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Abstract. The aim of the present paper is to investigate the influence both of intitial stress and 
magnetic field on the propagation of Rayleigh waves in thermo-microelastic half-space subjected to 
certain boundary conditions. The wave velocity equation has been obtained. If the initial stress and 
the electromagnetic field are ignored, the frequency equation as obtained by Locket (1958). 

Introduction 

The problem of propagation of the electromagnet0 thermo-microelastic waves in 
electrically and thermally conducting solids are very important for the possibility 
of its extensive practical applications in various branches of science and tech- 
nology, particularly in optics, acoustics, geophysics and plasma physics. 

Many works on the subject are reviewed by Paria (1967). Recently, the works 
Tomita and Shindo (1979) investigated the influence of magnetic field upon the 
phase velocity of Rayleigh waves, Nowacki (1986) discussed the equations of 
thermo-electric-magneto-elasticity, Nowacki et al. (1969) investigated the 
generation of waves in an infinite micropolar elastic solid body. 

In the present paper the wave propagation over the surface of a semi-infinite 
homogeneous., isotropic electro-magneto-thermo-microelastic solid with initial 
stress was considered. The object of this paper is to show the effect of the 
magnetic field and initial stress upon the phase velocity of Rayleigh waves. The 
frequency equation has been derived. The roots of this equation are in general 
complex and the imaginary part of an appropriate root measures the attenuation 
of the waves. It is noticed that the frequency of Rayleigh waves contains the term 
which involving the initial stress and electric conductivity. When the electro- 
magnetic field is ignored, the frequency equation, for Rayleigh waves of a 
thermo-microelastic under initial stress case has formula, which is similar to that 
obtained by Elnaggar and Abd-Alla (1987). 
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1. Formulation of the Problem 

We consider a semi-infinite micro-elastic medium, occupying the half-space 
x2 2 0 under initial stress P, embedded in a constant primary magnetic field H3, 
acts in the positive direction of x3-axis, and also disturbed from its initial state, 
subjected to certain boundary conditions. 

The dynamic equations of motion in the absence of body forces can be written 
(cf. Nowacki, 1986) as 

2 

= ygrad T+p$, 

(r-•c)VZo-4aw-l$+(~+F-e)V(V~u)+2acurlu=O, (1) 

equations of electro-dynamic have the form (cf. Nowacki, op. cit.) as 

ah 
curlE=-pdt( curl h = J, div h = 0, 

J=A,[E+h(ExH)]-vrgrad0, 

and the heat conduction equation is 

(2) 

(3) 

where 

YTO 
7)=y, k=$, y=(3h+2p)at; 

e 

h, E denote vectors of perturbed intensities of magnetic and electric fields, and J 
stands for the vector of current density, H is the vector of the original constant 
magnetic field, u is the displacement vector, w is the rotation vector, Q is the 
intensity of heat source, b is the magnetic permeability, ho is the electric 
conductivity, vl is the coefficient linking the electric field with the temperature 
gradient, lIo is the coefficient relating velocity vectors with that of heat flow, 
T = 8 - To is the temperature increment measured from the natural state, K is 
the heat conductivity, c, is the specific heat and (Y, p, F, E, cc, A are the natural 
constants. 

The components of stress under initial stress are given (cf. Bait, 1965) by 



RAYLEIGH WAVES UNDER INITIAL STRESS 177 

sll=(*+2p+P)~+(A+P)~-~~, 
1 2 

s22=h~+(h+2p)$-yT, 

s,2=p(;+~,-a(&-~). 

The components of couple stress are given (cf. Nowacki, 1969) as 

p,z=F(~+~)+c(~-~); 

where 

w,=gp). 

2. Solution of the Problem 

(4) 

(5) 

Let us consider two-dimensional problem under the assumption that all the causes 
and the effects depend on the variables x ,, x2 and t, and that primary magnetic 
field is parallel to x3-axis - i.e., H = (0, 0, I&). Equations (1) can be separated into 
two independent sets of equations. 

The first set takes the form 

The second set becomes 

(7) 
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c14W2+(/3+h-E)&2cr~=o, 

q zU3+2$p$=O; 1 

where 

q 2=(P+m-&, 
(9) 

v’=$+-$, e2!!2+, au 
2 ax, ax2' 

In the second set of equations the magnitude u 3, wl, w2 are unperturbed by the 
fields of temperature and the electromagnetic field. Thus the first set of equations 
perturbed by both these fields should be taken into account. As hi and h2 are 
respectively, equal to zero initially, by eliminating the vector E and J from 
Equation (2) we have 

(10) 

Using Helmholtz theorem (cf. Morse and Feshbach, 1953) and introducing the 
potential C#J and \Ir by the equation 

U = ( ul, u2, 0) = grad 4 + curl(0, 0, JI) , 

then from Equations (7) and (11) we get the following equations: 

(11) 

In the absence of a heat source, Equations (10) and (3) can be written as 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 



RAYLEIGH WAVES UNDER INITIAL STRESS 179 

[VT-j$] T= +:+. (18) 

We shall consider compressional and distortional waves along the xl-axis only. 
These waves are represented by Equations (12), (15), and (16). From Equations 
(12), (17), (18) we obtain the wave equation: 

[ 
D,DzD+(nnrD,+ yyWh3, T)=O, (19) 

where the operators 

a2 
D”=vf-(h+2;+p)$; ,=-I 

PC?’ 

RI-Z = POH~IPC: . 

For a plane harmonic wave propagation in the xl-direction we write 

4(x1, x2, 0 = 44x2) exp zw [- (g], 

T(xl, x2, t) = T(Q) exp zw [. (y)], (20) 

h(xl,x2,t)=h3(x2)exp[iw(2-t)]. 

Substituting from Equations (20) into Equation (19) we obtain 

d64(xJ -- 

dx; 
s 

1 

iw3 (ETYI - s2)) 44x2) = 0, c*K, 
where 

y 
1 

= iw (KI - VH) 

K,VH ’ 

2w2 2 

“‘=2-(*+Yp+P) 

-z(l+R,)+, 

1 

s2=(~-3(1-(h+ZP:+p)-~-~); 

ET = pTO y*/ w* &(A + 2~ + P) and c is the phase velocity of Rayleigh waves in 
the thermo-magneto-microelastic medium under initial stress. 
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The solution of Equation (21) satisfying the condition that the corresponding 
stress vanish as x2 + CO is given by 

Cp = A, e-ft”z + A2 e-@z + A3 e-h, (22) 

where 

S;=$(;, R,(c$)aO and j=l,2,3; 

and &, t2, and & are the roots of the equation 

+E(l+RH)+$(l+eT) s”+ . . ] 
1 

-(~+ET+RH) 1 52+K v (Ap~~p+p)=O~ 
1 h 

(23) 

Introducing in (23) the dimensionless quantities 

X = 3, e,L, = pvHw*/(h + 2/.L + P), c = V and l$W = p 

w* = (A + 2E.L + P)/pK. 

Equation (23) takes the form 
2 i( 1+ RH) pv2 

(h+;;+P)+eHx(h+21*+P)+ 
i( 1 + ET) 

x 

2 4 i I i-(i+ET+RH) p3v2 1 
+,x x: +x2 (A +P,;+ P)2 l2 + EH(h+2,.‘+p)3? 

= 0. (24) 

Similarly we consider the last two equations of (15) and (16), and eliminating 
w3 from them. For harmonic wave propagation in the xi-direction, one can write 

$= +(x2)exp[iw(:-1)]. (25) 

Substituting (25) into Equations (15) and (16) after eliminating w3 we obtain the 
solution of the form 

$(x2) = B4 e+‘2 + B5 e-@2 , (26) 

where: 

f-:=$-S,“, R,(cfj)sO, j=4,5; 
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and 6: and 6: are the roots of the equation 

4a vf=-.- 4a2 
h+E’ qT=(h+a)(F+E)7 (27) 

F+E c; = - 
I . 

Then we can obtain the solution in the form 
3 

C#I = 1 Ai e-a’% exp IW 
j=l 

[. (;-t)], 

4 = ‘2 Bi e-p”‘? 
j=4 

zexp[ iw(:- t)] , 

T=e[,$, Aj[(P2m4j-S1mf+s2)e 
1 I 

pBmrj+] exp[ iw(:- t)j] , (28) 

h3 = 2 [$, Aj[P’mT-(sl+ yl)mf+ ~2 

+y1 l- 
( 

PV2 
li+2/.L+p I 

e-Bmi”z exp[ iw(:- t)]] , 

where rn; = 1 - Lf, j = 1,2,3 and Lf, j = 4,5, are the roots of Equations (24) 
and (27), respectively. 

In terms of the potential C$ and $ the stress components and couple stress are 
given by 

1 
/A,~=$- F) $+* 

, I axfax: . 

(29) 

3. Frequency Equation 

In this section frequency equation for the boundary conditions on the plane 
x2 = 0 are 

s11= s,2= j&2=0 
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aT 
-=h2=0 ! 
ax1 i 

i at x2 = 0, (30) 

1 at x2 = 0. (31) 

The last two boundary conditions indicate that the medium is thermally insulated 
and maintains the primary magnetic field H3 at all times. 

If we eliminate the constants Ai, (i = 1,2,3) and Bj(j = 4,5) by substituting 
Equations (28) in (29) and using the boundary conditions (30) and (31), the 
frequency equation is given in the form of the Sth-order determinant as 

nl n2 n3 n4 n5 

n6 n7 n8 n9 nl0 

0 0 0 nil n12 = 0, (32) 
43 n14 45 0 0 
n16 1117 h3 0 0 

where 

2pw2 
nl=(h+P) p’mf-$ -T- 

( ) 
~(p2m:-slm:+s2). 

2pw2 p2ct2 
n2=(A+P) p2m$-$ ---- 

( 1 C2 Yl @ 

%l;-sgn:+s2), 

n3=(A+P)(~2m$-?J-~-~(@2fn?j-S~rn3+S2), 

2ipw 
n4=- m4, 

C 

Pm2 n7=-iw- Pm3 

c ’ 
n8=-iw- 

c ’ 

n9= 
[ 

p’w2 
(p-a)P2m~+(p+~)-~ 7 1 

nlo= 
[ 

p2w2 
(p--a)P2fd+(p+~)~ , 1 

nil = [ iwp2m$ ’ 3 -+I, n12f!q4-$], 
C 

n13=[P2m;Z-slm:+s2], n14=[/32m:-slmf+s21r 

n15 = [ P2mt: - st m: + s21 , 

2 
p2mf-(sl+yl)m:+s2+yl lyu , ( )I c: 
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[ 

2 

w7= ~2mf:-(sl+yl)m:+S2+y~ 1-c ) ( )I d 
2 

ki= p3mt:-(s,+yl)m:+S2+y, 1-r . [ ( )I d 
The transcendental equation (32), in the determinantal form, represents the 

required wave velocity equation of magneto thermo-microelastic medium under 
initial stress P. It is clear from this frequency equation (32) that the phase 
velocity c depends on initial stress. Also, the frequency equation changes with 
respect to initial stress. But in a thermo-microelastic case, with no electromag- 
netic effects, where A0 = 0, i.e. l H + m, one of the roots of Equation (24), say 1: 
becomes zero and the other two roots satisfy the equation 

[4- “‘+ 

i 

i(1+ ET) V2 
cf x 

2 P+$=o, 
I ClX 

which is the frequency equation for Rayleigh waves under initial stress, similar to 
that which has been obtained by Elnaggar and Abd-Alla (1987). In addition, in 
absence of initial stress, the frequency equation of magneto-thermo-microelastic 
half-space has an expression similar to that which has been obtained by Tomita 
and Shimdo (1979). Letting Q+ 0 in Equation (27), we get m: = 1, rn$ = 
1 - (v2/cz2), cz2 = p/p and the frequency equation (32) admits of the form 

where 

All A12 A13 A14 A,5 

A21 A22 A23 A24 A25 

0 0 0 A34 A35 =O, (33) 
A41 A42 A43 0’ 0 

A51 A52 A53 0 0 

2pw2 p2CT22 
-F-- 

Yl @ 

2m’:-slmf+s2), 

2mZ-slmZ+s2), 

&4=?%!!! 
C J 

l-4, A,5=2, 
c2 C 

A21 = - 
iwpm, 

, A22=- 

iwPmz iwp 

C C 
, A23=-T, 
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A25= 
p2w* 

(P--LY)P*+(P+~~ 7 1 
A34=[~(l-$)-!?], A35=[$?-$], 
A,,=[P*m;-s,m:+s2], A42=[P2m;-s~m$+s21, 

A43 = [P* - SI + ~21, 

A53=[8’-h+yd+s2++$)], 

coinciding with the frequency equation for the thermoelastic Rayleigh waves (cf. 
Locket, 1958). In addition, the setting rn: = 1 - (v*/c:*), m2+w for l T + 0, then 
the frequency equation coincides with the frequency equation for the surface 
wave in the micropolar medium given by Nowacki and Nowacki (1969) as 

Dll 012 013 D,z, D.s 
D2r 022 023 024 025 

0 0 0 D34 D35 =O, 
D41 042 043 0 0 
D51 052 053 0 0 

where 

D~,=“(pi(l-~)-~]-~-~(8’(1-~)*- 

-41 -$)+s*]. 

D =~Ag+42 P2CT2f12 
12 c2 7--j72? 

014 = 
2ipwm4 2ipw 
-, D,5=- 

C 
c Pm5, 

(34) 

iwp 
, D22=0, 023=-C, 
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p2w2 
(/.rcr)p2m:+(p+~)- 1 c2 ’ 

&5= 
p2w2 

(CL-cx)B2m:+(P+~)~ 3 1 

043 = [ /3’ - ~1 + ~21, 

,,,=[,(,_~)2-,~,+,,,(~-~)+~,+,,il-~)]~ 

&2=[~2+y1(1-$17 

~2-(s1+y1)+~2+y1 1 
V2 ( -&I . 

Since the computations base on the frequency-equation are too cumbersome and 
tedious to carry out, let us consider the case when the reduced frequency x is 
very small; so that its first and higher terms can be neglected in comparison with 
unity. It can be noted that the frequency equation (34) is dispersive. 
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