r)fd[. (3.14) 

The exact evaluation of the above integral is quite complicated even for the simplest 
model of the initial distribution T(r). However, sufficiently away from the center 
of the impact, <r >> 1, an asymptotical expression of the integral for large r[ can 
be derived by using the principle of the stationary phase, first proposed by Kelvin 
in 1887 (see Whitham, 1974, for detail). First we note that the Bessel function 
Jo(T<) for r[ > 1 is approximately given by 

Jo@) = & cos([r - 7r/4). 

Equation (3.14) then becomes 
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x exp{-(@/2)* t i(@ - wt)}dE, (3.15) 

where the real part of the expression represents required solutions. The Kelvin’s 
approximation is based on the fact that the major contribution arises from the region 
of the integration where the phase of oscillation is stationary. For the present case, 
the stationary point is given by 

Under this approximation, the elevation of the free surface produced by the collision 
can be expressed as 

x \I 4<* 
ld”( [*)lrt 

sin[[*r - w((*)t], (3.17) 

where E” represents the solution of Equation (3.16) for given T and t. Note that 
the relation d(E) is given by Equation (3.6). Combining the relevant equations, we 
can obtain a formula describing the wave elevation of the Jovian surface after the 
collision 

7jqr.f) = exp[-( RE*/2)*]F( He”) 

x sin[f*r - ij( t*)t] 

where 

F(x) = 
2a3 tanh x [sinh( 2.x ) $ 2x1 sinh( 2s ) 

4.r[2x cosh( 2~) - x - sinh( 2z)] + sinh’( 2~). 

The relation between the T. t and [* is defined by 

(3.18) 

(3.19) 

2r = tm{,,/tanh(<*H)/(<*H) 

(3.20) 



30 D.CHENANDK.ZHANG 

For any given values of radius R, speed U and density pu of a comet fragment, the 
resulting wave motions of the Jovian atmosphere after the impact can be readily 
calculated using Equations (3.18-3.20). 

In our evaluation of Equations (3.1%20), we have chosen that H = 1000 km 
p = 500 kg/m3 and g = 23 m/s2 for the Jovian atmosphere, though we have used 
different sizes (R) of a fragment of the comet. Figure l(a) shows the elevation q 
as a function of the distance T from the center of the impact on the Jovian surface 
obtained for R = 3 km, pu = 500 kg/m3 and U = 55 km/s at one hour after the 
impact. The waves produced by the collision reach to about 500 km from the origin 
of the collision with the amplitude as high as 10 km. At t = 12 hours, the waves 
propagate to about 4 x lo3 km with the wave amplitude about 300 m; at t = 24 
hours, our calculation shows that the waves reach the distance slightly more than 
lo4 km. Note that a similar plot for small size of the fragment (R = 1 km) at t = 1 
hour is shown in Figure l(b), indicating a much smaller amplitude of the wave 
elevation. 

Our results calculated from Equations (3.18-3.20) appears to be in a qualitative 
agreement with the rough estimation of observation of the event ( for example, 
Kerr, 1994). It was reported that a black spot with the radius of about lo4 km was 
observed a day after the impact of fragment G. It is, though, not our intention here 
to present an accurate comparison between our simple model and observations. 
Instead, it is of hope that a simple analytical formula like Equations (3.18-3.20) 
may be used to understand the basic fluid dynamical processes in connection with 
the comet collision when the detailed observations become available. 

4. Concluding Remarks 

We have presented a simple analytical model describing the wave motions after the 
collision of Comet Shoemaker-Levy 9 on the Jovian atmosphere. With the estimated 
size, density and speed of a comet fragment, we can use Equations (3.18-20) to 
produce the profile of the Jovian atmosphere surface resulting from an impact 
at a given time or a given distance. Our result based on this model appears to be 
qualitatively in agreement with observations regarding the distance and speed of the 
waves. With the fully analytical expressions (3.18-3.20), observable quantities like 
the speed of wave can be readily estimated, providing a complementary alternative 
to the full numerical solutions of a more complicate, realistic model. Our formulae 
can also be used to estimate the ring structure on the Moon’s surface. In that case, 
we replace R with the radius of an impact body. Both the height of the rings and 
the space between the rings may be estimated on the basis of Equations (3.17- 
3.20). But it remains unknown concerning when and how a propagating wave is 
frozen. 

It is evident that there are several simplifications in our model which need 
to be improved. One of them is the assumption of constant density for the Jovian 
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Fig. I. The elevation of the surface q as a function of the distance r at one hour after the impact 
with (a) R = 5000 m and (b) R = 3000 m. 

atmosphere, which is obviously oversimplified. Stratification can be of significance 
and may have important effects, especially, on the depth which can be stirred by 
an impact. A more realistic model therefore should include a density distribution 
p = p( 2). Furthermore, the compressibility of the Jovian atmosphere and the 
possibility of forming nonlinear shock-waves may also be of importance. 
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