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Abstract. We consider the concept of a quasi-axisymmetric circulation to explore the global scale 
dynamics of planetary atmospheres. The momentum and energy transport processes in the smaller 
scales are formulated in terms of anisotropic eddy diffusion. In the early work of Williams and 
Robinson (1973) these concepts have been introduced to describe the Jovian circulation. Our study 
differs in that we adopt a spectral model (with vector spherical harmonics) and consider a linear sys- 
tem; we are also examining a different parameter regime. The troposphere of Jupiter is assumed to be 
weakly convectively unstable, and the circulation is driven by the fundamental component of solar 
differential heating with a broad maximum at the equator. Mode coupling arising from the Coriolis 
action is considered in self consistent form, and momentum and energy are allowed to cascade from 
lower to higher order modes. With a limited number of spherical harmonics, up to order 40, and with 
homogeneous boundary conditions, the conservation equations are integrated between the 25 and 
lOwsbar pressure levels. In addition, a simplified single layer model is discussed’which, even though 
heuristic in nature, elucidates and complements the numerical results. Our analysis leads to the follow- 
ing conclusions: (a) For a negative stability, S, = aT,/ar + I’, the energy transports arising from large 
scale advection by the meridional circulation can amplify the response to the external heating. This 
cruciaIly depends on the latitudinal structure of the circulation, so that banded wind fields with equa- 
torial zonal jets are preferentially excited. (b) With a negative stability of order S, - - 10e6 K cm-‘, 
the computed number of positive (and negative) zonal jets is similar to that observed on Jupiter. 
(c) The observed magnitudes in the zonal wind velocities require that the vertical eddy diffusion 
coefficient is of the order K, - 3 X 10’ cm* s-r, which in turn is consistent with the observed outward 
flux of energy from the planetary interior (F 0~ KrS,); this diffusion rate is also of the right order of 
magnitude to obey mixing length theory. (d) The ratio between the horizontal and vertical eddy dif- 
fusion coefficients (relative mixing factor) is of critical importance. If it is too large (% 105), differ- 
ential rotation or alternating zonal jets cannot be maintained; if it is too small (< 104), the equator 
tends to corotate. The intermediate value of order R - 5 X lo4 is again consistent with mixing 
length theory. (e) With the above constraints on the transport coefficients, the flow is quasi- 
geostrophic. (f) The meridional circulation is multicellular and of the Ferrel-Thomson type. It is con- 
sistent with the observed cloud striations in the Jovian atmosphere. (g) In the stable stratosphere at 
higher altitudes the fundamental component, directly driven by the Sun, dominates. The circulation 
degenerates, and broad, positive zonal jets develop at middle latitudes, resembling the observed wind 
field in the visible cloud cover of the Venus atmosphere. 

1. Introduction 

In the mean circulation of planetary atmospheres there are two related phenomena: (1) 
the rigid shell component (or global average) of superrotation and (2) the (latitudinal) 
differential rotation. On Venus, the rigid shell superrotation dominates (e.g., Schubert 
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et al., 1980). On Jupiter and Saturn, banded wind fields with equatorial jets are prominent 
(Smith et al., 1979a, b, 1981). 

On the basis of the work of Biermann (19.51) Durney and Roxburgh (1971) and 
Rtidiger (1980) and in particular that of Williams and Robinson (1973) and Gierasch 
(1975) we had shown in an earlier paper (Mayr and Harris, 1983; hereafter referred to as 
Paper I) that, under anisotropic eddy diffusion, the solar differential heating at low lati- 
tudes can drive the four day superrotation on Venus. With a Prandtl number of one, the 
adopted ratio of order lo’between the horizontal and vertical eddy diffusion coefficients 
was found to be of critical importance. A much larger value would significantly dampen 
the latitudinal temperature contrast required to sustain the observed superrotation rate; 
a much smaller value would not be able to sustain the observed motions near the equator. 
This required anisotropy ratio was found to be consistent with mixing length theory, sug 
gesting a potential closure in the fluid dynamic system. 

Unlike the atmosphere of Venus which is completely controlled by the absorbed solar 
radiation, the outer planets Jupiter and Saturn emit more energy than they receive from 
the Sun. Like in a star, their optically thick tropospheres must form convection layers 
where planetary energy from the interior is transported upward. At the same time, solar 
differential heating is inducing global scale meridional motions which redistribute angular 
momentum to build up superrotation and differential rotation. Supported by a numerical 
simulation, we had suggested in Paper I that the realization of this star-earth dualism - 
emitting energy from the interior while receiving solar energy at low latitudes - may 
provide the key to our understanding of the mean zonal circulations, in particular the 
equatorial jets, on Jupiter and Saturn. 

The present paper describes a numerical model applicable to Jupiter, and an analytical 
study is presented elucidating the conditions leading to differential rotation in an atmos- 
phere which is convectively unstable. 

Following Paper I, our approach is to consider a linear system forced by solar differ- 
ential heating. Nonlinear effects arising from advection are represented in the form of 
eddy diffusion. In Section II of this paper the properties of the model and its limitations 
are discussed. In Section III an empirical, latitudinal spectrum of the observed zonal wind 
field on Jupiter is discussed. In Section IV numerical solutions are presented which reveal 
banded wind fields with alternating and equatorial zonal jets and a multi-cellular Ferrel- 
Thomson meridional circulation consistent with the observed cloud striations on Jupiter. 
In Section V the vertical derivatives are parameterized to construct a simplified one-layer 
model. Such approximation allows us to study the dynamic properties of the atmospheres 
over a wide range of parameters so that a comprehensive understanding can be obtained. 

2. Theoretical Model 

We adopt essentially the spectral model formulated in.Paper I. Our definitions of the vari- 
ables are the same and so are the equations to which we refer with the prefix I. Here we 
summarize the physical and mathematical properties of the model as they apply to Jupiter. 
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A linear axi-symmetric model is formulated by taking the zonal and time averages on 
the equations of energy, mass and momentum conservation. Moreover, the following 
assumptions are made: 

(a) Thin layer approximation 1 /r Q a/&-, 
(b) hydrostatic equilibrium in the vertical direction, 
(c) gravity >> wir, 
(d) the large scale flows are characterized by u/q, g.1, 
(e) perturbations on the thermodynamic variables due to solar differential heating are 

small, 
(f) the zonally averaged effects of non-linear advections are represented by down- 

gradient diffusion (mixing length approximation). 
The assumptions (a) through (d) are trivial. However, the assumptions (e) and (f), 

which are important for our analysis, require justification. 
For the atmospheric motions which interest us it is generally justified to assume that 

the perturbations on the thermodynamic variables are small. In the case of fast rotation 
(Jupiter and Saturn), the Coriolis force or the meridional advection of planetary angular 
momentum, a wP, is of major importance. In an atmosphere dominated by the Sun’s 
radiative input and a strong internal planetary source (Jupiter and Saturn), the global 
scale meridional advection of energy is also of major importance. Both large scale pro- 
cesses can be described in the framework of a linear system. In the smaller scale, however, 
the non-linear effects of energy and angular momentum transfer become important and 
must be considered. This is extremely difficult, and, to make the problem tractable, 
simplifications must be made. 

Following Williams and Robinson (1973) Durney and Roxburgh (1971) and Riidiger 
(1980) we adopt an anisotropic eddy diffusivity to represent the effects of non-linear 
advections in the smaller scales. Specifically, we write the cross correlation between the 
velocity vector V and an arbitrary quantity E as 

where the subscript i indicates a spatial direction, xi are the corresponding unit vectors, hi 
and Vi are the mixing length and velocity fluctuations (r.m.s.) in that direction, and their 
products are combined into a kinematic viscosity vi. This is strictly a working hypothesis. 

In a stratified rotating fluid, the motions are affected by rotation, and the eddy dif- 
fusion is neither homogeneous nor isotropic. As a working hypothesis we assume that, to 
first order, the mixing length approximation can absorb these complications. It has 
yielded interesting results (Williams and Robinson, 1973) and still proves to be useful 
while we are in this early stage of exploring planetary atmospheres. 

By choosing the eddy diffusion to have a form similar to molecular diffusion (Durney 
and Roxburgh, 1971; Williams and Robinson, 1973) angular momentum is conserved. 
Furthermore, rigid shell rotation is then a stationary solution in the absence of external 
forces. 
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We emphasize that, in the framework of a zonally symmetric circulation and without 
horizontal eddy diffusion, equatorial motions cannot be maintained (e.g., Hide, 1969; 
Held and Hou, 1980). This is true for any linear or nonlinear two-dimensional system. 
With the inclusion of horizontal eddy diffusion such a constraint does not exist (Williams 
and Robinson, 1973) and the equator can then superrotate or subrotate. The equatorial 
circulation being an important element of our model, this implies that the invoked hori- 
zontal eddy diffusion must in part arise from three dimensional motions. We refer there- 
fore to a quasi-axisymmetric circulation. 

Ignoring the products of perturbed variables and expanding them in terms of vector 
spherical harmonics (11 through 13) the linearized equations of energy, mass and momen- 
tum conservation are presented in Paper I (14 through 18). For the outer planets where 
aA < wp, it is justified to assume wr - w2 - op. 

In our model, the circulation is driven by solar differential heating, and we consider 
only the lowest order symmetric component q2 where most of the energy is deposited 
(e.g., Volland and Mayr, 1972a). This assumption (112 and 113) is not required for the 
calculations, but serves to simplify the discussion. 

No separable eigenfunctions exist to describe the latitude dependence in a quasi- 
zonally symmetric circulation where global scale momentum advection (Coriolis force) 
and eddy diffusion are important (Chapman and Lindzen, 1970; Volland and Mayr, 
1972b). In our model, spherical harmonics merely serve as basis functions. The variables 
on the left hand sides of Equations 14 through 18 and the associated spherical harmonics 
PQ, BQ, CQ-, are viewed as ‘modes’ with wave number Q. The terms on the right hand sides 
of 17 and 18 can then be viewed to represent mode coupling which arises from the 
Coriolis force and involves the field quantities of adjacent modes (Figure 1). 

The lowest order mode (Q = 2) describes the rigid shell component of superrotation. In 
this mode, the atmospheric angular velocity is associated with the solenoidal vector 
spherical harmonic Cr and is independent of latitude. Only this component has a non- 
vanishing net global angular momentum at a fixed altitude level, and it was shown in 
Paper I how the atmosphere can receive this angular momentum from the planet (or 
planetary interior) during spin up. The higher order modes (Q > 4) describe differential 
rotation and their contributions to the net global angular momentum are identically zero. 

3. Empirical Spectrum 

Figure 2 shows an empirical representation of the Voyager data (Smith et aE., 1979b) in 
terms of vector spherical harmonics. The amplitudes in the lower part of Figure 2 
represent the coefficients of solenoidal harmonics CQ-, (Morse and Feschbach, 1953) 
with the sign convention that the positive and negative values contribute to superrotation 
(positive zonal velocities) and subrotation (negative velocities) at the equator respectively. 
In the upper part of Figure 2, empirical representations of the Voyager I data (from both 
hemispheres) are presented for syntheses up to order Q d 12 and 34. Included are only 
the harmonics which are symmetrical with respect to the equator (even wave numbers 

Q>. 
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Fig. 1. Block diagram illustrating the mode/Coriolis coupling in the spectral model. The heat source 
in the fundamental mode, qz, is directly forcing the rigid shell component (or global average) of super- 
rotation. Coriolis coupling through the irrotational (meridional) velocity field (which is curl free) is 
driving differential rotation by cascading momentum from lower to higher order modes (left hand 
side of the chain link). The feed back through the solenoidal (zonal) velocity field (which is divergence 

free) is capable of trapping energy and angular momentum in the lower order modes. 

The fundamental harmonic (Q = 2) or the rigid shell component of superrotation 
dominates. Higher order modes, Q > 4, are at least a factor of two smaller and apparently 
in a separate class of their own. After the abrupt decrease between Q = 2 and Q = 4, the 
amplitudes decrease gradually and monotonically toward higher wave numbers and, up to 
Q = 18, contribute to equatorial superrotation. Then the sign changes, and the spectrum 
up to Q = 28 contributes to equatorial subrotation. The spectra for the Voyager I and II 
observations are nearly identical. 

Anticipating the theoretical results later on discussed, we offer the following interpret- 
ation. The dominant rigid shell component of superrotation (Q = 2) is primarily driven by 
solar differential heating where most of the energy is deposited in the lowest order mode. 

In contrast, the solar input into the higher order modes is relatively small. This part of the 
spectrum (representing differential rotation), however, can be excited by mode coupling 
where momentum and energy effectively cascade from lower to higher order modes. 
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Fig. 2. Empirical model of the zonal wind velocities observed from the Voyager spacecraft (Smith 
ef al., 1979b) in terms of the solenoidal (divergence free) vector spherical harmonics which 
are used as basis functions in the theoretical model. Data from both hemispheres are taken, but only 
the components symmetrical with respect to the equator are presented in the lower part of the figure. 
Syntheses up to wave numbers Q = 12 (left) and 34 (right) are shown in the upper part. The rigid shell 
component (Q = 2) directly driven by solar differential heating (ql) dominates. The higher order com- 
ponents (Q > 2) describing differential rotation are smaller by at least a factor of two and are appar- 
ently in a separate class of their own. Note the alternating pattern in the power spectrum and that the 

Voyager I and II spectra are nearly identical. 
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In Paper I, the heat flux due to eddy diffusion was formulated in terms of the kinetic 
temperature (Equation 14). More appropriately, the heat flux has the general form (e.g. 
Chan et al., 1982) 

aT (y - 1) T ap 
Ji = -pi ax---- 

( 1 
(2) 

i Y p aXi ’ 

where y is the ratio between the specific heats at constant pressure and volume (for a 
diatomic gas, (7 - 1)/-y = 2/7). The expression in the paranthesis of Equation (2) repre- 
sents the gradient of the potential temperature. Applying linear perturbation theory and 
assuming hydrostatic equilibrium, the pressure term in Equation (2) vanishes in the 
vertical direction A[(T/p)(ap/&)] = 0 (see Equation 16). In the horizontal direction, the 
heat flux is affected by the pressue gradient, but its contribution is generally small com- 
pared to that from the temperature gradient. For completeness, this term is now included 
in our numerical analysis. 

With homogeneous boundary conditions and a heat source of the form (112) and 
(113), the (modified) energy, continuity and momentum equations (14-18) are solved for 
a limited number of 20 symmetric (even) modes from II = 2 to 40. Since mode coupling is 
considered in self-consistent form, this requires a large system of 100 ordinary first and 
second order differential equations to be integrated in altitude. The system is in blocked 
tridiagonal form, for which there exist reliable solution procedures. With a vertical step 
size of 5 km, the altitude range is limited between the 25 and the 5 x 10m5 bar pressure 
levels. We note that this depth may not be totally adequate to describe the Jovian circu- 
lation. Corresponding to the largest wave number !? = 40, the shortest horizontal wave 
length is 9”, which cannot provide sufficient resolution to describe the observed details in 
the Jovian circulation. These limitations in the dimensions of the model are dictated by 
the computer. 

As input, a global average atmosphere is adopted which rotates at a rate of 1.8 x 10m4 
in a gravitational field with g = 2400 cm s-‘, representative of the conditions on Jupiter. 
The temperature distribution shown in Figure 3 is based on the infrared measurements 
from the Voyager spacecrafts (Hanel et aZ., 1979a, b). Above the 2 mb level we assume 
the temperature to be constant. 

For the energy source driving the circulation, q&), we chose a height distribution 
shown in Figure 3 which we adopt from the work of Wallace et al. (1974). The heat input 
increases with height and produces the temperature inversion above the tropopause. 
Radiative cooling is considered in the form of a Newtonian coefficient a = pea, (1 - exp 
(- 3 x 105/po)4) (ergs deg-’ s-l gm-l), where QI, = 6.5 x 1O-6 is provided by B. J. Conrath 
(private communication). The exponential term is adopted to simulate the trapping of 
radiation in the lower troposphere. 

In the troposphere of Jupiter where energy must be convected out of the hot planet- 
ary interior, the temperature lapse rate should be weakly superadiabatic. The character- 
istic latitudinal structure of the circulation depends on the stability So f @To/l@) + I’, 
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Fig. 3. Input data for the average temperature, T,, pressure, p,,, and the heat source, qt. Above the 
1 mb pressure level the temperature is assumed to be constant. In the troposphere, a negative stability 
S, = - 1.7 X 10m6 K cm-’ is adopted which is small (10%) compared to the adiabatic lapse rate, 
p = 1.7 X lo+. With a relative mixing factor &Co/K, = 5 x lo4 (consistent with mixing length theory), 
the vertical eddy diffusion coefficient is K, = 1.2 X lo5 at the lower boundary (25 bar pressure) and is 
assumed to increase with height at a rate inversely proportional to the square root of the density. The 

Prandtl number is assumed to be one. 

where P = 1.7 x 10e5 (K cm-‘) is the adiabatic lapse rate. Based on observations, it was 
estimated (Paper I) that the stability of the upper troposphere should be on the order of 
- 10e6. For our numerical model, whose latitudinal resolution is limited, we chose a value 
of Se = - 1.7 x 10e6 which is 10% of the adiabatic lapse rate. The stability is forced to 
approach zero near the lower boundary. It will be shown later on that the computed 
circulation depends rather sensitively on Se. 

Since radiative cooling is much less important than eddy heat conduction in the opti- 
cally thick troposphere, the magnitudes of the temperature variations and zonal velocities 
(not the vertical and meridional components) vary proportional to the solar heat input 
and inversely proportional to the eddy diffusion 0: Aq/K. As can be seen from 14 through 
18, the necessary condition is that the circulation is quasi-geostrophic, which requires that 
the viscous terms in 17 are negligible. This is generally true for the adopted transport 
coefficients. 
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Using the heat source shown in Figure 3, the eddy diffusion coefficients are chosen to 
reproduce t.he observed magnitudes in the zonal velocities. Thus, the vertical coefficient 
is taken to be i;, = 1.2 x 105(cm2 s-‘) at the lower boundary and is assumed to increase 
with height at a rate inversely proportional to the square root of the density (Chapman 
and Lindzen, 1970). The Prandtl number is assumed to be one. 

With a temperature To = 170 K and given the adopted stability and vertical eddy dif- 
fusion coefficient K,. = 3 x lo5 at the one bar pressure level, the average upward flux of 
energy 

F = -c,p,K,S, = -;p+K,.&, 
0 

is about 1 O-4 ergs cmw2 s-l, which is in reasonable agreement with the observations (Orton 
and Ingersoll, 1976). Noting that the vertical velocities W (not shown) are on the order 
of 3 x !Om2 cm s-l, the above eddy diffusion coefficient is also of the right order of magni- 
tude to be consistent with mixing length theory (K, - WH- 1.5 x 10' cm2 s-l where H, 
the density scale height, is about 50 km). 

Later on, it will be shown that it is important to adopt a ratio between the horizontal 
and vertical eddy diffusion coefficients (relative mixing factor) of orderR = 5 x 104. If 
this ratio were much larger, the meridional circulation could not maintain a large degree 
of differential rotation; if it were much smaller, the equator would tend to corotate. With 
this ratio the horizontal and vertical viscous stresses are of comparable magnitudes. More- 
over, this ratio is consistent with mixing length theory which requires R - 0 (Vh~/W'A,) 
- 0 (hi/hf), where he and h, are the characteristic horizontal (in latitude) and vertical 
dimensions of the mean meridional circulation respectively. 

In Figure 4 the results are shown for the temperature amplitude and the meridional 
and zonal velocities at 75, 200, and 400 km. The altitude scale is defined relative to the 
lower boundary; the tropopause being near 250 km (see Figure 3). Also shown are the 
power spectra for the zonal velocity. In the troposphere (75 and 200 km, with Se < 0), 
the results reveal a number of features which have some resemblance to Jupiter. The 
equatorial jet and the banded wind field are reproduced. More specficially, the computed 
power spectra show characteristics similar to those inferred from observations (Figure 2). 
The fundamental component or the rigid shell component of superrotation (Q = 2), 
directly driven by solar differential heating, dominates. Distinct from that, the higher 
order modes induced by mode (Coriolis) coupling are in a separate class and reveal an 
alternating pattern in Q space, in substantial agreement with the data (Figure 2). The meri- 
dional velocity field indicates a number of cells. The computed temperature distribution 
reveals plateaus similar to those observed by Hanel et al. (1979b), but the magnitudes of 
the perturbations are larger (by about a factor of three) than those observed. Considering 
the heuristic nature of our model - with the simplifying assumptions about radiative cool- 
ing, eddy diffusion and Prandtl number, with the limitations on depth, and the uncer- 
tainties on the solar driving - this discrepancy is probably not significant. 

At higher altitudes (400 km), in the stratosphere which is convectively stable, the 
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results are entirely different. Bands no longer form in the velocity field and there is no 
equatorial jet. Instead, a broad maximum develops in the zonal velocity at mid-latitudes, 
and the meridional component is almost uniformly directed toward the pole. Con- 
comittantly, the power spectrum is also different. The fundamental rigid shell component 
is still positive (superrotation) since it is directly driven by solar radiation; but the higher 
order modes are negative, small and rapidly decay toward higher wave numbers. More- 
over, the temperature amplitude reveals a broad plateau at equatorial latitudes. Quali- 
tatively, these features are similar to those observed in the stratosphere of Venus (e.g., 
Schubert et al., 1980) and agree with the conclusions of Paper I. 

The meridional velocity field has the form of a multicellular Ferrel-Thompson circu- 
lation similar to that shown in Paper I (Figure S), except that the present model, with its 
higher resolution, shows eleven cells in the troposphere. Considering the number of 
observed narrow bands in the cloud cover of Jupiter, this result is probably more realistic. 

Computer experiments show that, at tropospheric altitudes, relatively small changes in 
So, on the order of a few percent, can have profound effects on the velocity and temper- 
ature fields. This dependence on the stability requires us to look more closely at the 
characteristics of the linear system. Thus, to facilitate our investigation over a wide range 
of parameters, a single-layer model is formulated which permits us also to include a very 
large number of horizontal modes with virtually unlimited latitudinal resolution. While 
ptoviding the necessary insight, this model produces results similar to those discussed in 
Figure 4. 

5. One-Layer Model 

For completeness, we start with a set of equations which is almost identical to that in the 
discussion section of Paper I. 

1 a aAT, 

PO ar 
‘AT,, K,Po ar- = h2 

1 a auQ-l 
---l)rPo --g- = 

p. ar 
$ UQ-I > 

i a ab --- 
PO ar%PO T = 5 v,> 

dmg 
AlOgPQ = ~ATQ, 

0 

(4) 

(5) 

(6) 

(7) 

where h and d, defined later, are scale-lengths of the order of the density scale-height. 
Substitution of (4)-(8) into (14)-(18) yields 
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(9) 
t 

g+ Q(Q + 1) 

CP 
TK@+$ 

1 

++4i@qS,VQ = ;, 

~F(lTij~~$$2(uQ-I -u,+,)+ 
[( 

$p(p+r~)-2~8+~ V, = 0, 

1 I 

with 

qn- l)-2 
r2 

K8 + $ 
1 

U,-, - i2(V,-, - Vi) = 0, 

CK 
KZJ-, 

P rl = K, 

(10) 

(11) 

(12) 

where, omitting subscripts, K is the eddy diffusion coefficient, and 52 is approximately 
the rotation rate of the atmosphere (52 - tip for Jupiter). 

Equations (9) and (11) describe the conservation of energy and angular momen- 
tum respectively. Except for the diffusion term in square brackets, Equation (10) repre- 
sents the thermal wind relationship describing the coupling between energy and angular 
momentum. 

5.1. ANALYSIS 

In matrix farm, the above set of equations can be written as 

where where 
ApAa = Qlz + C-Ap-, + C+AQ+2, ApAa = Qlz + C-Ap-, + C+AQ+*, 

A, = [;), Aa- =[:I. AP+Z =[:*I; A, = [;), Aa- =[:I. &+2 =[T*]; 

(13) 

(14) 



and 
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aQ = 
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(15) 

eQ = 

Equation (13) states in concise form that a particular harmonic mode AQ = (ATQ, UQ-, , 
VQ) can be excited directly through the heat source QQ or indirectly through Coriolis 
coupling (C’, C-) involving the adjacent modes (see also Figure 1). The solution of this 
set of equations can be interpreted as a boundary value problern in Q space. At the outer 
boundary the zonal velocity UQ +r is assumed to be negligible; at the inner boundary, 
v, =o. 

In general, the feed back from the higher order modes AQ+2 = (ATQ+, , uQ+l, vQ+z) due 
to Coriolis coupling is important and requires the simultaneous solution of Equation (13) 
for a sufficiently large number of modes. It is verified through computer experiments that 
convergence in the power spectrum can always be assured. At higher wave numbers the 
potential for transferring energy and momentum through global scale advection (Coriolis 
force) is eventually exhausted, and horizontal eddy diffusion (small scale advection) 
becomes progressively more important in damping the amplitudes. 

If we ignore the higher order mode A Q+z in Equation (13), the asymptotic behavior of 
AQ for large Q can be estimated as 

where 

0 0 bQ ba 
AQ 

1 
= MQ+&+~ 

0 0 caQdQ + b!$Q)/aQn I A,-,, 

0 0 1 

d?$Q MQs----= 
aQQ2 

S&Q + l)gd2 p 
ToC12r2 @ 

and 

QCQ-11-2 
r2 

i-l2 

(16) 

(17) 

(18) 

In Equation (17) a ‘radiative Prandtl number’ 
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P, = 
g+ w+ OK +K’ 

CP r2 e h2 

(19) 

is introduced which has the properties P, -+ O(P) -P (for small @) and P, + 0 (for large 
a). The denominator MQ + D, + 1 of Eqution (16) comes from the determinant of AQ. 
The magnitudes of the dimensionless parameters MI, and DQ tend to increase proportional 
to !Z2 and R4 respectively. 

We define a ‘characteristic wave number’ L such that 

IM,l+D, = 1. (20) 

Unlike the integer K which is an independent variable, L is a continuous function of the 
atmospheric parameters and therefore not necessarily an integer number. In the regime of 
large wave numbers, P > L, the magnitude of the denominator in (16) increases above 
one, causing the amplitudes of the power spectrum to decay very rapidly. The assumption 
AQ+~ < AQ for Equation (16) is then justified. 

DL is positive definite and has the form of an Ekman number squared. Under most cir- 
cumstances, D, < 1. Considering that the parameter is proportional to the square bracket 
in (lo), this is equivalent to the assumption of geostrophy which is closely satisfied for 
the numerical results discussed in Section 4. We shall focus on this regime in the sub- 
sequent study. Some characteristics of the ageostrophic flow will be briefly discussed 
later on. 

5.2 .GEOSTROPHIC FLOW 

In the geostrophic regime, 

M _ Sogd2Pa 
sl- Tor2s12 (211 

is the crucial parameter determining the nature and the horizontal structure of the circu- 
lation. The characteristic wave number defined in (20) is approximately given by 

L -dLmj - 1M~1-1'~ = '$ J-- 
TO ~ . 

Isolgp, ' 
(22) 

and, analogous to Equation (130) one can then estimate the characteristic latitudinal 
scale of the circulation, A0 = 36O”/L. In the vase of Venus, the parameter MQ > 1. Thus, 
the feedback from the higher order modes A Q+2 [last term on the right hand side of 
Equation (13)] is always negligible, and an approximate solution can be obtained through 
recursion (123 through 126). 

If we assume that P, = 1 and with a reasonable negative stability (So < 0) for the 
troposphere of Jupiter, it follows that Ma < 0 with lMsl 1 Q 1. Thus the denominator in 
Equation (16) is nearly constant for II <L, and the power spectra of the solution 
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amplitudes AQ do not converge rapidly. A closed or recursive solution does not exist, and 
Coriolis coupling must be considered in self-consistent form. For Q -L, the denominator 
[MQ + (DQ) + l] in (16) becomes very small and a ‘near resonance’ condition can 
develop. Large amplitudes are then excited in modes of order L which are not directly 
driven by the heat source q2. Since all the modes are coupled (see Figure 1 and Equation 
(13)) this resonance affects the entire power spectrum, least of all the fundamental mode 
A2 which is to a large extent forced by q2; thus, the resonance will primarily affect differ- 
ential rotation. In our model, this is the basic mechanism for driving the banded wind 
field of Jupiter. 

In the following, we shall present numerical solutions of the Equations (9) through 
(11) (or Equation (13)) to illustrate some important properties of a rotating atmosphere. 
We neglect radiative cooling and assume Pa -P = 1. The adopted input parameters are 
To = 170 K, h = 50km, d = 100 km and q2 = 15 ergsgm-’ s-l. The other parameters, 
planetary rotation rate, radius and gravitational acceleration, have the standard values for 
Jupiter. For the vertical and horizontal eddy diffusion coefficients the values lo5 and 
5 x lo9 are chosen, well within the geostrophic regime (DL < 1). To assure convergence, 
a large number of modes are considered. The cut-off is chosen at a wave number of about 
5L [with L defined in Equation (20)] which may be as large as 200. 

On a globe with finite dimension, the above discussed resonance has a discrete nature. 
In the framework of our spectral model, for a given stability, Mg does not vary continu- 
ously but in steps with the discrete values of Q. Conversely, there are discrete values of 
stability for which the resonance condition is more or less satisfied. To illustrate this 
point, a parametric study is presented. For 2000 values of stability in the range from 
Se = - lo-’ to - 10m7, solutions of Equation (13) are obtained. For each solution, the 
zonal velocity component Ca (Q = 4) is presented in Figure 5 as a function of the charac- 
teristic wave number L = L(&). The relationship between L and S,, from Equation (20) is 
shown in a separate panel. In the range of L from 20 to 30, for example, 6 different 
resonances appear. This is somewhat larger than the 5 resonances associated with all the 
even wave numbers in the interval which would develop if the denominator in (16) were 
the only controlling factor. Since Equation (16) is an analytical estimate which also 
depends on the solution vector AQ+, one can readily see whyML + (DL) + 1 = 0 is not 
the precise condition for a resonance. 

In the vicinity of a resonance, the velocity components are large. Relatively small 
changes in the stability can then be very effective in changing the differential rotation. 
Moreover, Figure 5 shows that two resonance branches are excited: one with a positive 
velocity and the other one with a negative velocity. This can be readily understood con- 
sidering that, for negative So, the smallest value MQ + (DQ) + 1 (Q = 2,4, . . .) in Equation 
(16) can be either positive or negative. 

For comparison we also show in a separate panel the results obtained with positive 
stabilities ranging from Se = 10e7 to 10V5. Here the velocity amplitude, as a function of 
the characteristic wave number L, varies monotonically and no resonance develops. 

Adopting a stability of - 10m6, a complete solution is shown in Figure 6 for the 
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ZONAL VELOCITY 

L-VALUE 
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Fig. 5. Solutions of the simplified equation (13) are obtained to study the sensitivity over a wide 
range of negative and positive stabilities ranging in magnitude from - lo-’ to - lo-’ K cm-‘. Panel,4 
shows the relationship between IS,1 and the characteristic wave number L which is defined in (20). 
Unlike the integer wave number II, L is a continuous function of IS,1 and therefor nor an integer num- 
ber. In panel B we show the first component in the power spectrum of differential rotation, C, (which 
is not directly driven by the solar heat input q2), plotted against L. For negative stability (S, < 0), 
discrete resonances develop. In contrast, the functional dependence between C, and S, is continuous 

in panel C where the stability is assumed to be positive (S, > 0). 
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temperature, and the meridional and zonal velocities. The adopted stability reproduces 
the number of zonal jets which are observed on Jupiter below 60” latitude. Consistent 
with the infrared measurements on Voyager (Hanel et al., 1979a, b), the temperature 
reveals variations on the order of 10 K. For a given zonal velocity, the temperature con- 
trast decreases with increasing depth of the atmosphere which is chosen to be 1000 km. 
Consistent with the banded structure of the zonal velocity, the meridional velocity field 
(its upper branch) is multicellular. The results closely resemble those from the numerical 
integration at lower altitudes in Figure 4. 

Also shown in Figure 6 are the power spectra. The cut-off wave number is 150. We see 
that the amplitudes begin to decrease rapidly above II = 62 and can no longer be dis- 
cerned at a wave number of 80. The power spectrum clearly converges. Tests confirm that 
an extension of the cut-off value does not affect the solution. These results illustrate the 
problem one faces in describing the Jovian circulation. For realistically small values of 
stability, one must consider a very large number of modes or a correspondingly small 
grid size. With limited computer resources, such considerations have essentially dictated 
our selection of the model parameters (i.e., stability and wave number domain) for the 
numerical integration earlier presented (Figure 4); and still we cannot be confident that, 
to some extent, the solution is not affected by truncation. 

True resonances of course cannot develop. Regulatory non-linear feed back processes 
would ultimately prevent that. Moreover, for each singularity there are two resonance 
branches approaching + 03, which represent non-trival solutions of the homogeneous 
equations [Equation (13) with Qp = 0] with the determinant of the entire system set to 
zero. These two branches have opposite signs, lie infinitely close together in the param- 
eter space and tend to cancel each other. Therefore, only a ‘near resonance’ can be 
excited, and, for realistic considerations, its width is of critical importance. 

As emphasized before, the resonance affects primarily differential rotation. The degree 
of differential rotation relative to rigid shell rotation is determined by the relative mixing 
factor R (the ratio between the horizontal and vertical eddy diffusion coefficients). 
Adhering to the format of Figure 5, we show in Figure 7 three families of the velocity 
component C3 (Q = 4) each belonging to a particular resonance near L - 30 (indicated 
with arrows). Specifically, with varying stabilities [or L from Equation (20)] for each 
family, 500 solutions of Equation (13) are obtained, and, out of velocity spectra of the 
kind shown in Figure 6, the second harmonic (a = 4) is presented covering the positive 
and negative branch of the resonance. For a fixed vertical eddy diffusion coefficient 
K, = 105, three values of horizontal eddy diffusion coefficients are chosen, Ke = 109, 
lOlo, and loll, corresponding to R = 104, lo’, and lo6 respectively. The results show that 
the areas spanned by the width of the resonances shrink as the mixing factor and the 
horizontal eddy diffusion coefficient increase. In the range R < 103, the velocity spec- 
trum is virtually invariant. 

The physical significance of this result is illustrated in Figure 8. Here, a computer 
experiment is presented where we vary from left to right the mixing factor or horizontal 
eddy diffusion coefficient KB which is again 109, lOlo, and 1O’r (with K, = 10’). Three 
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Fig. 7. With the format from Figure 5, we show three different families of the C, velocity compo- 
nent in the vicinity of resonances (indicated by arrows) near L = 30. The families are computed for 
relative mixing factors of R = 104, lo’, and 106. Note that with increasing R the resonance becomes 
narrower. For R < 103, where vertical diffusion completely dominates over horizontal diffusion, the 

velocity field no longer depends on R, 

series of velocity fields are computed (from Equation (13)) by slowly varying the stability 
from Se = - 1.07 x 10m6 (top) to - 9.9 x 10m7 (bottom). The chosen values roughly trace 
the resonance families shown in Figure 7 (note that according to Equation (20) 
L a (IS01)-“2). For the small mixing factor R = lo4 on the left, differential rotation vir- 
tually dominates. As the stability slowly changes, the velocity field changes significantly. 
But the total number of positive jets (10) in the entire latitude range is invariant. Between 
so = - 9.9 x lo-’ and - 1 .O 1 x 1 Oe6 (not shown), a resonance occurs and the velocities are 
much larger. The former stability is in the positive branch, the latter is in the negative 
branch, and the two velocity fields are completely different. At high latitudes, the zonal 
jets are out of phase and of comparable magnitude, while at lower latitudes the dif- 
ferences are not that extreme. 

For the large mixing factor on the right, R = 106, rigid shell super-rotation clearly 
dominates. There is, however, some differential rotation, and the number of positive jets, 
although they are weak, is again 10. Between Se = - 1.01 x lob6 and - 1.03 x 10e6 a 
resonance occurs, but it is so narrow (Figure 7) that the effect on differential rotation is 
barely visible. 

For the intermediate mixing factor, R = lo’, rigid shell superrotation and differential 
rotation are of comparable importance. 



LA
TI

TU
D

E 

id
 

-*O
E+

03
1’

 0 
10

 
20

 
30

 
40

 
50

 
80

 
70

 
80

 
90

 

LA
TI

TU
D

E 

LA
TI

TU
D

E 

LA
TI

TU
D

E 

LA
TI

TU
D

E 

N 
-E

.O
E+

M
 

0 
-2

oe
+0

3 
N 

g 
O

.O
E+

O
O

 I: 
0 

10
 

20
 

30
 

40
 

50
 

80
 

70
 

80
 

90
 

0 
10

 
20

 
30

 
40

 
50

 
80

 
70

 
80

 
90

 
0 

10
 

20
 

30
 

40
 

50
 

80
 

70
 

80
 

90
 

LA
TI

TU
D

E 
LA

TI
TU

D
E 

LA
TI

TU
D

E 

Fi
g.

 8
. 

Fo
r 

th
e 

va
lu

es
 R

 =
 l

o“
, 

lo
’, 

an
d 

10
6,

 a
nd

 f
or

 s
ta

bi
lit

ie
s 

ra
ng

in
g 

fro
m

 S
, 

= 
- 

9.
9 

X 
lo

-’ 
to

 -
 

1.
07

 X
 

10
w

6,
 th

e 
zo

na
l v

el
oc

ity
 

fie
ld

s 
ar

e 
sh

ow
n 

as
 

fu
nc

tio
ns

 o
f 

la
tit

ud
e.

 
N

ot
e 

th
at

 w
ith

 
th

e 
la

rg
e 

R
 v

al
ue

 o
n 

th
e 

rig
ht

, 
w

he
re

 t
he

 r
es

on
an

ce
 is

 v
er

y 
na

rro
w

, 
di

ffe
re

nt
ia

l 
ro

ta
tio

n 
is

 n
ot

 i
m

po
rta

nt
. 

W
ith

 t
he

 
sm

al
le

r R
 v

al
ue

 o
n 

th
e 

le
ft,

 d
iff

er
en

tia
l 

ro
ta

tio
n 

pr
ev

ai
ls

, 
bu

t 
th

e 
eq

ua
to

ria
l 

re
gi

on
 t

en
ds

 to
 c

or
ot

at
e.

 A
n 

in
te

rm
ed

ia
te

 
va

lu
e 

sa
tis

fie
s 

th
e 

co
nd

iti
on

s 
ob

se
rv

ed
 

on
 J

up
ite

r; 
it 

is
 a

ls
o 

of
 th

e 
rig

ht
 o

rd
er

 o
f 

m
ag

ni
tu

de
 t

o 
sa

tis
fy

 m
ix

in
g 

le
ng

th
 t

he
or

y.
 



QUASI-AXISYMMETRICCIRCULATION 265 

STABILITY = -l.MJE-06 
HOR-ED-DIF = 5.COOE+09 

1 OE+04 

5 

ti 

ii! 
0 OE+OO 

> 

2 

-1 OE+04 

-2.OEtO4 / , I , 1 1 , f I 
0 10 20 30 40 50 60 70 80 90 

LATITUDE 

STABILITY = 1555E-06 

I 1 I I I I I I 

1 OE+04 

z G 
0 
ii! 0 OE+CO 

> 

< 

g 1 OE+04 

-2 OE+04 t 1 i / , I I , I 
0 10 20 30 40 50 60 70 80 90 

LATITUDE 

STABILITY = -2.750E-06 

I / 1 I I / I 

1 OE+04 

c 

ti 
d 0 OE+CO 

> 

d 

-1 .OE+04 

-2 OE+04 
0 10 20 30 40 50 60 70 80 90 

LATITUDE 

Fig. 9. For three values of stability, S, = -- 1 X 1Om6, - 1.55 X lo-“, and - 2.75 X 10m6, each lying 
in a different ‘resonance’, the zonal velocity field is shown. The corresponding numbers of zonal jets 

are n = 10, 8, and 6 respectively which is consistent with the dependence (22), it = l/JlS,l. 
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We see from this analysis that, for certain values of negative stability (or certain values 
of M, < 0) one can always reproduce a large degree of differential rotation with positive 
and negative zonal jets. For large relative mixing factors, R > IO’, however, this requires 
that the atmosphere is finely tuned to match a near resonance condition and this is not a 
likely scenario. For small mixing factors R < 104, when the width of the resonance is 
broad, differential rotation can be readily excited, virtually independent of the stability 
(Ma). However, as discussed earlier and seen from Figure 8, in the limit of small hori- 
zontal eddy diffusion, the equatorial region tends to corotate. This is not borne out by 
the observations of Jupiter and Saturn which show large equatorial jets. 

Between these unrealistic extremes, rigid shell superrotation with small traces of zonal 
jets on one hand, and equatorial corotation with a large degree of differential rotation on 
the other hand, one can bracket the relative mixing factor: lo4 <R < 105. With this con- 
straint, and considering mixing length theory which suggests R = O(r2/L2h2), we estimate 
that 

R- g 
2 

0 (23) 

would give reasonable results. 
Under realistic conditions, the stability and scale height, for example, are changing 

continuously with altitude. Thus, the atmosphere will encounter one or more broad reso- 
nances with their positive and negative branches. The weight of each will depend on the 
heat source which also varies as a function of altitude. From such considerations it then 
seems clear that, with convective instability (Se < 0), various circulation patterns can be 
excited, including some that are dominated by the positive branch near a resonance. 
This is borne out by the earlier discussed numerical results for which we performed an 
integration in altitude. 

We see from Figure 8 that the number of positive zonal jets does not depend on the 
relative mixing factor. The determining factor is the parameter M, or the characteristic 
wave number L. This is demonstrated in Figure 9 where we examine the dependence on 
So by going from one to another near resonance condition. Three values are chosen: 
Se = - 1 x 10e6, - 1.55 x 10e6, and - 2.75 x 10-6, which produce equatorial jets of com- 
parable magnitudes. Corresponding to these stabilities the numbers of positive jets over a 

-Fig. 10. Retaining the vertical eddy diffusion coefficient K,(105) and the other parameters, the 
horizontal eddy diffusion coefficient Ke is varied from 5 x 10” through 0 to - 5 X 10”. In the left 
hand series the stability is positive, S, = + 10m6, in the right hand series it is negative, S, = - 10F6. For 
Ke = 0 in the middle, the zonal velocities are (near) zer.o at the equator. The small remnant velocity 
for positive stability is presumably due to truncation. For unrealistically large horizontal diffusion 
(top and bottom), this process dominates over vertical diffusion, and one obtains only a small rigid 
shell component of superrotation (with Ke > 0) or subrotation (with Kg < 0). The solutions which 
have some resemblence to observed planetary circulations are emphasized through shading, on the left 
Venus, on the right Jupiter. Note that the rotation rate of the planet is $2 = 1.8 X 10e4. With the appro- 
priate parameters for Venus the velocity would increase by about a factor of two and the equatorial 

minimum would be shallower, in closer agreement with the observations. 
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90’ latitude range are n = 10, 8, and 6 respectively. Considering that ~10: L, and L is 
related to the stability through ML(&) = - 1, one obtains from Equation (20) the 
dependence n a lS01-1’2, in close agreement with the results of Figure 9. For a fixed 
stability of Se = - 10w6, one can also demonstrate the influence of planetary rotation. 
The periods T = 10, 12.5, and 16.5 hr produce velocity fields (not shown) very similar to 
those in Figure 9. This is consistent with Equation (20) yielding IZ a l/r. Provided Se < 0, 
the number of positive jets (over 90” latitude) is apparently n-L/4 a IM~I-1’2 a 
r/(7~lS,-,l). The large rotation rate and radius of Jupiter as well as its small negative stab- 
ility, all contribute to break up the zonal circulation into bands. 

Finally, a study is presented in Figure 10 where we cover a wide range of parameters 
which may be of interest in the context of comparative planetary atmospheres. For the 
left hand series the stability is positive, So = + 10 -6; for the right hand series the stability 
is negative Se = - lOme’. The vertical eddy diffusion coefficient is fixed at K, = 105. From 
the top panel down, the horizontal eddy diffusion coefficient decreases; the coefficient 
has a very large positive value in the top diagram and a very large negative value in the 
bottom diagram. For the panels in the middle the horizontal eddy diffusion coefficient is 
zero and the zonal velocity vanishes at the equator. 

With very large horizontal diffusion (top and bottom), this process dominates over 
vertical diffusion in the momentum balance, and differential rotation cannot be main- 
tained (except for a very narrow resonance, see Figure 7). Moreover, this process then dif- 
fuses the horizontal temperature contrast with the consequence that the rigid shell 
components of superrotation (for K. > 0) or subrotation (for Ke < 0) are also small. 

Under reasonable values of positive horizontal eddy diffusion, the results show zonal 
velocity fields, emphasized through shading, with characteristics similar to those observed 
on the planets. The right hand side resembles the banded wind field of Jupiter. The left 
hand side shows some similarity to the superrotation of Venus even though a rotation 
period of 10 hr and a very small stability are adopted. With parameters commensurate to 
Venus, the velocity increases by about a factor of two and the equatorial minimum is 
much shallower, in closer agreement with the observations. 

In principle it is possible that the eddy transport processes are not diffusive and this 
might be simulated with equivalent negative diffusion coefficients. Our results suggest 
that a negative horizontal viscosity (diffusivity) is neither necessary nor appropriate to 
describe the circulations of Jupiter and Venus. However, for positive stability and small 
negative diffusion the equatorial region subrotates, and this scenario may be relevent for 
the Earth’s lower atmosphere. 

5.3. AGEOSTROPHIC FLOW 

In their study of the Jovian circulation, Williams and Robinson (1973) had considered 
large eddy diffusion coefficients K, =. 10’ and Ke = 1013 cm2 s-r. With these values, the 
magnitude of D, (18) becomes comparable to that of ML (17) and the atmosphere is 
no longer quasi-geostrophic. An ageostrophic resonance can then develop for 
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where 
ML+DLm--1, 

D, = O(1). 

(24) 

We follow the parametric study discussed in Figure 9, and adopt a stability 
Se = - 2.75 x 10w6. Retaining the relative mixing factor (K&,) = 5 x 104, we vary the 
eddy diffusion coefficients. Solutions of Equation (13) for the meridional and zonal velo- 
cities are presented in Figure 11. The top panel A shows the zonal velocity field which is 
identical to that in Figure 9. In panel B, K,. and KB are increased by a factor of 100 and, 
correspondingly, the zonal velocities decrease by the same amount. The meridional velo- 
cities and the structure of the zonal velocity field (number of positive jets), however, 
remain unchanged. For both panels A and B the resonance conditions are the same, since 
the eddy diffusion coefficients (due to heat conductivity and viscosity) exactly cancel in 
ML. The parameter D, is small and the meridional velocities are small compared to the 
zonal velocities (geostrophic). Proceedings to C and D, the horizontal eddy diffusion coef- 
ficient reaches K. = 10r3, and the solutions change drastically. In C the zonal velocities are 
now comparable to the meridional component. The magnitude ofDL is comparable to that 

of ML, and the geostrophic condition no longer holds. From C to D a relatively small 
increase of the diffusion coefficients is considered, yet the wind velocities increase by 
almost two orders of magnitude, indicating an ageostrophic resonance (24). To demon- 
strate that in this regime the latitudinal structure is primarily controlled by horizontal dif- 
fusion, another (near) resonance is described in E. Compared to D, we lower K, by a 
factor of six while retaining nearly the same value for Ko . Overall, the zonal velocity field 
retains its structure, but the magnitudes decrease by about a factor of three. 

We note the differences between the geostrophic (A) and the ageostrophic (D) flow 
fields. From A to D, the magnitudes of the zonal velocity decrease by a factor of 100, 
while the magnitudes of the meridional velocity increase by about a factor of 10. For A 
the velocity fields extend all the way from the equator into the polar region, while for D 
they are confined to latitudes below 30”. Under the ageostrophic condition, our results 
are similar to those obtained by Williams and Robinson (1973). In this regime, the 
required outward flux of energy from the interior of Jupiter (a K,.S,) is much too large 
as pointed out by Williams (1978). Moreover, there is no evidence to suggest that the 
magnitudes of the prevailing meridional wind field are comparable to those of the zonal 
component. 

6. Conclusions 

In the previous sections, we have taken two complementary approaches to study the 
dynamics of differential rotation (with application to Jupiter). In both we consider a 
linear spectral analysis (spherical harmonics) and parameterize the non-linear advections 
through anisotrophic eddy diffusion. One is a numerical model for which we obtain 
solutions by integrating over some altitude range of the atmosphere. The dimensions of 
this model are limited by the size (and speed) of the available computer. The number of 
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modes considered may be insufficient to provide the latitudinal resolution, and the alti- 
tude range is probably not large enough to cover the depth of the Jovian circulation. Our 
second approach represents a semianalytical, one-layer model in which the vertical struc- 
ture of the atmosphere is parameterized. In this model, however, the latitudinal structure 
can be fully resolved by considering a large number of modes. Here, the computational 
effort is minimal and permits parametric studies that provide insight into different 
regimes. Although these models have different limitations, they produce similar results 
under similar conditions. 

We consider solar differential heating at low latitudes as the principal source for driv- 
ing the circulation. In the geostrophic regime, the dimensionless parameter Ma, defined 
in (21) essentially determines the latitudinal structure of the meridional flow. A single 
Hadley cell develops for Ma > 0, when the atmosphere is convectively stable (Se > 0). 
In an atmosphere which is convectively unstable (Jupiter and Saturn, presumably), the 
transport processes, on one hand due to linear global scale advections of energy 
(a IVSe) and planetary angular momentum (Coriolis force), and on the other hand due 
to eddy diffusion from smaller scale non-linear advections, can nearly balance each other. 
Depending on Se, this condition develops preferentially at or near a particular latitudinal 
wave number which in turn characterizes the motions. Thus, a multi-cellular meridional 
circulation developes. Our estimate of the negative stability, on the order Se - - 10m6 
Kcm-’ and too small to be observed directly, is primarily determined by the observed 
latitudinal structure of the Jovian circulation. In the geostrophic regime, this estimate 
and the magnitude of the meridional flow do not depend on the eddy diffusion. Through 
mixing length theory, the eddy diffusion coefficients, however, are determined by the 
meridional winds. 

The efficiency of the meridional circulation in driving the zonal wind field and tem- 
perature variations depends primarily on the eddy diffusion coefficients. For the given 
solar driving, and with a fixed relative mixing factor R, the computed zonal velocities 
vary as a (Aq/K). On that basis we determine K, - 3 x 10’ cm2 s-l (near the one bar 
pressure level). Considering our estimated negative stability, this is also the right order 
of magnitude to match the observed upward flux of energy from the planetary interior, 
F 0: K,Se (Equation (3)). Moreover, based on our computed vertical velocities of about 
3 x 10-2cms-’ (not shown), mixing length theory yields a similar magnitude of about 

K, - WH- 1.5 x 105. 
In describing the zonal circulation and temperature variations, the relative mixing 

-Fig. 11. An analysis is presented illustrating the characteristics of the ageostrophic flow (DL - 1). A 
stability S, = - 2.75 X 10m6 is adopted along with the other parameters from Figure 9. For the panels 
A through D, the relative mixing factor is fixed at Kc/K,. = 5 X 104, while the magnitudes of the dif- 
fusion coefficients are increased as indicated in the figure. For A and B, the meridional velocities are 
the same, but the zonal velocities differ by the difference in the eddy diffusion coefficients. In C the 
flow becomes ageostrophic and the circulation changes drastically. In panels D and E ageostrophic 
velocity fields are shown for near resonance conditions, Here the zonal and meridional components 

are of comparable magnitudes. 
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HOT INTERIOR 

Fig. 12. The important elements of the model are summarized in schematic form. On average, the 
troposphere is weakly convectively unstable; a small superadiabatic temperature lapse rate maintains 
the upward transport of heat from the planetary interior. Above the tropopause the solar heat input 
dominates and energy is conducted downwards. The atmosphere is preferentially heated by solar 
radiation at low latitudes; motions are rising near the equator and falling at higher latitudes. Under 
conditions of convective instability, the upward motions are capable of funneling energy into the 
equatorial region which is conducive to the formation of an equatorial jet. At the same time, energy 
transport by eddy diffusion and global scale advection tend to balance each other, and the meridional 
circulation is broken up into a large number of smaller cells. Concomitantly, a banded wind field 
develops in the zonal component. With the adopted eddy diffusion coefficients which are consistent 

with mixing length theory, the flow is nearly geostrophic. 

factor R = &/K,) is of critical importance. If this value is too small, the equatorial 
region tends to corotate; if it is too large, differential rotation - and under more extreme 
conditions even regid shell superrotation - cannot be maintained, except near a narrow 
resonance (associated with a narrow range of stabilities), which is an unlikely scenario. 
The intermediate value of R - 5 x lo4 is consistent with the observations on Jupiter and 
just of the right order of magnitude to obey mixing length theory. 

Summarizing these results it appears that our working hypothesis about eddy diffusion 
is internally consistent. 

For our understanding of the Jovian circulation it is of critical importance that the 
troposphere is weakly convectively unstable (Figure 12) and that the eddy diffusion coef- 
ficients are sufficiently small to permit geostrophic flow. That the flow is geostrophic is a 
conclusion, not an a priori assumption. Under this condition, the meridional circulation 
is multi-cellular and of the Ferrel-Thomson type, which is consistent with the observed 
striation in the clouds. Under solar driving, the magnitudes of the computed vertical and 
meridional velocities, although small, can maintain zonal jets of about 104cm s-l, 
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provided the adopted eddy diffusion coefficients are also relatively small which in turn 
is consistent with mixing length theory. 

In the stable stratosphere at higher altitudes the rigid shell component of superrotation 
dominates. The zonal velocity field ‘degenerates’, and a single, broad positive jet develops 
at mid latitudes. This wind field has some similarity with the observed superrotation in 
the cloud cover of Venus. 

Considering the heuristic nature of our models, with the linearizations, and the 
simplifying assumptions about eddy diffusion, Prandtl number, radiative cooling and solar 
driving, we cannot attribute much significance to some of the details in the results. There 
is no evidence that large jets are observed in the polar region such as shown in Figure 4. 
In a realistic atmosphere of sufficient depth, where the stability (or Ma) changes over a 
wide range, several convective eigenmodes (near resonances), with their positive and 
negative branches (e.g. Figures 5 and 8), can be excited. Their superposition, due to ver- 
tical transport processes, tends to cancel perferentially the zonal jets at higher latitudes, 
while amplifying the jets near the equator. On this basis one should expect a rich variety 
of phenomena in the observed atmospheric circulation patterns, and we suggest that, to 
some extent, the large differences between Jupiter and Saturn are such manifestations. 

The computed latitudinal temperature variations show plateaus similar to those 
observed on Jupiter (Hanel et al., 1979a, b). However, our amplitudes in the numerical 
model are too large by about a factor of three. This may indicate that the prevailing cir- 
culation goes deeper than our numerical approach allows us to go; it may also be due to 
our simplifying assumptions about the Prandtl number and the height dependences in 
eddy diffusion and radiative cooling. These problems, however, should not alter signifi- 
cantly our principle conclusions. 
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