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Abstract. The Rayleigh-Taylor instability is studied in a self-gravitating two-layer fluid sphere: an inner 
sphere and an outer layer. The density and the viscosity are assumed to be constant in each region. 
Analytic expressions of the dispersion relations are obtained in inviscid and viscid cases. This examina- 
tion aims at the investigation of the Earth’s core formation. The fluid sphere corresponds to the 
proto-Earth in the accretion stage. The instability is examined without rotation of the fluid sphere, while 
the proto-Earth is rotating. However, it is shown that the Coriolis force does not influence the conclusion 
in the Earth’s core formation problem. The main properties of the instability are as follows: For I = I 
(where I is the subscript of a spherical harmonic YF), the growth rate 0 is determined mainly by 
deformation of the outer layer, while, for I 3 2, by deformation of the more viscous region of the inner 
sphere and the outer layer. The time scale of the instability is governed by the free-fall time in the case 
of weak viscosity, and by the viscous-diffusion time in the case of appreciable viscosity. These results are 
applied to the Earth’s core formation problem in another paper (Ida et al., 1987), where we concluded 
that the Earth’s core has formed through the translational mode of the Rayleigh-Taylor instability with 
the time-scale of 10 h. 

1. Introduction 

It has been proposed by several authors (e.g. Elsasser, 1963; Stevenson, 1981) that 
the Earth’s core formed through the Rayleigh-Taylor instability. According to 
Elsasser, the wavelength of instability is as large as the size of proto-Earth; while 
Stevenson advocated the view that the translational mode occurs. In the investiga- 
tion of the Earth’s core formation, the instability must be considered in the 
self-gravitating fluid sphere. Since the instability has not been studied in self-gravi- 
tating fluid sphere, the authors of the previous studies examined the Earth’s core 
formation using the results in the plane-parallel fluid with constant-gravity (e.g., 
Chandrasekhar, 1961; Ramberg, 1968), though one can validly use the constant- 
gravity plane-parallel approximation only when the wavelength of the instability is 
sufficiently small and cannot treat translational mode with this approximation. In 
the present paper, we will strictly study the Rayleigh-Taylor instability in a 
self-gravitating two-layer fluid sphere (inviscid and, viscous) assuming that the density 
and the viscosity are constant in each region. The results are used in the investiga- 
tion of the Earth’s core formation in another paper (Ida et al., 1987) which will be 
hereafter referred to as Paper II. The recent theories of planetary formation leads 
to the proto-Earth with the three-layer structure, the innermost undifferentiated 
solid core, the intermediate metal-metal layer, and the outermost silicate-melt layer. 
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This structure is gravitationally unstable, since the density of the intermediate 
metal-melt layer is larger than that of the innermost undifferentiated solid core. The 
two-layer fluid sphere studied in the present paper corresponds to the inner two 
regions of the proto-Earth. In the Earth’s core formation problem, it is sufficient to 
consider the inner two region (Paper II). The instability is examined without 
rotation in the present paper, while the proto-Earth is rotating and the Coriolis 
force would influence the fluid motion. However, as shown in Section 5, it is 
expected that the conclusion based on the results without rotation is still valid even 
if the Coriolis force is considered, as long as we are concerned with the instability 
of Earth’s core formation. 

2. Basic Equations 

We will consider a self-gravitating two-layer fluid (an inner sphere and an outer 
layer); these regions contain incompressible fluid. We assume that the inner sphere 
and the outer layer have the densities p, and p2 and the viscosities pi and pLz, 
respectively, which are constant in each region. Let R, and R, be the radius of the 
interface between the inner sphere and the outer layer and that of the outer surface, 
respectively. 

We perturb the initial hydrostatic state, deforming the interface at I = R, slightly 
as r = R, + 6r. We denote the corresponding increments in the gravitational poten- 
tial, the pressure, and the velocity field by 60, 6P, and u, respectively. These 
increments are infinitesimal since we assume that 6r is small enough compared to 
R,. If we neglect the higher-order terms in these quantities, the equations governing 
the perturbed state of the inner sphere and the outer layer become 

1 

au/at = -grad 4 + vV2u, (1) 
div u = 0, (2) 
V26@ = 47rG6p, (3) 

where 4 z Lip/p + 6@ and v = k/p, and 6p is the Eulerian change of the density due 
to the boundary deformations at r = R, and R2: i.e., 

Sp = (A - p2) Srhk - 4) + p2 dr’J,(r - RJ, 

where 6, is the Dirac’s a-function and 6r’ the deformation of the surface at r = R, 
corresponding to 6r. Equations (l), (2), and (3) are the equation of motion, the 
continuity equation (note that the fluid is assumed to be incompressible), and the 
Poisson’s equation, respectively. 

Since the configuration of unperturbed state is spherically-symmetric, the solution 
can be expanded into a series of normal modes; and these can be specified uniquely 
by a shape of deformation of the interface at r = R,, given by 

(4) 
(5) 
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where we used the spherical coordinate (I, 8, 4), and s0 is an infinitesimal constant, 
(T the growth rate of instability to be determined, and Yy a spherical harmonic. 
Note that the perturbation is unstable if the real part of CJ is positive. 

In order to solve the solution to the perturbation equations, we must impose the 
boundary conditions at r = R, and R,. As to the condition at r = R,, we have two 
cases: i.e., a rigid surface and a free surface. The boundary conditions in the viscous 
case are as follows: 

(1) The radial velocity u, is continuous and equal to a(&)/& at r = R, + 6r. 
(2) The tangential velocities u0 and U+ are continuous at r = R, + 6r. 
(3) The total normal stress (including the hydropressure P) P,, is continuous at 

r = R, + 6r. 
(4) The tangential stresses Pro and PFb are continuous at r = R, + 6r. 
(5-r) In the rigid-surface condition (6r’ = 0), u,, uO, and U+ = 0 at r = R,. 
(5-f) In the free-surface condition P,,, P,+, and Pr+ = 0 at r = R2 + 6r’. 
In the above, the components of the total stress tensor P,.,, Pro, and Prs are given 

by 

i 

P,, = -(P + 6P) + 2p ih#r, (6) 
P,, = p(au,laO + r au,/ar -2.+)/r, (7) 
P,, = p(r d2.d~pr + &,/sin 8 a4 - 24+)/r. (8) 

On the other hand, the boundary conditions in the inviscid case (v = 0) are written 
as follows: 

(1’) The radial velocity u, is continuous and equal to a(&)/& at r = R, + 6r. 
(2’) The pressure P + 6P is continuous at r = R, + 6r. 
(3/-r) On the rigid-surface condition, U, = 0 at r = R,. 
(3/-f) On the free-surface condition, P = 0 and u, = a(&‘)/& at r = R2 + 6r’. 
In the next section, we will obtain the analytic expressions of dispersion relations, 

solving algebraically Equations ( 1) to (3) on the above boundary conditions. 

3. Dispersion Relations 

3.1. INVISCID CASE 

We will first study the inviscid case, which is helpful to understand the properties 
of the instability in the viscid case. The dispersion relations in the inviscid case are 
as follows (their derivations are shown in Appendix A2) : in the rigid-surface case, 

I(1 + 1) 
CT2 = y (p2 - pl) ~ w - lIPI+ 3P2 

2E + l Cz + l)(P* - P2) + (2z + 1)P2Dim ’ 
(9) 

where x = R,/R, and D,, = (1 - x~(~‘+‘))-‘. W e should notice that c2 is propor- 
tional to the density difference (pz - pl). This mode will be called the R mode 
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hereafter (where R represents the rigid surface), and CJ of the R mode given by 
Equation (9) will be denoted by oR. 

In the free-surface case, 

47cnG Z(Z + 1) K* + (K: - 4&K,) i’* 
(r2=--12Z+l 2K, ’ (10) 

where 

K2 = 0 + l)(V + lb2 - (I + lMP2 - P,>>Y 

K1= (2Z+ l)(k, - 3p,x-(2’+1))pz 

- 0 + l)(P* - Pd{W + 1)k3k‘l+ 2MZ - UP,), 

K, = (pl - p2)k3k2{2(Z - l)p, + 3p2f - 3(2z + ~)P~P,x-@‘+ I), 

k, E 1 + zx -c2/+ “/(Z + l), 

k2 E (2Z+ l)k, - 3k,p,, 

k,-l-x- (21+ “( =Dirr,‘), 

k = ~2 + x -3(~1 - ~2). 

As is seen from Equation (IO), there are generally two solutions for Q* in the 
free-surface case: one corresponds to a mode subject to the displacement of the 
interface at r = R, (i.e., an internal gravity mode, which will be called the F mode, 
where F represents the free surface); and the other, to a mode subject to the 
displacement of the surface at r = R,; i.e., a surface-oscillational mode, which will 
be called the F’ mode. If p, < p2, the F mode is the solution with minus sign before 
the square-root in Equation (IO), while the F’ mode plus sign. If p1 > p2, they are 
interchangeable. The growth rate 0 of the F and F’ modes given by Equation (10) 
will be denoted by oF and oF, respectively. 

The last term in the right-hand side of Equation (9) is always positive, and in 
Equation (10) K,K, > 0 and K, > 0 if p1 r p2 and K,K, < 0 if p1 < p2. These imply 
that: 

(9 If p2 < pl, 

ai<O, a$<O, and o$<O, 

i.e., all the modes are stable. 

(ii) If p2 > pII 

ai >O, o$>O, and a$<O, 

i.e., R and the F modes are unstable, while the F’ mode stable. 

(iii) If p2 = pl( =p), 

CT’, =cT* -0 F- > 

and 
* _ 87cGp Z(Z - 1) 

cry - -~ 
3 21+1’ 
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i.e., the R and F modes do not exist and the F’ mode reduces to what is known as 
Kelvin mode. 

For I = 0 and 1, Equations (9) and ( 10) reduce to the simple forms: 

(iv) If I = 0, 

This is because the mode I = 0 - an expansion or contraction mode - is 
prohibited owing to the assumption of incompressibility. 

(v) If z= 1, 

(J’R =--- 4;G (Pa - PI) 
2( 1 - x -3h 

%I + P2 - 2x p3(Pl - PJ ’ 

hG 2K (3---1 
F- 3 3K2’ 

=3P2-PJ 
2(1 -x-3){P2+x-3h -P2)1 

2P,+P2+x-3(P1--2) . 

(11) 

(12) 

And, lastly, 

a>= 0 

implies that the translational mode is prohibited in the surface oscillation. 
Now we will examine the effects of the surface boundary conditions at r = R,. We 

first notice that when x( = R2/R1) tends to unity; i.e., the outer layer is quite thin, C; 
and C$ for I = 1 given by Equations (11) and (12) become identical: they both 
reduce to 

CT2 = y (p2 - ,0,)(x - 1). 

We next consider the case of large x; i.e., the outer layer is quite thick. Equation 
(10) can be rewritten as 

where 

{(I + 1)X2 - k2}(K3E2 - K4) + (KJ’ - K& -c21+ I) = 0, (14) 

K3 = (21+ lb2 - (I + ljk3b2 - PI), 

& = -b2 - dk3i2(z - lh + 3~~)~ 

KS = (I + 1)@2 - PI) x 

x (3b2 + (3 + 1){(21 - lb, + 3P2)/(l + 1))~ 

~~ = -3w + m2 - P,)~~P,P,, 

k2 = (21 f 111~2 + x -3(~t - P,>> - %p,, 

k, E 1 -X-(21+ 1). 
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When xP czl+ ‘) 6 1; i.e., the outer layer is thick enough compared with the 
wave-length of the instability, Equation (14) has such solutions that Z2 N k,/(l + 1) 
and K4/K3-i.e., 

87cGp Z(Z - 1) 
a2= --y-F, 

where p = p2 + (2Z+ 1)~ -3(p, - p,)/2(1- l), and 

a2 2: ai. 

The former is the surface-oscillation mode (a generalized Kelvin mode), and the 
latter is the internal-gravity mode and strictly reduces to ai also in this case. These 
imply that whether the surface boundary at r 3 R2 is free or rigid, the growth rates 
a of the modes subject to the displacement of the interface at r = R, are the same 
when R,IR, N 1 for 1 = 1 or when (R2/R,)2’+1 ti 1 for all I: In these limit cases, the 
surface boundary conditions are not essential to these modes. 

We will examine the effect of curvature of the geometry; we can expect it to 
become less important with increasing 1. When I % 1, Equations (9) and ( 10) reduce 
to, respectively, 

0; 1: $G (p2 - p,)Z Pl 
pi -P2+2&(1 -e--ZkAR) 

41rG 
= 3 PIR, 

1 

p1 -P2+2p,/(1 -e-2kAR) 

=gk (~32 -IMP - e-2kAR) 

p1 +p2+e -2k AR(P2 - PI) ' 

a> N -4rrGp,1/3 = -gk, 

and 

a$ N y (p2 - p$ Pl 

p1 + p2 - (p2 - p& -2k AR 

=gk (~2-pXl -epzkAR) 

p1+P2-e -2kAR(P2 - PI) ’ 

(15) 

(16) 

(17) 

where g = 4nGp,R,/3, k = E/R,, and AR = R, -R,, and we used the relation 

lim (R2/R1) - 
I-m 

(2’+ ‘) = I”% (1 + AR/R,) --(“+ ‘), 

= /;c (1 + 2k AR/21) -‘l, 

=e -2kAR 

We restrict ourselves to the case of (R2/R,)-3 2. 1 (i.e., the simple case where the 
approximation of constant gravity is valid). Equations (15), (16) and (17) are, 
respectively, identical to Equations (B- 1 I), (B- 12), and (B-l 3) obtained in Appendix 
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B, which are the dispersion relations in the plane-parallel geometry: The plane- 
parallel approximation is valid in the case of 1% 1, as expected. 

3.2. VISCOUS CASE 

We next consider the viscous case. Also in this case, we may consider two types of 
the boundary conditions at r = R,; viz., the free surface and the rigid one. As shown 
in Paper II, however, in the study of the Earth’s core formation, it is sufficient to 
know the results in the rigid-surface case. Hence, we consider only the rigid-surface 
case. 

The dispersion relation in the viscous case is found to be (its derivation is shown 
in Appendix A3) 

2 -4nG l(1 + 1) 2(1- lb, + 3P, 
cJ - 3 (p2 - pl) 21+ 1 (1 + l)(p, - p2) + (21+ l)p,D,’ (18) 

where 

D, ~(1 -DJ/(l -x-(~~+~)-D~), 

x = RJR,, 

D, E 2(1+ l)(l - 1)M(Mq,221(1 + 2)(A,B, - A,B,) + 

+ (21+ l)(A,B, - A&) - (210)Bi + A,<210)}/D,, 

D, = (21 + l)@f&B, - M32) - &t&4 - -&BJ)/D3, 

D, = xl+ 2(M((221)B, - A,(221)) - q&((221)&, - A&221))}, 

M = ~11~2 - 1, 

qij = (c/vJ”~R~, where (ij) = (ll), (21), and (22), 

(ijn) = ( -qg)“(RjR,) -3’21 I+ ,, + 112(qij) (where n = 0 and l), 

<tin> = q;WjlRd -3’2K+ n + ,,dqij), 

A, - (211) - (221)x1+2, 

A, = (210) -(220)x1-1, 

A, -(xi-1-Xl+2)(221)/(21+ 1) +A,, 

A, = -p,( 1 lO)A,/p,( 111) + (210) 

A, = 2(1+ l)(l - 1)A3 + 2Ai, 

and Bk’s (k = 1, 2, 3,4 and 5) are given by replacing all (ijn) in A,‘s with (ijn), and 
I i+n f 1129 K I+n+ 1,2 are the modified Bessel functions of the first and second kind. 
Equation ( 18) has the same form as Equation (9) in the inviscid case except for D, 
and D,, in the denominators in their right-hand sides. We should notice that D, and 
D, in D, contain 0, so that Equation ( 18) is a transcendental equation as to 6. 
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In the limit case where both pi and pZ tend to zero, Equation (IS) reduces to 
Equation (9) in the inviscid case, since D, and D, 6 1 in this limit. On the other 
hand, when .LL~ and ,uL2 tend to infinity, a2 approaches zero since D, N 1 - x(-~‘+ *) 
and hence D, becomes infinite in this limit. In order to see the general properties of 
the dispersion relation (18), however, we must numerically solve it as to 0, which 
will be done in the next section. Here we will only introduce some physical 
quantities and rewrite Equation (18) for the later use. 

The dispersion relation (18) contains three characteristic time scales: the free fall 
time z~, the viscous-diffusion time rD1 in the inner sphere, and that in the outer layer, 
rD2. They are defined by 

zf = {4nW2 - d/3)1/2, (19) 

TD, = R:lv,, (20) 

2D2 = RI@, - RJlv2. (21) 

Instead of rD2, in some case we will use the alternative form rb2 defined by 

zb2 = (R, - R,)2/v2. (22) 

The different forms of rD1, 2D2, and rb2 reflect the differences in geometry of the 
regions. We will also use the frequencies defined by the inverses of these character- 
istic times: 

of-zy’, (23) 
-1 

nDl = z,,l , (24) 

B -1 
DZezD2, (25) 

cT&2=Z f-1 
02, (26) 

Using the above quantities, we can rewrite the dispersion relation ( 18) in a 
non-dimensional form as 

CJ 2 Z(Z+ 1) 
C-J -- 

2(1-1)+3y 

Of 21+1 (z+I)(I-~) +((21+11y(l-D,)l(l -~~(~‘+‘)-~2)~’ 

(27) 

where y = p2/pl. The non-dimensional quantities qij’s contained in D, and D2 are 
also expressed as 

411 = (@/Or> 1’2(~f/aD,) 1’2~ 

921 = <D/of> 1’2(of/aD2) 1’2(x - l> - 1’2, 

or 

921 = <cJ/@ 1’2(q/62) 1’2(x - 1) -I, 

and 

922 = x921 
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The normalized growth rate a/or is determined as a function of I by specifying 
four independent non-dimensional parameters out of p2/p1, RJR,, p2/p,, oDl/ofi 
a,,/~~, and o&/af In the next section, we will select p2/p,, R,IR1, a,,/~~, and ~,,/a~ 

(or cfD2/+ 

4. General Properties 

Here we will show the dispersion relations explicitly to study the properties of the 
instability in detail. 

4.1. INVISCID CASE 

First, we will show the inviscid case. The growth rates c in a typical case (with 
RJR, = 1.5 and pJp, = 2.0) are shown as a function of I in Figure 1 in the 
rigid-surface condition, and those in the free-surface condition in Figure 2. They are 
plotted according to Equations (9) and (lo), respectively. In either case (r is an 
increasing function of I- approximately, c cc E ‘I*. It discloses that the time-scale of 

0 
G 

2.0 

1.5 

1.0 

0.5 

inviscid (f reel ,p” 
R2/R1=1.5 
P2/P1=2.0 !’ 1‘ 

p’ 
I’ 

Fig. 1. The dispersion relation in the inviscid case 
for the rigid surface with RJR, = 1.5 and p2/ 
p1 = 2.0. The growth rate CJ is normalized by 
0/‘{4nG(p,--,)/3)“‘~(the free-fall time)-‘. 

0 
5 

2.0 

1.5 

1.0 

0.5 

4 

inviscid (rigid) 
R$R1=1.5 
Pz/P1=2.0 

123 5 
Q 

IO 

Fig. 2. The dispersion relation in the inviscid case 
for the free surface with RJR, = 1.5 and pz/ 
p, = 2.0; the solid curve corresponds to the F 
mode whereas the dashed curve to the F’ mode 
(Note that uFr is purely imaginary, so this figure 

shows its absolute value). 
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instability ( NO -‘) is proportional to the root of the distance ( 05 E-‘/2) between 
fluid elements to be exchanged, as understood by the following consideration. The 
time required to exchange the fluid element at Y = R, + 6r and 8 - 8, for the other 
at r = R, - 6r and 8 = 0, + z/l is approximately given by the time required in the 
free fall on the slope (see Figure 3), 

t 1: 2(6r/g’)‘i2 (i.e., 26r = -g’t”/2), 

where g’ is the effective gravitational acceleration given by 

fg’ = G2 - ~dg{2~rlWWl~ 

in which p is the mean density given by {p, + pJ/2; hence, 

g’ N 1@~1@2 - O+ZPh + ~2)~ 

where we used the relation g = &cGp,R,/3. Then we obtain 

0 N t ~’ N (g//h-) Ii212 

= (4G(p2 - PJI~}(ZPII(P~ + ~2))~‘~ x Y2- (28) 

We should note that Equation (28) is the same as the exact dispersion relation 
(9) in the case of large Z except for the numerical factor 7t. 

In Figures 1 and 2, crF in the free-surface condition does not differ so much from 
gR in the rigid-surface one. In the preceding section, it was already shown 
analytically that r.rF reduces to crR when (R,/RJ2’+’ % 1 for all Z or when R,/R, N 1 
for 1 = 1. In order to see the difference between crF and oR, the ratio oF/aR is plotted 
as a function of R,/R, in Figure 4. This figure shows the above-mentioned tendency 
clearly and moreover illustrates that aF/oR generally increases with decreasing AR, 
and is limited by (p2/p,)“’ when AR( = R, - R,) becomes small, which will be 

- W/le - 

Fig. 3. The schematic illustration for the instability in the inviscid case; the fluid element at r = R, + 6r 
and 8 = 0, and the other at r = R, - 6r and 0 = 8 + n/l are interchanged in the free-fall time on 
the slope. 
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10 
AR/R1 

Fig. 4. The ratio up/crR as a function of AR/R, in the inviscid case with p2/p1 = 2.0, where 
AR = R, - R,. The ratio is limited by @Jp,) II2 the limiting value in the plane-parallel case. 

important for the discussion in Paper II. These are physically interpreted as follows: 
Generally, in the inviscid case the difference between bF and crR corresponds to the 
difference in 6P on the surface at r = R,: On the rigid surface we have non-zero 6P, 
whereas 6P is zero on the free surface. When AR is large, the deformation at r = R, 
can hardly affect the fluid near the surface; i.e., the difference in the surface- 
boundary conditions is virtually less effective, which is conspicuous when the 
wavelength ( cc l/1) of perturbation is small compared with AR. This is the reason 
why aR/oR N 1 when (RJR,)*‘+’ % 1. On the other hand, when AR is small, the 
deformation at r = R, directly affects the motion of the fluid near the surface at 
r = R,: Then 6P at r = R, on the rigid surface is generally large and increases with 
the number of nodes of deformation; i.e., 1. As mentioned above, ISJ(T~ increases 
with the difference between 6P at r = R, on the rigid surface and that on the free 
surface. Therefore oF/oR increases with 1. When I is large, cF/cR asymptotically 
approaches the limiting value @*/pi) ‘I2 in the plane-parallel geometry (see Equation 
(B-17) in Appendix B), since the plane-parallel approximation is valid when I is 
large as shown in the preceding section. We should notice that the mode I = 1 
exceptionally has no node (i.e., without deformation of the interface and surface) 
and then the flow in the outer layer tends to be parallel to the boundaries; i.e., the 
radial component of the flo.w is very small. In this thin layer case, the radial 
component of the flow directly corresponds to 6P on the rigid surface. Therefore 6P 
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inviscid 
Rz/Rj= variable 

o - inviscid 

G 
R2/R1=1.5 
&/pl= variable 

123 5 
R 

IO 123 5 
4 

10 

Fig. 5. The dispersion relations in the inviscid case Fig. 6. The dispersion relations in the inviscid case 
(the rigid surface) with various RJR,. (the rigid surface) with various p2/p,. 

is quite small for the mode I = 1 even on the rigid surface: oF/oR N 1 for the mode 
I = 1 when AR is small. 

The RJR,-dependence of the dispersion relations in the rigid-surface case is 
shown in Figure 5, and the p,/p,-dependence in Figure 6 (figures which illustrate 
those dependences in the free-surface case are omitted because oF/crR is generally 
not far from unity as mentioned above). Figure 5 shows the instability is largely 
suppressed when RJR, 6 1.1. This fact will be referred to later. On the other hand, 
Figure 6 shows that the increase of the ratio p2/p1 flattens the Z-dependence of 6. 

4.2. Viscous CASE 

Next we will illustrate the dispersion relation (18) in the viscid case on the 
rigid-surface condition and examine the properties of the instability. Typical 
examples (with RJR, = 1.5 and p2/p, = 2.0) are shown in Figures 7 and 8. In these 
figures, S, and S, are non-dimensional parameters which indicate the degree of 
efficiency of the viscosity and are defined by 

S, zz o,,/af = v,/R:af, (29) 
S, = o,,/af = v,/R, ARa,, (30) 
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Fig. 7. The dispersion relations in the viscid Fig. 8. The dispersion relations in the viscid case (the 
case (the rigid surface) with RJR, = 1.5, pz/ rigid surface) with RJR, = 1.5, p2/pI = 2.0, and 
p, = 2.0, and p, -C pz: 0 is mainly determined p, > .u2; for I = 1, cr is mainly determined by S2, while 
by S, (see Equation (30) as for SJ. for 12 2 by S, (see Equation (29) as for S,). 

where ofi oD1, and co2 are given by Equations (23) (24) and (25). It is to be noticed 
that these two parameters have simple physical meanings: S, (or S,) is the 
viscous-diffusion time in the inner sphere (or the outer layer) in unit of the free-fall 
time. Figures 7 and 8 reveal the general properties of the Rayleigh-Taylor instability 
in this case. First we can see that 

(i) For 1 = 1, irrespective of the inequality between ,~i and pLz, 
S, mainly determines the growth rate. (31) 

(ii) For I 2 2, when .LQ > ,D~, Si determines the rate. (32) 

(iii) For 12 2, when pi < p2, S, determines the rate. (33) 

For I B 2, the instability is governed by a deformation of the regions which has 
the larger viscosity. For 1 = 1, it is governed by a deformation of the outer layer, 
since Z = 1 mode is the translation of the inner sphere without deformation through 
the outer layer. On one hand, we should notice that when Z is large enough the 
viscous dissipation is inevitably large so long as Z.A, or p* is non-zero, so that CJ tends 
to zero. 
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Next, we define a non-dimensional parameter S by 

SE 
1 

S, in the case of ,u, > y, with I > 2, 
S, in the case of I = 1 or the case of ,u~ < pLz. (34) 

Then we can see that the time-scale of instability is governed by that in the 
inviscid case ( N the free-fall time) in the case of S < 1: 

~ 2: ~inv for S -+ 1, (35) 

where gin” is the growth rate in the inviscid case given by Equation (9) with the 
same values of RJR, and p2/p,. And we can also see that 

OLX(S=l)/S+Ui,, for S&l, (36) 

where o(S = 1) denotes the growth rate for S = 1: The instability is governed by the 
viscous-diffusion time rather than the free-fall time for S 3 1. These properties 
would be valid also in the free-surface case. 

When the outer layer is thin -AR is small, the flow in the outer layer would 
move parallel to the boundaries. When, say (see Figure. 5) RJR, 6 1.1, a new 
parameter, given by 

S; s o&~/cT~ = v,/AR20f, (37) 

viscid Pl<P2 
&/RI = 1.01 
P2/P1=2.0 

123 5 10 
& 

Fig. 9. The dispersion relations in the viscid case (the rigid surface) with RJR, = 1.01, p2/p1 = 2.0, and 
pL1 > pLz; in the thin layer case (R2/R, 6 1.1), the growth rate is characterized by S; (see Equation (37) 
as for S;). Note that in this case S, = 0.01 S;. 
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is more adequate than S, as the parameter indicating the degree of efficiency of the 
viscosity in the outer layer. The parameter S; is the square of thickness of the 
viscous boundary layer in the outer layer in unit of AR. The growth rate parameter- 
ized by S; are illustrated in Figure 9 for RJR, = 1.01 (compare with Figure 7), 
which shows that it is more suitable to replace all of “S,” in the statements (3 1) to 
(35) by “S’y’ for RJR, & 1.1. 

Finally we will point out that the behaviors of the dispersion relations are not 
classified in terms of the kinematic viscosity v but the viscosity p. In Figures 7 and 
8, RJR, = 1.5 and p2/p1 = 2.0, which lead to 

hIPI = 2V,lVl = ws,, (38) 

i.e., a value of j+/pi does not so much differ from V&J,; only from these figures we 
cannot see well which quantity of p and v classifies the behaviors of the dispersion 
relations. To clarify it, we examine the case of RJR, = 1.5 and p2/pI = 200 (see 
Figure 10). In this case we have 

&I/i1 = 2oov,/v, = lOOS,/S,. (39) 

8 viscid 
RP/RI =1.5 - -L- I - 

1 , 0 _ P2/P1=200 
. t+=O.l :fix 

r* 
s . viscid 

_ Rz/Rl=1.5 
, 0 _ P2/P1=200 . Sl =l.O :f ix 

123 5 10 123 5 10 
R R 

Fig. 10. The dispersion relations in the viscid case (the rigid surface) with RJR, = 1.5 and p2/p, = 200 
(i.e., &p, = 100 SJS, and v2/vI = 0.5 S,/S,). Figure (a) is for fixed S, and Figure (b) for fixed S,. For 
the values of S, and S, in these figures, two inequalities pz > p, and v1 > pLz are satisfied at the same time. 
The dispersion relations are obviously determined by S, and almost independent of S,. 
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If 0.01~ S,/S, < 2.0, we have pz > pi and vz < vi at the same time. Then if the be- 
haviors are classified by the viscosity p, G should be determined by S, while if by the 
kinematic viscosity v, 0 for 1 > 2 should be determined by S,. Figure 9 obviously shows 
that G is determined by S,. Hence the behaviour is classified by the viscosity p. 

5. The Validity of the Neglect of the Coriolis Force 

So far we have studied the instability in a nonrotating system. However, the 
proto-Earth was rotating. Hence, the Coriolis force influences the fluid motion. As 
shown in Paper II, in the Earth’s core formation problem the proto-Earth corre- 
sponds to the two-layer model with S, % 1 and S,, 5’; < 1. In this case, from the 
results in Section 4, the properties of instability are as follows: the I = 1 mode of 
instability is governed by the free-fall time of the outer layer while the I 2 2 mode 
by the viscous diffusion time of the inner sphere. Hence the instability occurs 
through the I = 1 mode with the free-fall time (about 10 h, see Paper II). Here we 
will demonstrate that, in the case with S, $ 1 and S,, S; < 1, The conclusion derived 
from the results in the nonrotating system remains valid still in the rotating system. 

The perturbed Navier-Stokes equations in the rotating (angular velocity Q) frame 
is 

du/dt + 2fi x u = -V(%D + 6P/p) + vV2u. 

In the spherical coordinates (Y, 13, +), 

(40) 

1 

du,/dt + 2Q,u6 = -8(&D + dP/p)/dr + v(V’u),, (41) 

du,/dt - ~R,u, = - a(s@ + dP/p)/rdO + v( V*Z&, (42) 

dub/dt + ~(R,zQ, - R,u,.) = - a(d@ + dP/p)/r sin 684 + v(V*u)+, (43) 

where fi = (Q,, !& Q+) = (R cos 8, -R sin 19, 0), that is, the rotating axis is in the 
direction of 8 = 0. 

First we will consider the I = 1 mode. Since the I = 1 mode is governed by the 
deformation of the outer layer, we will examine the effect of the Coriolis force on 
the fluid motion in the outer layer. The outer layer in the proto-Earth is thin enough 
compared with its radius. Since, in the core formation problem, only the long wave 
mode is of interest (Paper II), we can assume that 

(44) 

which enables us to replace the term (Qu, - &u,) in Equation (43) with Que. On 
the other hand, in the radial direction, the gravity is much larger than the Coriolis 
force: i.e., 

I(S2 x u),.I RaR -i 3RoR N~ir007 N- 
la@warI @p/dg g ~~GPR af ’ ’ 

which enables us to neglect (the radial component of) the Coriolis force in Equation 
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(41). Therefore, Equations (41), (42), and (43) are approximately reduced to 

du/dt + 2f x u = -V(6@ + M/p) + V2u, (46) 

where f is the Coriolis parameter defined by f = (R cos 13,0,0): The Coriolis force 
influences the fluid motion only in the (6’ - 4)-plane. 

Since u is solenoidal (div u = 0), u is decomposed into the poloidal (subscript 
“P) and toroidal (subscript “F) components 

where 

u=up +u, (47) 

(u,), = 0 and (rot u,), = 0. (48) 

Since the Coriolis parameter f has only the radial component, (f x u), vanishes; so 
the solenoidal component of f x u is toroidal. The gradient of gravitational poten- 
tial grad 6Q is poloidal, since 6Q satisfies Laplace equation. Thus the poloidal and 
toroidal components of Equation (46) are 

du,/dt = -V(M) + Up/p) + (vV2u),. 

du,/dt + 2f x u = -V(GP,/p) + (vV~U)~ 
(49) 

(50) 

We must notice that Equation (49) for up is the same form as Equation (1) in the 
nonrotating system except the viscous dissipation term in the right-hand side where 
up is viscously coupled with uP The toroidal components uT is generated by the 
Coriolis force as shown in Equation (50). Therefore, the poloidal component up 
generated by the release of gravitational energy is directly connected to the 
instability, while uT generated by up through the Coriolis force is connected to the 
instability only through the viscous coupling with uP The time-scale of the 
instability in the nonrotating system is about 10 h, which is comparable with or 
shorter than that of the Coriolis force. In this case, we can reasonably say that, in 
the non-viscous case when the viscous coupling of up with uT is weak, uT generated 
by the Coriolis force hardly affects the instability, while in the considerably viscous 
case uT may depress the instability through the viscous coupling with up. Indeed, 
Chandrasekhar (1961) shows that, in the plane-parallel inviscid case, 

a&, = - 2R2 + (4R4 + 0;) 1’2, (51) 

where crrot is the rate of instability in the rotating system (angular momentum Q) 
and crO is that in the nonrotating system; c,,~ differs from go only by a factor as long 
as co is comparable with or larger than n. As mentioned before, the E = 1 mode is 
nonviscous (governed by the free-fall time of the outer layer). Therefore, we can 
conclude that the I = 1 mode in the rotating system differes only by a factor from 
that in the nonrotating system: i.e., 

or&Z = 1) x o,(l = 1) (52) 
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Next we consider 13 2 mode. Since the I 2 2 mode is considerably viscous (see 
Paper II), I+ (i.e., the Coriolis force) may depress the gravitational instability as 
mentioned above. So, we reasonably expect that 

urot(Z 3 2) 6 o,(Z 2 2) or + o,(Z 3 2). (53) 

Since o,(Z = 1) % oO(l 2 2) (Paper II), we therefore obtain from Equations (52) 
and (53) that 

fJrot(l = 1) B a,,(l2 2). (54) 

Thus, still valid in the rotating system is the conclusion derived from the 
nonrotating system that the instability occurs through the 1 = 1 mode with the time 
scale about the free-fall time (but the time scale in the rotating system may become 
larger by a factor than that in the rotating system). 

6. Conclusions 

We summarize the properties of the Rayleigh-Taylor instability in the self-gravitat- 
ing two-layer fluid sphere. 

The inviscid case: 
(1) The growth rate G is approximately proportional to Z’12. 
(2) The ratio ~~/a, is nearly of unity when (R2/RJ2’+’ % 1 for all 1 or when 

R,fR,2:1 forZ=l. 
(3) The ratio ~,/a, increases with decreasing AR for 1 z 2 and is limited by 

(Pz/Pd lj2. 
(4) When R2R1 & 1.1, the existence of the surface at r = R, has a large effect to 

suppress the growth of the instability. 

The viscous case: 
(I) The degree of efficiency of the viscosity is indicated by the non-dimensional 

parameters S, = vJR$-- in the inner sphere, S, = v,(R,ARoAR,/R, 3 1.1) and 
S; = v,/AR20f (RJR, & 1 .l) in the outer layer; they physically mean the viscous- 
diffusion time in each region in unit of the free-fall time. 

(2) For I = 1, S, mainly determines the growth rate r~, since the mode 1 = 1 is the 
translation of the inner sphere without deformation through the outer layer. For the 
mode I > 2, Si does when pi > p2 and S, does when ,ui < p2: the instability is 
governed by deformation of the more viscous region. 

(3) The time scale of instability is governed by the free-fall time for S 4 1; i.e., 

u N uinv for S 4 1, 

and governed by the viscous-diffusion time for S 3 1; i.e., 

u N u(S = 1)/S e uinv for S 3 1, 
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where a(S = 1) means the growth rate for S = 1 and 

s ~ 

i 

S, in the case of ,ui > ,u2 with I > 2, 
S2 in the case of I= 1 or the case of ~1, < pZ. 

(4) When RJR, 6 1.1, in the above statements (2) and (3) it is more adequate 
to replace S, by S;. 

The above results in the viscous case in the rigid-surface condition, as well as the 
results in the inviscid case, enable us to investigate the initiation of the Earth’s core 
formation, which is done in Paper II; in the proto-Earth, we have 

h s p2, 

S, and S; < 1, 

and 

which lead to the conclusion that the Earth core formed through the instantaneous 
(c N ~inv) translation (I = 1 mode) of the innermost undifferentiated solid core (see 
Paper II for details). Further, as shown in Section 5, the above conclusion does not 
change, even if the rotation of the proto-Earth; i.e., the Coriolis force is considered. 
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Appendix A. Derivations of Dispersion Relations 

Al. PERTURBATIONS 

In the configuration mentioned in Section 2, the hydrostatic equilibrium state is 
described in terms of the gravitational potential Q as follows: 

2nG(p,(r2 - 3R:) + 3p,(R: - R;))/3 for r < R,, 

@ = 2nG{p2(r2 - 3Rg) + 2(p, - p1)R:/r}/3 for R, < r < R,, 
-hG{p,R: - p,(R: - R2)}/3r for r > R,. 

(A-1) 

The pressure is given by 

P = p@ + const. (A-2) 
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The perturbation of the gravitational potential 6@ is obtained from Equation (3) 
as 

47cG{(p, - ~M,tr/R,)‘~r - ~,M-/&)‘~r’)/(2~ + 1) 

6<D= for region I, 

47cG{(pz - ~,W,trl&) - (‘+ %r - p2R2(r/R2)‘&‘}/( 2E f 1) (A-3) 

for region II, 

where region I denotes the region of r < R, + 6r, and region II that of 
R, + 6r < r < R, + 6r’. The divergence of the equation of motion (1) gives 

V”cp = 0, 

then we can put 

4 = 
(I + l)Q&trlRJ’~r for region I, 
((1 + I)Q,R,(r/R,)’ - ZQZR1(r/R1) --(‘+1)}8r (A-4) 

for region II 

where Q,, Q,, and Q2 are constants to be determined by the boundary conditions. 
In Equation (A-4) we use the fact that &‘cc& in the linear perturbation theory. 
From the expressions for 4 given by Equation (A-4), grad 4 is found to be a 
poloidal vector field which is expressed in terms of the following defining scalar 
function G(r): 

G(r) = ~QdrlRd’+ ‘R: for region I 

E{Q k-/W’+ 1 + Q2trlRd -‘)R? for region II, (A-5) 

(cf. Chandrasekhar, 1961; Appendix III). 
Since div u = 0, the equation of motion (1) is transformed into 

au/& = -grad 4 - v rot’ u, (A-6) 

from which u and rot’ u are also found to be poloidal vector fields. The defining 
scalar function of u is denoted by &U(r) hereafter. That of rot’u is, hence, 
.s(d2U/dr2 - I(/ + l)U/r”}. W e will solve Equation (A-6) first in the inviscid case 
(v = 0) and next in the viscous case to obtain the dispersion relations. 

A2. THE INVISCID CASE 

Equating the defining scalar functions of each side of Equation (A-6), we obtain 

0U= 
f 

-(r/R,)‘+ ‘Q&, for region I; 

-(tr/Rd’+*Q, + (r/RX’Q2)R% for region II. (A-7) 

The boundary conditions are given in Section 2 by ( 1’) (2’) and (3’ - r) for rigid 
surface or (3’ -f) for free surface. From Equations (A-7) and the relation 
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u,(r) = l(Z + 1)U(r)dr/r2, boundary condition (1’) requires that 

u,(R, + 6r) = -l(l + l)Q06r/a = -I(I + l)(Q, + Q2)6r/a, 

= a& ( ‘: 6r = ce”‘Y’;). 

(‘4-8) 

(A-9) 

From Equations (A-l) to (A-7), the condition (2’) requires that 

(1 + l)p,Qo - (I + 1)~2Q,+ lP2Q2 = 

= -4nG(2(1- l)p, + 3p, - 3p2(6r’/6r)}/3(21 + 1). (A-10) 

From Equation (A-7), the condition (3’ - r) requires that 

u,(R2) = -l(1 + l)(Q,x’+’ + QZx-$5r/o = 0. (A-l 1) 

On the other hand, the condition (3’ -f) requires that 

-4rcG({2(1- l)p,R, - (21+ l)(p, - p,)R:/R:}Gr’ + 

+ 3(p, - p&-(2’+ ‘j&)/3(21 + 1) + ((I + l)Q, - lQ2x-(2’+‘)}Br = 0, 

(A-12) 

and 

a& = -1(1+ l)(Q,x’+ ’ + Q2x-$%/a. (A-13) 

From Equations (A-8) to (A-11), we obtain the dispersion relation for the rigid 
surface given by Equation (9) in Section 3: 

41 + 1) 
u2 = y (p2 - pl) ~ w - l)P, + 3P2 

2z + l (I + lXP1 - P2) + (2z + 1)P2Dinv’ 
(A-14) 

where x = R,/R, and Din” = (1 - ~--(“+‘))-i. 
From Equations (A-8) to (A-lo), (A-12), and (A-13), the dispersion relation for 

the free surface given by Equation (10) in Section 3: i.e., 

47cG l(l+ 1) K, f (K: - 4&K,) 1’2 u2 _ 
3 21+1 2K2 ’ 

(A-15) 

A3. ‘l--HE VISCOUS CASE 

Equating the defining scalar functions of each side of Equation (A-6), we obtain 

i 

- QoR~(rIRl)‘+ ’ + v,{d2U/dr2 - E(Z + l)U/r’} 

au(r) = 
for region I, 

- QJ%lRd’+ ’ + Q2Rf(rIR1)-’ 
(A-16) 

+v2(d2U/dr2 - Z(Z + 1)U/r2) for region II. 

We can readily solve Equation (A-16) analytically and obtain 

For1’2Zl+ 1,2(qlr) - Q,-,Rf(r/RJ’+ ‘/CT for region I, 

U(r) = F,r 1’2I1 + &w) + F2r ‘j2&+ 1&2r) 
(A-17) 

- (Ql(r/R,)‘+ ’ + Q2(r/R,) -‘}R:/o for region II, 
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where F,, F,, and F, are constants to be determined by the boundary conditions, 
Z I+ 112 and Kk t 112 are the modified Bessel functions of the first and the second kind, 
respectively; and q, and q2 are defined by 

41 = (cJ/Vl) 1’2 and q2 = (c/v2) ‘12. 

In terms of U(r), we obtain three components of the velocity as 

u, = E(E f l)U(r)Gr/r2 = 

I 

Z(Z + l){F,r -312Zl+ l12Gw) - (r/W- ‘Q&l~r 
for region I, (A-18) 

= W + lW’lr-3’21,+ 1,2tq2r) + F2r-312fG+ l,2tq2r) 
- {(r/R,)‘- ‘Ql + (r/R,) --(I+ ‘)Q,)/c@r 

for region II, 
ue = (dU/dr)(&Yr/~9)/r = 

[Fd(z + l)r-3’2Zi+ li2tw) + w-1’2Z~+3~2tw)~ 
- (1 + l)(r/R,)‘- ‘Q,/o]i3(dr)/iW for region I, (A-19) 

and 

= PI ((I + l)r -3’2Zl + 1&w-) + w - 1’2h + 3&2r) > 
+F2{U + l)r-3’2&+ l,2tq24 - q2r-“‘&+ 3,2tq2r)l 
-{(I + l)(r/R,)‘- ‘Ql - Z(r/R,) -(‘+2)Q2)/a]d(dr)/iS3 

for region II, 

u+ = (dU/dr)(dGr/d4)/r sin 0 = 

= ue(asr/a~)/((asr/ae)sin 0}. 

From Equations (A-l 8) to (A-20), we can also obtain 

(A-20) 

P,, = -(P + 6P) + 2j.d24,/ar 

1 

-(P + dP), + 2pulZ(Z + 1)[Foq1112{(Z - l)r-512Z1+ 1,2(qlr) 
+w-3~2Z~+312(qlr)) - tz - 1)(rIRd’-2Qol~R11~r 

for region I, 
= 

(A-21) 
-(P + W,, + G24Z + l)F’lq~‘2(t~ - l)r-5121,+ 112(q2r) + q2r-31211+3&2r)) 

+F2q?{(Z - l)r512Kl+ 112tq2r) - q2r-3/2K+ 3i2(q2r)) 
-{(I - l)(r/R,)‘-‘Q, - (1 + 2)(r/R,)-(‘+3)Q2}/oR,]6r 

for region II, 
P,, =p(au,/ae -u@ +rau,/ar)/r 

=-I 

P~[F~;~((W + l)tZ - W5” + q?r-1’2)4+ l,2(w) -2qlr~3121,+3&~r)~ 
- 2(Z + I)(1 - I)(r/R,)‘- ‘Qo/aRl]~(Sr)/a~ for region I, (A-22) 

P~[E;CW + l)U - l)r-512 + q?1’2)h+ 1&v) 
+F2(2(Z + I)(1 - I)r p5/2 + q$r-112)K,+ I,2(q2r) 
- 2q2r -3’2{F~h + 3&v) - 4K[ + 3,2(q2r) > 
-2{(Z + l)(Z - l)(r/R,)‘-2Ql 
+Z(Z + 2)(r/R,) -(I+ 3)Q2}/aRl]a(dr)/a0 for region II, 
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The boundary conditions in this viscid case are given in Section 2 by (l), (2), (3), 
(4), and (5 - I-). From Equation (A-18), the condition ( 1) requires that 

o- = Z(Z + l)(F,( 110) - Q&r) = 

where 

= W + 1)(F,(210) -t &<210) - <Q, + Q,>/al, (A-23) 

From Equations (A-19), (A-20) the condition (2) requires that 

&{(I + l)( 110) - (11 l)} - (I + l)Q& = 

= F,((Z + 1)(210) - (211)) + F2’2((Z + 1)(210) - (211)) - 

-{(I + l>Q, - ZQ,>/c. 

From Equation (A-21), the condition (3) requires that 

471W, - ~z)(2(Z - lb,+ 3&‘3(2Z + 1) = 

= (1 + l)hQo - PZQI) + bzQ2 - 

(A-24) 

- 2Z(Z + l)R ~*[pI{Fo(Z - l)( 110) - liO( 111) - (I - l)Q&} - 

-,u2(Fl(Z - 1)(210) - F,(211) - (I - l>Q,/a> - 

-pz(E;U - 1)(210) - F2<211) + (I + 2>Q,b>l. (A-25) 

From Equation (A-22), the condition (4) requires that 

,uJ,,[{2(Z - l)(Z + 1) + q:l}( 110) + 2(11 l)] - 2(Z - l)(Z + l),u~Qo/o = 

=p2FJ{2(1--)(1+1) + q:,}(ZO) + 2Wl)l - 2(Z - l)(z + l)p2Q,b+ 

+p2F2[{2(Z - l)(Z + 1) + q&)(210) + 2(21 l)] - 2Z(Z + 2)p1Q2/0. 

(A-26) 
From Equations (A-18) to (A-20), the condition (5 - r) requires that 

F,(220) + F,(220) - (Q,x’- ’ + Q,x --(‘+ *‘)/a = 0, (A-27) 

and 

F,((Z + 1)(220) - (221)) + F*{(Z + 1)(220) - (221)) 

- ((1 + l)Q,x’- ’ - ZQ2x --(I+ “>/c = 0, (A-28) 

From Equations (A-23) to (A-28), after somewhat lengthy reductions, we obtain 
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the dispersion relation 
in Section 3; i.e., 
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in the viscid case for the rigid surface given by Equation ( 15) 

2(1- l)PI + 3P* 
2z+ 1 (1 + l)(p, - p2) + (2E + l)p,D,’ 

(A-29) 

Appendix B. The Plane-Parallel Case (Inviscid) 

We consider here the Rayleigh-Taylor instability of the incompressible inviscid fluid 
in the plane-parallel configuration with constant gravity. 

A fluid layer of thickness AZ with the constant density p2 is overlaid on a 
half-infinite fluid with the constant density pr, and their interface is at z = 0. The 
direction of the gravity is vertical, i.e., g = (0, 0, -g). Then an unperturbed state is 
described in terms of the pressure: i.e., 

P= 
{ 

-p,z+P, for z<O, 
-p2z+Po for z>O, (B-1) 

where P,, is a constant. 
Let the perturbation of the interface 6z be 

& z.T q)p= + Of) (B-2) 

where k = (k,, k,, 0) and r = (x, y, z). The perturbation equations are 

i 

+/at = -V~P - dpg, (B-3) 
div u = 0, (B-4) 

where 6P and u( = (u, ZI, w)) are, respectively, the corresponding perturbations 

(xe z’rf”t) of the pressure and the velocity field, and 6p the Eulerian change due to 
the deformation of the interface: 

6~ = (PI - ~2YM4~z + p26& - AzW, 

where 6~’ is the deformation of the surface at r = AR corresponding to 6z. From 
Equations (B-l) to (B-4), we obtain 

1 

pou = - ik,GP, (B-5) 

pav = -ik,GP, (B-6) 

pow = -a@P)/aZ - 6pg, P-7) 

ik,u + ik,v + aw/& = 0. u34) 

From Equations (B-5) to (B-8), we can easily obtain 

(a2/az2)6P = k%P, (B-9) 



THE RAYLEIGH-TAYLOR INSTABILITY IN A SELF-GRAVITATING TWO-LAYER FLUID SPHERE 173 

where kZ = k: + k$. Hence, we have 

6P = 
Aekz for z < 0, 
Bek”+ Ce pkz for z > 0, 

(B-10) 

where A, B, and C are constant. In the region of z < 0, there is no term 
proportional to e - kr because the region of z < 0 is semi-infinite. 

The boundary conditions are as follows: 
(1) The pressure P + 6P is continuous at z = 6z. 
(2) The radial velocity w is continuous and equal to ?J(&)/at at z = 6z. 
(3 - r) w (i.e., d(P + dP)/pdz) is zero at z = AZ in the rigid-surface condition. 
(3 -f) P + 6P is zero and w = a(&‘)/L5t at z = AZ + 6~’ in the free-surface 

condition. 
From Equations (B- 1) to (B-lo), we can readily find the dispersion relation under 

the boundary conditions, ( 1) and (2 - r), or ( 1) and (2 -f), as follows: in the 
rigid-surface case, 

a2 = &(p, - p,)(l- ~/{PI + ~2 + 4~2 - PI>>, (B-11) 

where a = exp( -2kAz). 
For the free-surface case. 

c2 = -gk (the surface wave), 

or 

(B-12) 

= gk(p, - p&l - ~/{PI + ~2 - 4~2 - PI>> 

(the internal gravity wave). (B-13) 

If AZ + co, Equations (B-l 1) and (B-13) both reduce to the dispersion relation in 
the case where the overlaid fluid is half-infinite, 

a2 =&p, - P,)/(P + ~2). (B-14) 

On the other hand, let cR be G given by Equation (B-l 1) and CJ by Equation 
(B-13), then we have 

(a&R)* = (1 + b)l(l -bL (B-15) 

where b = a@, - pJ/(pr + p2). Note that, if p2 > p,, R is always greater than unity, 
that is, ran is always greater than oR. Furthermore, we can easily see that 

(aF/aJ2+ 1, if AZ -+ 00, (B-16) 

(aFIaR)2+p2/p1, if AZ +O. (B-17) 

Equation (B-17) is important for the discussion in Section 4. 
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