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Abstract. The aim of this paper has been to study here specific forms of instabilities in circumstellar and 
circumplanetary dust ringlets in Keplerian rotation around a central gravitating mass without taking shear 
flow effects into consideration. Due to the presence of a central mass in the disk, an additional force term 
appears in the linearized equation ofmotion. Here we investigate the importance of such a term with respect 
to the onset of gravitational instabilities in both tangential and radial direction of ring-like substructures 
in the disk. In addition, we compare the instability tendencies of self-gravitating disks with those of fluid 
layers where perturbation effects are simply controlled by surface tension. In both cases, the material of 
the layer is treated as an incompressible inviscid fluid. This assumption, however, as shown from our study 
of the polytropy of dust gases, was proven to be correct for perturbation wavelengths comparable or larger 
than the thickness of the layer. From our general dispersion relations for symmetric and anti-symmetric 
perturbation modes, we can retain for the radial wave propagation the results of Lin and Shu, and Goldreich 
and Ward in the asymptotic case of an infinitely thin layer without shear flow. However, for the tangential 
waves we find a different stability criterion showing that the onset of the instability depends on the 
propagation direction. In the ‘finite layer’ case, we derive much more general relations showing different 
instability ranges for ‘bending’ wave modes and self-excited ‘density’ wave modes pointing to local and global 
instability forms in ringlets. 

1. Introduction to the Problem 

It has been speculated in a series of papers that collective gravitational interaction 
processes acting in a massive dust layer are the relevant physical processes for the 
structuration of the circumstellar, or circumplanetary, material into rings, ringlets, gaps, 
and moons (Goldreich and Lynden-Bell, 1965; Goldreich and Ward, 1973; Goldreich 
and Tremaine, 1978a, b, 1979; Lin and Bodenheimer, 1981). The study of the gravi- 
tational stability of self-gravitating uniform material disks of finite thickness already 
started two decades ago. One of the most comprehensive works in this respect was 
already published by Goldreich and Lynden-Bell(l965). It was found by these authors 
that thermal pressure effects will exert a stabilizing effect on short wavelength perturba- 
tions, whereas uniform rotation via Coriolis forces will stabilize long wave perturbations. 
However, there exists an intermediate range of unstable waves of the order of thickness 
H of the layer, when the quantity 4nGp/R2 (mass density p, revolution period 0) exceeds 
a critical value. 

These waves, under supercritical conditions, would lead to a fragmentation of the dust 
layer into discrete mass elements of definite size. The later theory of Goldreich and 
Ward (1973), based on experiences of the above paper, nowadays is considered as 
offering the fundamental explanation of the cosmogony of planets and planetesimals in 
the solar system. The basic assumption of the authors is that during the collapse of a 
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protostellar gas cloud, the dynamically involved dust component at a specific state of 
the collapse decouples from the gas dynamics and settles down into the equatorial plane 
of the collapse system. Here a material layer is formed that in first order is stabilized 
against the central gravitational forces by Keplerian rotation and, after an advanced 
increase of mass per area, a, to supercritical values a,, becomes subject to self-gravi- 
tation. On the basis of a linear dispersion analysis, the properties of density fluctuations 
in such a material layer are investigated. For supercritical density values, again inter- 
mediate wave number ranges can be pointed out where density fluctuations grow 
unstable. These unstable wave modes, in the view of the authors, are paving the way 
towards the origin of massive planetesimals with an initial mass of some 1Or8 g. 

Since in this analysis the dust layer is treated as being of a homogeneous surface 
density with no external forces acting in a corotating rest frame with Keplerian rotation 
period, nothing can be said about the expected mass spectrum of the planetesimals and 
of the distribution of massive fragments with distance from the collapse centre. 

With a slightly different aspect from the above-mentioned papers, the stability of 
elliptical and ring-like self-gravitating material configurations was investigated by 
Seboldt (198 1) for cylindrical symmetries and a polytropic behaviour of the material. 
For the stability analysis, Seboldt (1981) takes advantage of methods derived by 
Schindler et al. (1973) in an analogy to plasma physics. Starting from the equlilbrium 
status of the material configuration, Seboldt applies a specific form of a linear conformal 
perturbation to this configuration and, using typical variation principle techniques, 
arrives at an equation of the Euler-Lagrange type from which useful stability criteria can 
be derived. 

Not so much the results as the procedure of this analysis can as well be used for a 
stability study of planetary rings and disks. This has been done in the work by Seboldt 
and Schindler (1984) in which a theory of the equilibrium states of dust particle 
distributions in the Saturnian rings is presented. 

Shu et al. (1983) address the problem of gravitationally-induced material fluctuations 
in self-gravitating material configurations again on a different way by studying spiral 
bending waves (or transversal waves) excited by external moons in the Saturnian ring 
systems. Especially the two well-observed wave modes due to 5 : 3 resonance with the 
moon Mimas are studied and are interpreted as a spiral bending wave inside of the 
Mimas orbit, and as a spiral density wave outside. The work of Shu et al. (1983) is, 
however, unable to explain why bending waves lead to the strongly pronounced con- 
densations observed near the locations of the resonances. A better understanding of 
structuration processes may be achievable with theoretical considerations worked out 
by Lin and Bodenheimer (1981) in which the authors follow the idea that elastic and 
inelastic collisions amongst planetary disk particles may play a major role for material 
agglomerations and irreversible nonlinear condensations. They show that a collision- 
dominated particle disk may become unstable against a ‘pinch’-instability which is 
induced by viscous stresses similar to the way how Kelvin-Helmholtz instabilities are 
excited by supercritical velocity shears. As they propose, for instance, the existence of 
ringlets around the planet Saturn is to be ascribed to the operation of this instability. 
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Though the stability of the rotating material disks has already been subject of several 
investigations in the past, some points in this context have not been taken into account 
in the calculations carefully enough and thus still seem to merit some ongoing studies. 
Especially the question of how to correctly describe the forces that are connected with 
the Keplerian rotation, stabilizing the system to the first-order. Due to the presence of 
this differential rotation pattern several force terms appear in the linearized equation of 
motion that up to now did not experience comprehensive and appropriate represen- 
tations. In this respect one may state that in connection with the first-order Keplerian 
rotation pattern not only Coriolis forces enter the equations of motion, but also terms 
describing net gravitational attractions to the centre that are connected with perturbed 
motions, and terms originating from the convective part of the inertial force term. In the 
following we will devote some attention to the importance of such terms with respect 
to gravitational stability of dust-layer configurations. 

In addition we will, as a new approach to the problem, study how a rotating material 
layer behaves under the effect of an artificially introduced surface tension replacing the 
effect of self-gravitation. It will be interesting in this respect to see whether or not 
similarities in instability tendencies of self-gravitating and capillary material layers can 
be found. 

2. Stability of a Gravitating, Incompressible Rotating Dust Layer 

A circumplanetary dust layer may be locally described as a homogeneous material layer 
with thickness H. The materal in this layer, though consisting of discrete solid particle 
elements embedded in a tenuous ‘gaseous’ environment, may be represented as an 
incompressible hydrodynamic fluid. Thus for each fluid element of the dust layer, the 
full set of hydrodynamical equations has to be considered. 

In a Cartesian coordinate system X, Y, 2 with its origin at 0 (see Figure l), the usual 
form ofthe hydrodynamic conservation equations holds, with real forces connected with 
the gradients of the total scalar gravitation3 potential $ and the thermal pressure P. If 
the absolute space vector is denoted by R and the dust medium in the layer under 
pressure variations is taken to behave as an incompressible fluid (see Fahr and 
Willerding, 1988), one thus arrives at the differential equation 

z7x7 - 
-+(fl*V)g= -a$-! gradP, 

Tt- at P 

where g(R, t) is the absolute fluid velocity as a function of space and time coordinates. 
Since here we aim at the treatment of perturbations U in the velocity field, which are 

superimposed on the local velocity field of the Keplerian rotation pattern in the disk, 
it is advised to tryscr$e Equation (1) into a locally corotating reference system X, y, z 
with its+origii at R = R, (see Figure 1). To achieve this, we start out from the position 
vector R = R, + r! and its time derivatives, which yield the velocities U and u (perturba- 
tion velocity) and the corresponding accelerations. The relation between the accelera- 
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+x 

Fig. 1. Schematic diagram showing the geometrical situation in a locally corotating reference system of 
the Keplerian disk. 

tion vector R in the inertial system X, Y, Z and that r in the corotating reference system 
x, y, z with its origin at R, and rotating with the Keplerian angular velocity 
?& = dm is then given by 

dU 
-=~=dox(i&,xR,)+(i;+2(~L,xr))+f&,x(~,xr), 
dt 

(2) 

where G is the gravitational constant and Mis the central mass. Introducing Equation (2) 
into Equation (1) we have 

dU 
-=~o~(~o~R,)+ $+(u.V)u)+2(Pox(n,xr) = 
dt 

GM - - 
= -__ 

R3 
R-a@-; gradP, (3) 

P 

where the gravitational force term in Equation (1) has been eparated into two terms 
describing (a) the centripetal gravitational pull of the central mass M, and (b) the effect 
of self-gravitation in the dust layer, giving rise to a gravitational potential 64. To remove 
the absolute space coordinatz R from the right- and left-hand sides of the equation, the 
central gravitational force at R has to be expanded into a Taylor series around the origin 
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R, of the coordinate system X, y, z. This expansion then yields to the first-order in (r 1 V} 

(4) 

Keeping in mind that the angular velocity Q, is defined by 

GM/R; = R,R; , (5) 

and that the vector Sz, is perpendicular to so, we note that the first term on the 
left-hand side of Equation (3) cancels the tist term of the expansion (4) and thus 
Equation (3) attains the form 

au’ 3GM + 
-+(u*V)= +- 
at G 

Ro+~;-2(c20x”)-~ox(n,xr)- 
0 

- 
-gradQ-LgradP. 

P 

As can easily be seen in the differential equation (6) for the perturbation velocity U, the 
second and the fourth terms on the right-hand side cancel each other. Thus one is finally 
left with the momentum conservation equation of the form 

au 3GM + 

at 
+ (u*V)u = ~ 

R;: 
R, - 2(ao x u) - grad&$ - 

The+above description is given in the corotating reference system x, y, z with its origin 
at R,. As is easy to identify, the first terms on the right-hand side of Equation (7) 
represent the effect of an uncompensated central gravity field in the corotating system 
and the Coriolis force term, which was also taken into account by Goldreich and 
Lynden-Bell (1965); 

and 

A&$ = 0 outside of the layer @a> 

AS+ = 47-cGp inside the layer. @b) 

When one neglects nonlinear terms in the perturbed quantities (i.e., O(u2)) and effects 
of the differential Keplerian rotation pattern (because in ringlet structures they can be 
shown to be of higher order, e.g., Laplacian rings!), one can derive from Equation (7) 
the following scalar differential equations for the Cartesian velocity components of U: 

au 
2 = 3n;g, + 2R,u, + g , at (94 
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au Y= an 
at 

-2cQf,+~ ) 
ay Pb) 

>=+a”. au 
at az ’ (SC> 

where the combined potential zr = S@ + P/p has been introduced. 
The equilibrium position of the upper and lower boundaries of the dust layer in 

z-direction may be defined by z0 = + H,/2. For wave-like perturbations of this 
boundary, we would thus obtain the description 

z. = 2 Ho/2 + E exp[i(kL . r - cot)] , (10) 

where k and o are the wave vector and the frequency of the perturbation wave, and 
where a coplanarity of the wave propagation with the layer surface, yielding 
k = (k,, k,,, 0), can be adopted for obvious reasons. If one now assumes in addition an 
oscillatory behaviour of the velocity components according to function exp( - iwt) and 
keeps in mind that due to this representation the following relation (Lagrangian dis- 
placement in radial direction) is valid: i.e., 

tx = 
s 

uxdt= i 5 e-i”*, 
w 

0 

the system of Equations (9a) through (SC) can be rewritten in the form 

(11) 

2R,u, - iou, = 2 , 
ay 

an 
-iI’wu,=-. 

az 
From this system the velocity components u,, y, r can be isolated by the relations 

W) 

i an u,=--. 
o aZ (13c) 



INSTABILITY OF CIRCUMPLANETARY RINGLET STRUCTURES 127 

By applying the mass flux continuity equation in the form valid for an incompressible 
fluid 

div(p$ = p 2+%+2 
> 

= 0, (14) 

one is able to derive from Equations (13a-c) the following relation for the combined 
scalar potential n: 

w2 a27-c ax2 + (co2 + 3R;) $ + (co2 - i-2;) $ = 0. 

In the case of a nonrotating disk (0 = O!), this equation would result in the requirement 
V2n = 0. However, to solve for the more general case of a rotating disk (0, # 0), we 
assume for the perturbed potential rc(x, y, z) the form 

x(x, y, z) = .571,(z) ei(k’r--wf). (16) 

Introduction of Equation (16) in Equation (15), then yields the differential equation for 
the function n, 

d2n= k2 co2 + 3CL2 sin’ rp 

dz2 w2 - R2 > 
7&=0, (17) 

where it was made use of the fact that the angle of propagation of the surface wave with 
respect to the x-axis, y, = +X (x,, k) is connected with the wave vector components by 

k, = kcoscp, k, = k sincp. (18) 

With the convention (18) cp = 0 means radial wave propagation and cp = x/2 means 
tangential,wave propagation in the plane. The solution of Equation (17) is found to be 

rc,(z) = rcO cosh( KZ) (symmetric in z) , (19) 
n,(z) = n, sinh( Icz) (anti-symmetric in z) ; (20) 

where rcO is a constant that has to be determined in connection with the boundary 
conditions and the quantity K is defined by 

K = Ikl J co2 + 3Rg sin2 cp 

02-n; . 
(21) 

As is evident from Equation (21) the quantity K can also become purely imaginary in 
which case rc, had to be complex. 

Together with Equations (19) and (20) one then obtains as a solution of Equation (14) 
the expressions 

dz 
dH,2 = - 

dt 
(22) 
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where rcO contains both the effects of self-gravitation and perturbed hydrostatic pressure. 
The constant quantity rr,, hereby has to be fixed by use of the boundary conditions of 
the problem. From Equations (14) and (22) one now derives the relation 

dz 

ii = 

_ ioe ei(k.r- Wt) 
> 

HI2 

which in combination with Equation (10) then leads to the dispersion relation 

(24) 

This has to be considered as the typical dispersion relation for ‘symmetrical’ and 
‘anti-symmetrical’ wave modes of a self-gravitating material layer with a local Keplerian 
rotation period fl and with no shear flow. 

The determination of the constant rc, has to be carried out on the basis of the 
definition for rc. In the unperturbed state, the hydrostatic pressure in the layer would 
have to be described by 

P(Z) = (2zGp2 + $3[(3 - z2], 

where the first term in the first bracket on the right-hand side is due to the self-gravitation, 
the second one due to the action of the central force in z-direction connected with the 
Keplerian rotation. Since at both the unperturbed and the perturbed surface the pressure 
has to attain a constant, or even a vanishing value, one is then led to the relation 

p(z) + bp = P(H/2) = const. (26) 

If we assume no gaseous or dusty material outside the layer, this constant in 
Equation (26) has in fact to be set equal to zero. Making again use of Equation (lo), 
one can derive for the pressure from Equation (26) the expression 

SP = (2~cGpH + $R2H)& ei(k.rp wt). (27) 
P HI2 

For the purpose of a determination rcO in addition to Sp one needs an expression for the 
perturbation in the potential, 6Q caused by the mass redistribution. Contrary to the case 
of the pressure perturbation, in this case the change of the potential (R2z2/2) caused by 
the central planetary body does not contribute. For the gravitational potential of the 
self-gravitating layer, one obtains by use of Equations (9a) and (9b) the following 
representations for space points inside (i) and outside (0) the material layer, respectively: 
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and 

Q’, = t GpH2 - 2nGpHz + EBe-IklZei(k”-W*); {z> O}. (29) 

In these representations, the two constants A and B have to be fixed such that both the 
potential and its first derivative are continuous functions at the boundary of the layer 
z,, given in Equation (10). The requirement yields the condition 

(30) 

In order also to guarantee the continuous behaviour of the derivative of the potential 
at the boundary, the following condition has to be fulfilled: 

A cosh(lkl HP) 
sinh( / k I H/2) 

+ Be-‘kiH/2 = 4pGp/lkl. (3 1) 

From these two conditions, the values for A and B follow from 

A = (4nGp/Ikl)ePikfNi2 (32) 

(33) 

In connection with Equations (32) and (33) from Equation (28) the following result for 
the boundary value of the potential perturbation &I),, can be obtained: 

Ia@ H,2 = (4~Gp/Ikl)e-lklH/2 (34) 

The up to now undetermined constant rzO in Equations (19) and 
with the help of the relation 

4H,2 = 1sm1H,2 - ‘1 

p HI2 ’ 

(20) can now be fixed 

(35) 

where the two terms on the right-hand side of Equation can be taken from Equations 
(34) and (27). Thus one arrives at the following result: 

- (2nGpH + $‘H) . (36) 

Introducing Equation (36) in Equation (24), we obtain the two dispersion relations for 
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the symmetric and the antisymmetric modes of a perturbation wave the expression 

w2 = {2nGp(lkHI + e- IkH’ - 1) + R2 lkH1/2} x 

J 

co2 
X 

+ 3R2 sin2 rp 

co= - cl= 
coth J 

(( 

co2 + 3R2 sin’ q 

oJ2 - cl2 
(37) 

and 

co2 = {2nGp(lkHl - e- IkW’ - 1) + R= IkHl/2) x 

X 
J 

co2 + 3R2 sin’cp 

co= - cl= 
tanh J 

(( 

co2 + 3R2 sin2 cp 

co= - L-L= 
(38) 

With the two above Equations (37) and (38), the general problem of the behaviour 
of perturbation waves in a rotating material layer is solved. We will now first study these 
relations in some interesting special cases in order to investigate their physical implica- 
tions. 

3. The Infinitely Thin Layer Approximation 

A very interesting special case is the infinitely thin layer. However, this case is only of 
importance for the study of a self-gravitating material layer if the process H--f 0 is carried 
out such that the amount of gravitating material is kept constant. Otherwise, the effect 
of self-gravitation necessarily would be lost when going to the limit H = 0. In order to 
take into account this important fact, one usually introduces the surface density of the 
layer by: 

a=pH. (39) 

We will now consider the behaviour of Equations (37) and (38) for layers with systemati- 
cally decreasing values of H, however, with a constant value for the surface density a, 
i.e., p has to be considered as increasing according to (a/H),,,. Following this 
procedure of going towards the limit H = 0, one obtains from Equation (37) the relation 

CID= = R= + 2nGo Ikl . (40) 

This simplified form of a dispersion relation represents the well-known relation (see 
Bertin and Mark, 1980; Shu et al., 1983) for stable transversal bending waves with an 
arbitrary propagation direction within the layer, i.e., yielding identical results for radially 
and azimuthally propagating waves. The bending mode character of the waves can be 
checked with the help of Equation (22) showing the symmetry of U, with respect to z. 
In the case of the anti-symmetric mode described by Equation (38) the process H = 0 
leads to a more complicated relation given by 

co4 - (Cl’ - 27cGa lkl)co2 + 6~cGcrJ2~ Ikl sin2cp = 0. (41) 

As one may notice, two different dispersion branches for density waves are described 
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by this relation. The character of these waves again with the help of Equation (22) can 
be identified as longitudinal density waves. 

For radially propagating density waves (q = O!), besides the trivial solution o = 0, 
one obtains 

co2 = Cl2 - 27cGo lk,l . (42) 

This is the dispersion relation for purely radial density waves in an infinitely thin layer 
with Keplerian rotation and self-gravitation. This relation was also obtained earlier by 
Lin and Shu (1964) and Goldreich and Ward (1973). Stability for such waves only exists 
if 

lWR2=k,,,, 
21rGcr 

(43) 

which will be fulfilled by waves with long wavelengths, whereas the short wavelength 
perturbations may grow unstable, as already noticed by Goldreich and Ward (1973). 

For the case of azimuthally propagating waves (or tangential waves, cp = n/2) one can 
derive a different stability criterion from Equations (Xa) and (8b). This yields 

k, = 
R2 k 

27cG~s(7 + 4 3) = (7 + +) . 

This shows that the onset of perturbation instabilities occurs at different wavelengths 
depending on the direction into which the wave is propagating. For the ratio of the 
critical wavelengths of azimuthally and radially propagating waves one obtains 

(A,, ./A, J = (7 + 4 3) N 13.93 . (45) 

4. The Finite Thickness Layer Approximation 

For cases of H = 0, the dispersion relations (37) and (38) have to be discussed in their 
general forms. In a first step towards this generality we will consider cases here in which 
the quantity k(H/2) = x can be considered as small compared to 1. In this case the 
function tanh(X) in Equation (38) would then lead to the simpler relation 

w2 = F(kH)(z;p$2), 

where the function F(kH) is given by 

F(kH) = nGp(lkHI -e-‘@ - 1) IkHl + 
R2 lkH12 

. 4 

The solutions of Equation (46) can be rewritten in the form 

a2 = $[@I’ + F(kH) i ,,h4 + 14Q’F(kH) + F2(kH)] . 

(46) 

(47) 

(48) 
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These solutions immediately show that one of the dispersion branches of Equation (46) 
for longitudinal perturbation waves in azimuthal direction yields instability of 
F(kH) > 0. If at all, stability can only be guaranteed for both of the existing branches 
if F(kH) < 0. As is then evident from Equation (47) the latter relation can only be valid 
for kH 4 1. Furthermore, from Equation (48) one can derive that even in the case of 
negative values for F(kH) no complex frequency values w appear as long as 

lF(kH)/R’/<7-4fi. (49) 

Briefly, the instability analysis may be thus expressed in the following form: 

sgn(F(kH)) = + 1 , instability ; 

sgn(F(kH)) = - 1, stability, if Equation (49) is fulfilled . 
(50) 

A similar result as Equation (46) could also be derived from Equation (41) for azimuthal 
waves ($ = n/2), yielding 

co2 = -2rGtsk(z;m;22) = F’o(kH)(~~~22). (51) 

As is evident, Fo(kH) is negative, and whenever it fulfills Equation (49) it proves the 
stability of infinitely thin layers with respect to azimuthally propagating longitudinal 
waves. 

Furthermore, it is interesting to note that also the dispersion relation for a rotating 
and self-gravitating material chain can be brought into a form similar to Equation (48) 
when writing 

co2 = -2GpS(k) 
co2 + 302 - GpS(k) 

a2 - Cl2 - GpS(k) > ’ 
(52) 

where in this case the factor (- 2GpS(k)) takes into account the tangential coupling 
between the chain members treated as material clusterings (see Willerding, 1986). The 
similarity between the dispersion relation (5 1) and the one obtained for a rotating chain 
of dust material clearly shows that our hydrodynamical calculations neglect shear-flow- 
induced effects. Hence, Equations (51) to (52) are restricted in their validity to ring-like 
structures. 

5. Stability of Fluid Layers with Surface Tension 

In the previous sections we have solved to the first-order the stability problem of a 
self-gravitating incompressible fluid layer with Keplerian rotation, but without shear 
flow. Under the same conditions we shall now consider for purpose of comparison the 
stability of a liquid layer held together in its equilibrium state and controlled in its 
perturbed state by capillary forces. The dynamical equations for this case are still of an 
identical form as those given in Equations (9a-c), of course, with a different meaning 
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of II. We have to introduce 

I-I, = - @c/p, (53) 

since we want to replace both the effect of self-gravitation and thermal pressure by an 
artificial capillary force to be derived from a capillary pressure p. At a deformed 
boundary the following equations must be satisfied 

PC + dP, = r( l/R1 + l/R2), (54) 

where z is the constant of surface tension, and where Rl and R2 are the two prin- 
cipal radii of curvature, respectively. In the unperturbed state the pressure PC inside 
the layer vansihes because the principal radii of curvature of the surface are infinite. 
According to Equation (lo), the boundary of the perturbed layer is given by 
z,, = He/2 + E exp(i(k * r - wt)). 

To first order in E, we can then calculate the reciprocal sum of the principal radii of 
curvature for the perturbed surface by the expression (see for example Landau and 
Lifshit?, 1978) 

l/R1 + l/R2 = - (~*z/~x* + d’z/dy’) + O(e2). (5% 

In the present one-dimensional case, formula (55) for the capillary pressure-variation 
yields 

dp, = Tk*& exp(i(k * r - wt)) . (56) 

Now following the straightforward analysis of Section 2 concerning the determination 
of the constant II, we now obtain with the aid of Equations (53), (54) and (19), (20) 
for z = H/2 that 

II,, = - (z/p)k* (cash rcH/2) - ’ , (57) 

TIC0 = - (r/p)k2 (sinh 1cH/2)- I , (58) 

Inserting this expressions for IICO in the boundary condition (24), we find (after some 
rearranging) the final form of the dispersion relations for capillary layers with Keplerian- 
rotation to be 

CO* = ( z/p)k2 K tanh( lcH/2) (antisymmetric) , (59) 

u2 = (T/p)k* IC coth( k-H/2) (symmetric) . (60) 

To discuss the stability properties of the capillary layer, we have to distinguish between 
the radial and non-radial wave-perturbations. As in the foregoing section, we expand 
the right-hand side of the dispersion relations (59) and (60) to the first-order in H. Thus, 
we obtain 

co2 = $(z/p)k4H(co2 + 352* sin*(cp))/(w’ - a’), 

w2 = 2(z/p)k2/H. 

(61) 

(62) 
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By analogy with the criterion (50), a necessary condition for the stability of the capillary 
layer is that the factor F(H) = f(z/p)k4H in (61) should be negative. As is then evident 
from relation (61), the longitudinal perturbation waves in azimuthal direction are 
unstable in a capillary layer for all wave numbers. Only in the singular case of purely 
radial antisymmetric waves does stability exist in the whole range. The dispersion 
relations for the capillary layer are displayed in Figure 4. 

6. Comparison of the Dispersion Relations and Discussions 

In the previous sections we have investigated the stability behaviour of an incompressi- 
ble fluid layer under the action of both a self-induced gravity and an intrinsic surface 
tension of the layer material. An important aspect in our stability analysis is the fact that 
we did not take into account the second inertial force term as described by Equation (6). 
Due to this procedure our investigations are restricted to hydrodynamic models without 
shear Bows. The question whether or not the shear flow in the Keplerian disk is efficient 
certainly may find an answer in the radial perturbation wavelengths that are involved. 
If the amplitude of the velocity field perturbation u(r, t) is small in comparison to 
I(du/dr), the ‘Keplerian shears’ may be considered as unimportant (for instance the 
situation in narrow ringlets). In the following we will discuss on this ground the different 
results in more detail. 

-04. 
'0,O 0.2 0,4 96 0.8 I,0 I,2 I,4 I,6 I,8 

kH 
Fig. 2. Dispersion relations for a self-gravitating layer and a capillary layer without rotation. The cm 
belonging to the case of acting gravity are labeled with g, the curves belonging to capillarity are labeled wi 

c, respectively. 
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Figure 2 shows for the case 0 = 0 the dispersion relations given by the expressions 
(37), (38), (61), and (62), respectively. Since stable oscillations occur only above the 
dashed line o* = 0, we see that, when rotation is not present, the capillary layer is stable 
in all dispersion branches (c(A) and c(S)) and in the whole range of wave numbers. A 
different situation was found in the case of a self-gravitating layer. As one can see in 
Figure 2, the symmetrical wave mode (g(S)) shows no instabilities for wave numbers 
kH 2 0, but, contrary to the capillary case, the antisymmetric wave mode (g(A)) is stable 
only in the range kH 2 1.27846. Therefore, we establish that, for wave perturbations 
with wavelengths exceeding a critical limit, the self-gravitating layer is unstable. It is 
interesting to note that in the unstable region of the dispersion branch g(A) a mode of 
maximum instability occurs for kH = 0.60701. Due to this fact the stability properties 
of a capillary layer and a self-gravitating layer show no similarities as in the case of 
certain cylindrical systems (Chandrasekhar, 1961). 

Figure 3 shows the function F(kH)/R* for different values of the parameter 
CI = 471Gp/R2, as given by the expression (47). According to Equation (50), stability can 
only be guaranteed for the anti-symmetrical dispersion branches (g(A), cp = 7c/2), if 
F(kH)/Q* I 0. In this region we have stability unless the parameter CI exceeds the critical 

- OJ 
to 082 0,4 W 0,8 I,0 

kH 
Fig. 3. The function F&H)/@ versus wave number (kH) as described in the text (Equation (47)). Different 
curves are for various values of a = 4nGp/R2. The dashed line indicates the critical value 

FC(kH)/~Z = - 0.071797 (see Equation (49)), where complex solutions for o have to be expected. 
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value IX, = 0.8636 (see dashed line of Figure 3). Beyond this value, solutions of the 
characteristic Equation (46) are complex, meaning a non-local instability behavior for 
tangential wave propagations in self-gravitating ringlets. In regions where the function 
F(kH)/R2 gives values greater than zero, we derive from Equation (46) purely imaginary 
frequency values. Consequently, we can speak in this cases of a local instability which 
occurs for short wavelengths depending on the parameter LX = 47~Gp/0~ (see Figure 3). 
To see these results more clearly, we have displayed the different dispersion branches 
(37) and (38) in case of the finite thickness layer approximation for the value a = 0.8 
in Figure 4. As mentioned above, the non-local instability does not arise because the 
value CI = 0.8 lies below the critical value or, = 0.8636. Nevertheless the local instability 
occurs in the short wavelength range as can be seen in Figure 4. For the case of 
self-gravitation, it can be said that rotation has the important effect to stabilize the 
anti-symmetrical wave mode in the long wavelength range. 

90 02 ‘A6 OS8 I,0 

kH 
Fig. 4. Dispersion relations for perturbation waves in radial (cp = 0) and tangential (cp = n/2) directions 
in a self-gravitating Keplerian disk in the case of finite thicknesses H of the layer without shear Bow 

(47cG@ = 0.8). 

Figure 5 shows the dispersion branches of a capillary layer with rotation given by the 
relations (6 1) and (62) assuming z/(2pH3Q2) = 0. I. Paradoxically, as can be seen, the 
capillary layer with rotation and an uncompensated central gravity field is completely 
unstable, because the factor F(kH) = i(z/p)k4H is positive. So we can repeat our 
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Fig. 5. Dispersion relations for perturbation waves in radial (cp = 0) and tangential (rp = n/2) directions for 

a ‘capillary disk’ without shear flow z/(2pH3CZ’) = 0.1). 

statement that, at least for the stability behaviour, similarities between self-gravitating 
and capillary ringlike structures do not exist. 

7. Concluding Remarks 

In the present paper, we have calculated linear dispersion relations for self-gravitating, 
incompressible ringlet structures with a finite thickness and an appropriate planar 
extent, taking into account additional force terms due to rotation and tidal acceleration. 
In order to derive results in an analytical form we made the following approximations : 

(i) Transformation of the relevant dynamical equations of a homogeneous material 
layer with thickness H in a local frame of reference, rotating with Keplerian velocity 
around a central mass M. 

(ii) Linearization of the incompressible, inviscid fluid equations for small departures 
from equilibrium. 

(iii) Neglect of the convective part of the material time derivative operator in the 
hydrodynamical equations, i.e., of the differential rotation pattern of the layer. However, 
the tidal force term was adequately taken into account. 

With these simplifications, we came to our main result, which is represented by two 
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transcendental dispersion relations (Equations (37) and (38), respectively). These 
equations have been interpreted for two approximative cases, namely the ‘infinitely thin 
layer’ and the ‘finite layer’ approximation. However, it should be mentioned that in 
addition to these lowest modes (or lowest dispersion branches) described in terms of 
the finite thickness layer approximation in Section 4 and illustrated in Figure 4, there 
exists an infinity of higher order modes which can be derived from Equations (37) and 
(38) by accurately observing the quadrants of the functions tanh( lcH/2) and coth( rcH/2) 
(K may be complex or purely imaginary). We have not considered these modes here 
because the principal results already follow from the lowest dispersion branches. 

Reviewing synoptically our results on the properties of self-gravitating dust layers, we 
may start out from the statement that the tendencies of waves to grow unstable strongly 
depend on the local Keplerian rotation period. Our results presented for the case Q = 0 
may be taken as characteristic for the outermost fringes of circumplanetary disks. Here 
it is pointed out that although bending waves are generally revealed as stable, specific 
types of density waves grow unstable at long wavelengths (small value of kH). For 
tangential waves of this type it can be seen that Q -j 0 also implies a = 4xGp/R2 + co 
and that critical values of a 2 a, lead to the case when the function Ii(kH)/R2 becomes 
smaller than [ - (7 - 4 $)] (see Figure 3) such that global instabilities may develop. 
For instance, tangential waves propagating prograde may superimpose with waves 
propagating retrograde and thus may form standing waves on a dust ring, which, due 
to long-periodic increases in amplitude, may lead to a fragmentation or conglomeration 
of the diffuse material into discrete masses distributed along this ring. 

The opposite case of large values for R, which need to take the rotation into account, 
will be important, especially at the innermost fringes of a circumplanetary disk. Here 
again we find that bending waves (g(S)) remain stable over all wavelengths; however, 
in contrast to the case R = 0, we now obtain instabilities for the density waves (g(A)) 
at small wavelengths (i.e., large values of kH), whereas the long wavelengths are now 
stable. In connection with the existence of infinitely higher order modes mentioned 
above, we can expect for all density values complicated conglomeration processes in the 
short wavelength range. Since for a finite value a an increase of a is caused by increasing 
values of p, one can also obtain here the case of complex solutions for m. 

This could also give rise to a global fragmentation of diffuse matter in these inner 
regions of a disk into a discrete mass distribution. For a cosmogonically relevant 
circumplanetary or circumstellar dust layer, one should in addition keep in mind that 
both H and p will be functions of a central distance R which definitely determines the 
absolute values for the unstable wave numbers and imaginary frequency parts. Starting 
from an available cosmogonical model for a young dust accretion disk, we will look into 
this problem more quantitatively in a forthcoming paper. In connection with these 
studies, we can also investigate the compatibility of wavelengths belonging to complex 
frequency solutions with the local circumference line. We hope to be able to localize 
regions where, due to complex solutions ofthe dispersion relation for tangential perturba- 
tion waves, only two or three discrete mass condensations are to be expected. In 
connection with the shear in the rotation pattern, these mass concentrations give rise 
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to the development of self-excited spiral density wave modes. The problem of shear flow 
on the radial stability of dust layers (‘pinch’ instability due to viscosity effects) will be 
a subject for us to study further. 
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