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Abstract. The three rings A, B and C of Saturn and the two gaps French and Cassini divisions in 
between them have been subjected to a study of deterministic chaos and we have shown the existence 
of spatially distributed strange attractors, implying thereby that the system is open, dissipative, 
nonequilibrium and non-Markovian in character. 

Matter ring formation in the solar system in general (such as Asteroidal Belt) and 
in planetary environment (Galilian planets) in particular has still evaded adequate 
explanation. Various theories have been put forward based on Newtonian 
mechanics of three-body dynamics to explain the formation of gaps by gravita- 
tional collisional self focussing (Trulson, 1971), scavenging of matter by satellites 
involving resonance theory (Berry, 1978) with limited success. However, there 
seem to be only few attempts to analyse the data obtained by the various missions 
towards an understanding of the dynamics of these systems. In this paper, we 
propose to apply the recently developed theory of deterministic chaos (Schuster 
1984) to the data acquired by the Voyager missions (photopolarimeter record- 
ings; Esposito et al., 1983). It may be mentioned that a study in the framework of 
deterministic chaos is relevent in the case of Saturn rings, in view of the results of 
Wisdom (1983) wherein he has shown that in asteroidal belt, 3 : 1 Kirkwood gap 
coincides with the outer boundary of a chaotic zone. The significance of 3 : 1 
resonance out of all resonances was pointed out for the first time by Pratap 
(1977). 

Our analysis in the present paper is not dependent on any particular Hamil- 
tonian; and, hence, the dynamics that is imbedded in the actual data which 
become explicit here would enable one to frame a more realistic theory. The 
main results in this paper are that the system is in nonequilibrium state and is 
nonlinear and dissipative, and has only little information capacity as revealed by 
the low Kolmogorov entropy. 

Mathematical Analysis 

The data set consists of the extinction data as recorded by the photopolarimeter 
in the Voyager mission from which the density distribution as a function of 
distance is obtained as given in Figure 1. This is recorded at an interval of 65 km 
(O.O02R,) for a distance ranging from the inner edge of the innermost ring (C 
Ring) to the outer edge of A ring. The F ring and the gap between A and F are 
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Fig. 1. Matter distribution as a function of radial distance from the inner edge of the C ring to the 
outer edge including F ring. We have considered in this analysis only from the inner edge of C to the 

outer edge of A ring. 

not included in the present analysis, as also the D ring as is supposed to exist 
between the planet and the C ring. The distance is about l.O3R, and the division 
of the domain is given in Table I. These readings are given by the sequence 

X(l) = X(lo), X(Lj+A2), X(I,+2AE). . . X(Z,,+NAZ), (1) 

where Al is the distance gap between two consecutive readings. In the present 
case it is 65 km, and lo is the innermost edge of the C ring. This sequence is now 
rearranged in the form of a ‘delayed matrix’ as 

xc LJ X(1, + A1) X(Z,+2A1). . . . X(Z,+ mAl), 
X(lo+AE) X(&,+281) X(lo+3AE).... X(l,,+(m+l)A1), 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
X(Z,,+dAl) X(Z,+(d+ 1)AE) X(I,+(d+2)AZ). . X(lo+(d+ m)AZ). 

(2) 

TABLE I 

Table giving the summary of the present analysis 

Ring/gap 

C 
Gap 
B 
Gap 
A 

Total system 

In units of R 

Inner edge 

1.24 
1.45 
1.53 
1.95 
2.03 

1.24 

Outer edge 

1.45 
1.53 
1.95 
2.03 
2.27 

2.27 

Width DZ K2 x lo3 

0.21 1.65 1.00 
0.08 2.81 0.83 
0.42 4.26 2.58 
0.08 2.55 3.20 
0.24 1.71 1.23 

1.03 1.78 0.83 
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The matrix (2) is symmetric by construction and this need not necessarily be a 
square matrix. If N is even, then the above would be square matrix if m = d = 
N/2. 

The matrix (2) can be considered as an array of m column vectors defined in a 
d dimensional space and this in general can be written as 

Xi = {X(1,), X(1, +AI), . . . X(li + dAI)} 1 (3) 

where li = lo + iAl with i being an integer running from 0 to m. We shall now 
define a correlation function, following Atmanspacher and Scheingraber (1986) 
as 

Cd(r)= Lt f N-*@(r-(IXi-Xj(J), 
N-m i,j= I (4) 

where r is any preassigned quantity and )I )( is the Euclidian norm of the 
difference between two vectors Xi and Xi. O(x) is the Heaviside function which 
is unity for x > 0 and zero for x < 0. Equation (4) gives the number of pairs of 
vectors whose difference is less than a preassigned r and normalised by N*. The 
choice of r and d will become apparent in the sequel. 

If we consider the trajectory of a particle crossing a given plane repeatedly, 
then if the points at which the trajectory crosses the plane are all confined in a 
neighbourhood, then this is called the basin of the attractor. r in Equation (4) 
gives a measure of the basin of the attractor. One can use the probability 

pi(=NlN), h w ere Ni are the number of points at which a trajectory visits a given 
neighbourhood, to define quantities D4 which are called the qth order Hausdorff 
dimension of the attractor. This is elaborated in a series of papers by Grassberger 
and Procaccia (1983a, b and references quoted therein). The most significant of 
D4s however is D2 which can be defined in terms of (4). 

It has been shown by Grassberger and Proccacia (1983b) that for small r, 
Equation (4) obeys a power law as 

Cd(r) - f , (5) 

which means that the points defined in (4) will all be in a hypercube of dimension 
E with sides r, and this correlation exponent E can be obtained as the slope of a 
linear relation 

log C,(r) = E log(r). (6) 

It has been shown that if the data set is generated from a completely stochastic 
Gaussian white noise, then E = d or a plot of slope against dimension would be a 
straight line making an angle of 45” with the dimension axis (Babloyntz and 
Destexhe, 1986). However, any deviation from this line would indicate the 
presence of a deterministic component. Thus the existence of a deterministic 
component in the data set can be uniquely determined without any recourse to 
the dynamical equations. 
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We can now define second order correlation dimension (4 = 2 in D9) by 
making (6) independent of r and d. We then have 

(7) 

and this quantity has been shown to be the lowest in the set of D4s (Caputo and 
Atten, 1987). This is an invariant of the system and is a static parameter as it is 
independent of the length or time-scales. It may also be realised that the 
definition (7) holds good for a nonlinear dissipative system. This is the minimum 
number of initial conditions which are necessary to characterise the system in the 
asymptotic limit, or this gives the dimension of the subspace to which the system 
gets embedded in the phase space. As one can seen in the discussion for the 
various domains, the curve slope-d, takes off from zero and attains an asymptotic 
value parallel to the d-axis. Hence d should be chosen so as to get this asymptote 
defined properly. 

A second point to be observed is the dimension d at which the curve meets the 
asymptote line. The part of the curve defined for lower dimension, indicate chaos 
while that at the asymptotic region represents order. Hence the dimension at 
which the curve meets the asymptote could denote the boundary between chaos 
and order. This is what has been observed by Wisdom (1983) and we verified this 
by a similar analysis and we obtained D2 = 5 meaning a regular attractor meeting 
the curve at d = 15 thereby giving the 3 : 1 Kirkwood gap. This probably could 
be a significant point which has not been realised earlier, as no importance is 
attached to the dimension at which the asymptote meet the curve. 

We can also define a second invariant quantity, the Kolmogorov entropy as 

& = Lt 7-l log(cd/c,+,) , 
d-m 
r--t0 

(8) 

where 7 is the sampling interval. K2 > 0 is a sufficient condition for deterministic 
chaos, and hence can be used to quantify the degree of chaos. It should be 
realised that while D2 is a static parameter independent of time and length scales, 
K2 is a dynamic parameter very sensitive to scales in the system. We shall 
evaluate these quantities for the various parts of the ring and gap systems and are 
given in the next section. In the present analysis, we have used the method 
developed by Abraham et al. (1986) for small data sets. This has been used with 
great success in other fields (Lalaja et al., 1987; Pratap et al., 1987). 

Results 

In the ensuing analysis we do not presuppose a Hamiltonian structure for the 
system or any other specific interaction. We shall present results in two different 
sets - of the rings as well as gaps. The last section is on the ring system taken as a 
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whole showing that it does not exhibit the various characteristics of the individual 
components. The fact that the system consists of a spatial distribution of a large 
number of strange attractors however can be inferred from the existence of 
plateaus in the slope vs dimension curve. The results are discussed in the last 
section. We have also indicated in this section the future direction in which this 
work will be continued. 

c RING 

This ring is the one closest to the planet that we are considering, and experience 
strong gravitational effect. The inner edge of this ring is at a radial distance of 
0.2R, from the planet’s surface and has a width of 0.21R, or 1.3 x lo4 km. Figure 
2(l) gives the plot of log C,(r) vs log(r) for the various dimensions d, the left 
hand side outermost is of dimension 1 and we evaluated upto 30 dimensions. In 
the figure, we have given about 25 dimensions to avoid overcrowding. The curve 
d = 1 has some structure, but as d increases, these structures disappear even 
though some small wobbles do persist. Such wobbles do not appear in other dy- 
namical systems such as neural networks (Lalaja et al., 1987) and, hence, does 
not seem to be an artifact due to smaller data set. We measure the slope of each 
curve and plot it against the dimension in Figure 2(ii)a. The curve attains a 
saturation value of 1.65. In this figure we have drawn a line (b) at 45” to the 

Fig. 2(i). Plot of log C,(r) against log(r) for C ring. In this r is not the radial distance, but the 
parameter introduced in Equation (1). 
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Fig. 2(ii). The plot gives three curves: slope vs dimension d (a) for the curves in Figure 2(i) the same 
for a completely stochastic case (b) and the plot of points K2 against d, (c). The asymptote is given by 

the straight line. 

X-axis along which all the points would lie if the process is totally stochastic. 
Hence the deviation from this line indicates the existence of a deterministic part. 
The initial points for small dimensions indicate the noise component, while the 
asymptotic value gives the characteristic dimension of the attractor. The non- 
integer characteristic dimension indicates the existence of a strange attractor. 
The points we have plotted give the second Kolmogorov entropy - the most 
important component in the family of Kolmogorov entropies (Caputo and Atten, 
1987). The line (c) drawn in the Figure 2(ii) is the asymptotic value of X2. It may 
be mentioned that K2 is a sensitive parameter while D2 is a static parameter. 
Hence, the presence of multiple frequencies and length scales in the system 
would get reflected in this. 

B RING 

It may be noted that the log C,(r) vs log(r) do not show much of wobbles for the 
initial dimensions, but starts appearing in the higher dimensions. We have 
evaluated correlations only upto r = 1 and hence the curves do not converge to 
log C,(r) = 0. But the curves do converge to Cd(r) = 1 if we take higher values of 
r. However we did not go for the same, since we need only the slopes and these 
do not change as r is increased beyond 1. 
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Fig. 

Fig. 3(i). Curves giving log C,(r) against log(r) for B ring - the largest in the system. 
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3(ii). For the curves given in 3(i), the slope is plotted against d (a) the stochastic case (b), and 

the K2 entropy (c). 
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It may be mentioned that Figure 3(ii)a does show plateaus indicating the 
presence of more than one basin of attractors and if we take the mean of this, we 
get the characteristic dimension as 4.26. The asymptotic value of K2 given by 
Figure 3(ii)c however is well defined and gives the value 2.58. 

A RING 

This is the outermost ring we have considered here and experience less of 
gravitational force, as compared to others. The Voyager, however, observed 
knots and kinks in this ring system as well as concentric ring structures within the 
system. In the curves log C,(r) vs log(r), structures start appearing from the 
smaller dimensions onwards as is evident in Figure 4(i). These structures are 
indeed real and shows that there are more than one strange attractor in the 
system. To separate the various components however would be difficult and shall 
be looked into later on. This also became obvious in the slope vs dimension. As d 
increases, the attainment of the asymptotic value is slow. This is given in Figure 
4(ii)a, and this implies that the deviation from the stochastic line (b) is slow. This 
is also apparent in the K2 entropy plot in Figure 4(ii)c wherein there exists 
oscillatory character, which dies down as d increases. Probably one can get an 
asymptotic value Dz for larger dimension. The existence of more than one 
attractor (regular or strange) in the system is quite apparent. It has a D2 value of 
about 1.71 and K2 - 1.23. These values, are however, only tentative. 

Fig. 4(i). Graph depicting log C,(r) vs log(r) for A ring - the outermost one considered here. 
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Fig. 4(ii). The plot of slope from 4(i) against d (a), and K2 vs d (c). (b) gives the completely 
stochastic case. 

Gaps 

We shall carry out a similar analysis for the two gaps - between C and B rings 
(French division) and B gap - between B and A rings (Cassini division). 

c GAP 

The curve log C,(I) vs log(r) for this region is given in Figure 5(i). A regular 
structure in the curve starts appearing right from the first dimension onwards, 
and as d increases, the step like structure also become more and more dominant. 
This manifests itself in a peculiar manner in the slope vs dimension Figure S(ii)a. 
There does not exist a clear-cut asymptote, nor are the points along the stochastic 
line (b). The curve could be considered as a combination of large number of step 
curves, which shows the presence of more than one attractor. This is also evident 
from the K2 points distribution where these points exhibit a complicated oscil- 
latory structure Figure S(ii)c. 

B GAP 

Unlike the C gap, B gap or Cassini division is better structurewise. Structures 
start appearing as dimension increases and here again, the curves converge to 
unit correlation for large r. This is given in Figure 6(i). The curve in Figure 6(ii)a 
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Fig. 5(i). log C,(r) vs log (r) for the French Division or C Gap. 
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Fig. 5(ii). Slope derived from 5(i) against d (a), and K2 against d (c). 
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Fig. 6(i). log C,(r) is plotted against log(r) for the Cassini Division or B Gap. 

Fig. 6(E). Slope vs. d (a) and K2 vs d for the Cassini Division. The stochastic line is given by the 
line b. 
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however do not show any sign of convergence in the asymptotic limit for the 
number of dimensions we have taken here. One does require a large number of 
dimensions which implies a larger number of closer data. The curve shows 
horizontal portions for dimension around 10, but takes off as dimensions go 
beyond 20. The curve G(ii)c depicting the Kolmogorov entropy also exhibit a 
peculiar behaviour. It does show a saturation beyond dimension 20. 

Ring System as a Whole 

Figure 7(i) gives the correlation curve for the entire ring system, for a range of 
l.O3R, or about 62 000 km. As one can easily realise, the curve is not a sum of 
the previous ones, but has a different structure. There are pronounced wobbles in 
the diagram, implying distinct domains having different slopes. This manifests 
itself in the formation of plateaus in the various dimension ranges. Figure 7(ii)a, 
clearly implies the presence of various attractors having different characteristic 
dimensions. This is also quite evident from the fact that the deviation from the 
stochastic curve Figure 7(ii)b is also very clearly pronounced. In the plot for K2 
Figure 7(ii)c, the ratio log[Cd(r)/Cd+i(r)] oscillates for lower dimensions but 
steadies itself as d increases. It is however evident that one would not be able to 
get details of the earlier curves from this one. It has a characteristic dimension of 
1.78 and a low K2 value of 0.87 X 10P3. 

LoP(r)J c 
c 

t 

t I I I I I I I I I I 
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Fig. 7(i). The entire ring system from the inner edge of C to the outer edge of A is taken as a single 
unit and the log C,(r) vs log(r) is plotted. 
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Fig. 7(ii). The slopes from 6(i) is plotted against dimension d (a) K2 against d(c). 

Conclusions 

The results of this analysis is given in Table I, and also in Figure 8. Some 
of the interesting features are that the characteristic dimension increases radially, 
comes to a maximum around the B ring and then shows a steady decrease, while 
K2 strikes a peak value around the Cassini gap and then decreases. This shows a 
phase lag between the dimension and the Kolmogorov entropy. An inspection of 
the dimensions reveal that all the attractors are strange and if we consider the 
total ring system, we get again a strange attractor. This is quite contrary to the 
result one obtains in the asteroidal belt wherein we get a regular attractor of 
dimension 5 for the system. We may conclude that the strange attractor for the 
total tystem is a consequence of a large number of interacting strange attractors, 
while if we extend this to the asteroidal system we can have a similar conclusion 
viz., a system of strange attractors resulting in the formation of a regular 
attractor. This implies that the Saturn ring system is chaotic piecewise as well as 
in total while in the asteroidal belt, the total system is a regular attractor, and is 
an example of chaos inducing order. 

In this analysis, we followed a division of data based on density distribution. 
The main conclusion is that the Saturn rings form an open, dissipative, and non 
Markovian system consisting of more than one characteristic scale, manifesting 
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Fig. 8. The results given in the table is plotted against distance from the surface of the planet. This 

reveals the relation (if any) between D2 and 103 &. Here the solid line is for K2 and the dashed line is 

for D2. 

itself in a collection of spatially distributed strange attractors (Schuster, 1984). 

Hence in developing a statistical mechanics of the system, it would be more 

realistic to consider a collection of strange attractors mutually interacting, giving 

rise to a resultant strange attractor or a regular one. 

We are extending this by studying the autocorrelation of matter in these rings. 
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