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Abstract. A mathematical theory and a corresponding algorithm have been developed to derive 
topographic maps from radar images as photometric arrays. Thus, as radargrammetry is to 
photogrammetry, so radarclinometry is to photoclinometry. Photoclinometry is endowed with a 
fundamental indeterminacy principle even for terrain homogeneous in normal albedo. This arises from 
the fact that the geometric locus of orientations of the local surface normal that is consistent with a given 
reflected specific-intensity of radiation is more complicated than a fixed line in space. For a radar image, 
the locus is a cone whose half-angle is the incidence angle and whose axis contains the radar. The 
indeterminacy is removed throughout a region if one possesses a control profile as a boundary-condition. 
In the absence of such ground-truth, a point-boundary-condition will suffice only in conjunction with a 
heuristic assumption, such as that the strike-line runs perpendicularly to the line-of-sight. In the present 
study I have implemented a more reasonable assumption which I call ‘the hypothesis of local cylindricity’. 

Firstly, a general theory is derived, based solely on the implicit mathematical determinacy. This theory 
would be directly indicative of procedure if images were completely devoid of systematic error and noise. 
The theory produces topography by an area integration of radar brightness, starting from a control 
profile, without need of additional idealistic assumptions. But we have also theorized separately a method 
of forming this control profile, which method does require an additional assumption about the terrain. 
That assumption is that the curvature properties of the terrain are locally those of a cylinder of inferable 
orientation, within a second-order mathematical neighborhood of every point of the terrain. While local 
strike-and-dip completely determine the radar brightness itself, the terrain curvature determines the 
brightness-gradient in the radar image. Therefore, the control profile is formed as a line integration of 
brightness and its local gradient starting from a single point of the terrain where the local orientation of 
the strike-line is estimated by eye. 

Secondly, and independently, the calibration curve for pixel brightness versus incidence-angle is 
produced. I assume that an applicable curve can be found from the literature or elsewhere so that our 
problem is condensed to that of properly scaling the brightness-axis of the calibration curve. A first 
estimate is found by equating the average image brightness to the point on the brightness axis 
corresponding to the complement of the effective radar depression-angle, an angle assumed given. A 
statistical analysis is then used to correct, on the one hand, for the fact that the average brightness is not 
the brightness that corresponds to the average incidence angle, as a result of the non-linearity of the 
calibration curve; and on the other hand, we correct for the fact that the average incidence angle is not 
the same for a rough surface as it is for a flat surface (and therefore not the complement of the depression 
angle). 

Lastly, the practical modifications that were interactively evolved to produce an operational algorithm 
for treating real data are developed. They are by no means considered optimized at present. Such a 
possibility is thus far precluded by excessive computer-time. Most noteworthy in this respect is the 
abandonment of area integration away from a control profile. Instead, the topography is produced as a 
set of independent line integrations down each of the parallel range lines of the image, using the theory 
for control-profile formation. An adaptive technique, which now appears excessive, was also employed 
so that SEASAT images of sand dunes could be processed. In this, the radiometric calibration was iterated 
to force the endpoints of each profile to zero elevation. A secondary algorithm then employed line- 
averages of appropriate quantities to adjust the mean tilt and the mean height of each range profile. 
Following this step, a sequence of fairly ordinary filtering techniques was applied to the topography. An 
application is shown for a Motorola image of Crazy Jug Point in the Grand Canyon. Unfortunately, a 
radiometric calibration curve is unavailable. But a fictitious calibration curve has provided an encouraging 
qualitative test of these efforts. 
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1. Introduction 

The use of the photometric function of a surface for the purpose of translating image 
variegtion into slope and relief information dates back at least to the work of van 
Diggelen (19.51), who applied it to lunar maria when near the terminator; a condition 
for which a uniquely simple limiting form of photometric function was inferred 
through the Helmholtz reciprocity principle (Minnaert, 1941). Based on the 
constancy of surface brightness near the bright limb of the Moon, this inference has 
since fallen into disrepute (Wildey, 1978). 

The development of a method of producing a topographic map from a 
photometric image begins with Rindfleisch (1966), and independently with Watson 
(1968), who devised a theory which was implemented by Lambiotte and Taylor 
(1967). This process is as elaborate compared to the former one as photogrammetry 
iS compared to basic trigonometric parallax. Accordingly, the term 
“photoclinometry’ was invented by Jack McCauley in 1965, from the greek roots 
“photos’ and ‘klinos’, in reference to this process; an event of which I have first-hand 
recollection. 

For a given illumination and normal albedo of a terrain point under consideration, 
the photometric function enables the prediction of a measurable surface brightness 
as seen from any direction through the specification of three angles: g, the phase- 
angle, E, the emergence angle, and i, the incidence angle. While the first angle can 
be independently known, the latter two depend on the orientation of the local surface 
normal (equivalent to knowledge of local strike-and-dip). Thus a knowledge of the 
local orientation of the terrain is essential to the prediction of surface brightness. In 
the inverse problem, where one has a measured surface brightness instead of known 
values of E and i, one degree of freedom remains in the form of an implied functional 
relation between E and i, rather than unique values thereof. The measured surface 
brightness imposes a constraint on the local normal vector, without uniquely 
determining it. It’s range of possibilities generates a surface. This is the fundamental 
indeterminacy of photoclinometry. In the case of Watson’s theory, uniquely 
applicable to the lunar surface, the indeterminacy could be ignored by confining the 
process to a one-dimensional rather than two-dimensional topographic mapping. 
The lunar photometric function, when particularly evaluated to correspond to the 
brightness of a single terrain-point , generates a locus of surface normals that is a 
plane perpendicular to the phase-plane. The measured surface brightness serves to 
specify the angular placement of the intersection of these two planes as a direction, 
as seen from the surface, algebraically between the direction to the illuminator and 
the direction to the observer. Watson showed that the intersection of the phase plane 
with the true surface, as a topographic profile, was uniquely determined by the 
variation in surface brightness along the corresponding line in the image. 
Unfortunately, no grounds exist for adjusting the relative range to two such profiles, 
which cannot intersect, taken from parallel data traverses in the same two- 
dimensional image. 
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In order to produce a two-dimensional topographic map pureiy by 
photoclinometry, the mathematical constraint imposed by an additional assumption 
is essential. There is no such thing as a completely reasonable assumption. But some 
assumptions are more absurd than others. One method of extending Watson’s 
approach to two dimensions would be to adjust each parallel profile for a minimum 
of the integral of the square of height above an adopted lunar ellipsoid. While 
obviously not obeyed by the lunar surface, this assumption is also clearly superior 
to the assumption that the initial point on each profile is located precisely on the lunar 
ellipsoid. 

The photometric functions characterizing most of the various martian terrain types 
are distinctly non-lunar in character. Any transformation of coordinates which might 
promote a single coordinate along which photoclinometric indeterminacy would 
disappear appears to involve the differential geometry of the topography itself as a 
Gaussian surface. Thus the first generalized two-dimensional photoclinometry was 
developed by Wildey (1974, 1975) in which the auxiliary assumption took the form 
of the Eulerian equations from the calculus-of-variations for the minimization of the 
total surface area. The analysis was mathematically interesting, the result plausible: 
and the algorithm eminently impractical. 

An altogether different type of limitation on photoclinometry arises from the fact 
that planetary surfaces that are homogeneous in normal albedo are rare. Great strides 
toward the alleviation of this difficulty have recently been made by Eliason et al. 
(1981), who use multi-color image sets of the same terrain in an operations-research 
approach, to separate topography from albedo variation. Though representative of 
the greatest utility achieved to date to extract information in images due to 
topography, the auxiliary assumption used to render the photoclinometric portion 
of the study tractable was that the normal vector was confined to a plane containing 
the terrain point, the planetary center, and the Sun. The mathematical independence 
of parallel down-sun lines of integration of the topography produces a two- 
dimensional result with slopes in all directions, rather than merely toward the Sun. 
A Lambertian photometric function was also assumed. Thus the metric integrity of 
true photogrammetry was not approached. The separation of insolation and albedo 
variations is the important contribution of that work. 

The primary goal of the present study has been the adaptation of photoclinometry 
to radar imagery, whether it be the type in which the reflected pulse generates all of 
a down-range raster in the final image (SLAR), or the type in which the reflected 
pulse, as complex electric amplitude, is but part of a contribution to a large 
synthesized optical aperture used to form the final image (SAR). The radar image 
as a candidate for photoclinometry offers both advantages and disadvantages, 
compared to ordinary optical images. Those considerations related to the simplicity 
of technique are, of course, less important than those considerations effecting the 
integrity of the result. The most obvious advantage is the simplicity of the 
photometric function. The radar becomes both the Sun and the camera, so that g = 0 
and i = E. Any tabulated function of the single resulting angle i can be readily 



220 R. L. WlLDEY 

Fig. 1. Geometry of formation of the range-dependent coordinate, x, in a radar image. 

accomodated. This, combined with the fact that radar imagery is essentially 
panoramic in nature, causes the surface brightness to have a dependence on the 
azimuthal component of slope that is zero to first order, as will be shown. Thus the 
consequences of ignoring this slope component in a down-range integration of 
topography are less severe. At the same time, however, the relative height adjustment 
of two such profiles adjacent to one another is made more uncertain by what is 
essentially poor photometric leverage. An additional advantage of radar stems from 
the subjective impressions that terrain homogeneous in radar albedo (normal back- 
scattering cross-section density) is more common than at visual wavelengths. For an 
objective evaluation of this, see Schaber et al. (1976) and Birrer et al. (1982). 

Radar imagery presents one distinct complication over traditional optical imagery 
with respect to the physical nature of image coordinates. Photoclinometry is usually 
given serious consideration only when photogrammetry is impossible. That is, if the 
ratio of surface relief to camera range is so small that the relative parallax of features 
in all possible stereo-pairs is exceeded by image resolution, then photoclinometry 
offers the only possible source of topographic information. In the ensuing 
photoclinometric processing for the extraction of topography, no consideration need 
be given to a correction for mapping of a feature from image coordinates to 
coordinates on the mean-datum (mean-datum plane) because of the feature’s height. 
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Such mapping simplicity can never exist in radar imagery because one image 
coordinate is essentially range itself. The problem is pictured in Figure 1. If the 
down-range coordinate is X, and the line AB represents an adopted mean-datum 
(apologies to photogrammetrists for the broadened use of this term), then the 
problem under consideration is represented by the lack of coincidence of the points 
E and G. Curve CD represents the topography. EF represents the crest of an 
electromagnetic wave just now reflecting from the summit of the promontory in the 
topography. The reflection will arrive back at the radar too soon and the peak will 
be ‘mapped’ to the point E in the radar image rather than the point G, which 
represents a true vertical projection onto the mean datum. (A worse case is 
represented by SEASAT radar in which the horizontal shift is over three-and-a-half 
times the height and one often sees a loss of one-to-one correspondence in mapping 
steep mountains.) The corner reflector at 0, whose height is zero, will appear at 0. 
The horizontal separation between the reflector and the peak appears as OE rather 
than OG. The situation is not comparable to a vertically downward eyeball view of 
the terrain with the Sun at the same elevation angle as the radar. The solar shadow 
would lie to the right of G, but the radar shadow will lie to the right of E. They will 
have different lengths. 

Probably the greatest disadvantage of radar in comparison to visual imagery lies 
in the area of the quality and uniformity of photometric (radiometric) calibration and 
the signal-to-noise ratio of a given digital element of surface brightness. At the very 
outset, relative photometric accuracy is limited by the repeatability of total 
transmitted pulse energy, an aspect of radar imagery incomparable to ordinary 
imagery. Image photometry (radiometry) has not been a traditional consideration in 
the design of radar imaging systems, nor in their corresponding signal-processing 
algorithms, especially when of an analog nature. In this connection SLAR possesses 
great advantage over SAR. On the one hand the power allocation to a final pixel is 
more generous in SLAR. But most especially, because SAR must preserve the 
electromagnetic wave’s phase it suffers from ‘speckle’, a direct enhancement of the 
random error of pixel photometry, which can only be alleviated, from an engineering 
point of view, through the use of an unacceptably large number of ‘looks’. 

Throughout the sections which follow, it will be assumed that terrain 
homogeneous in ‘radar albedo’ is being processed. 

2. Theory 

A. RADIATIVE TRANSFER 

Consider the following argument, which assumes perfect geometrical optics. Let a 
telescope form an image in the usual way of a terrain viewed obliquely. Let the 
telescope be sufficiently distant that the rays coming from the object are nearly an 
orthographic projection. Let the image plane in the telescope occur at the receiving 
surface of an array of equi-area1 radiation sensors. Then the total radiative power 
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received by each sensor is the integral of the focal-plane flux over the intercepting 
area of each sensor. Next consider the mapping of all the rays from the boundary 
of an arbitrarily chosen sensor, through the telescope, to their intersection with the 
terrain. In the immediate vicinity of the ground, the locus of these rays is a 
mathematical closed-cylinder; and its intersection with a plane perpendicular to the 
rays forms a closed curve bounding an area of integration for contribution to the 
totai radiative power received by the sensor. The quantity to be integrated will be the 
specific intensity, or surface-brightness, (watts/meter2/steradian) emerging from the 
terrain into the direction of the telescope, multiplied by the solid-angle subtended at 
a point in the area of integration by the area of the telescope aperture. Given the 
constancy of the aforementioned solid angle, energy conservation dictates that the 
image-plane flux is directly proportional to, and a mapping of, the specific intensity 
distribution over a plane perpendicular to the line-of-sight near the ground. Given 
also that the sensors have equal receiving areas and are dynamically identical and 
linear, the DN values in the resulting digital image will be directly proportional to 
the specific-intensity in the proper direction at the corresponding point of the viewed 
surface. 

If the foregoing picture is replaced by one in which a microwave CW transmitter 
and receiver pair, of very narrow and symmetric main lobe in the antenna-pattern, 
operates by serially positioning itself at points in a two-dimensional raster of equally 
spaced angular directions, whose spacing is at least as large as the entenna pattern, 
then a digital image results about which the same conclusion can be made. Here it 
depends cm the constancy of transmitter powe r, the accurate ability of the receiver 
TV measure pow-er, and, of course, the constancy of effective antenna area. 

The situation is rather more complicated when we examine radar images. The 
apparently simplest to consider initially is the SLAR, or brute-force radar, which at 
least presents some similarity to the CW picture with regards to one of the dimensions 
(azimuth). Let us consider first, in fact, a truly idealized version of the ‘brute-force’ 
technique, in which the azimuthal resolution is not only directly the width of the 
antenna pattern, but the range resolution is directly the length of the transmitted 
radar pulse, and the matched dwell-time of the receiver detecting the returned 
waveform. In this view, the power, or more precisely the energy, that is allocated to 
the DN number of a given image pixel all comes from a range-interval, approximately 
also the range resolution, that is a constant of the image frame. The width in azimuth 
of this resolution-cell is also a constant of the frame. The difficulty in identifying the 
DN value of a pixel in a radar frame as proportional to the specific intensity of 
reflected radar radiation back-scattered from the corresponding point on the ground 
is thus seen to be a result of the fact that an image resolution cell does not map into 
a constant area in the plane near the ground that is perpendicular to the line-of-sight, 
Thus the emergent specific intensity, though always multiplied by a constant solid 
angle, is multiplied by a variable area, in forming the energy that is transduced into 
the DN value of a pixel. In fact the geometry of the situation reveals that the 
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boundaries of the integrating area for the specific intensity that correspond to the 
range-resolution-interval, Ar, are separated by the distance Ar cot i, where i is the 
local incidence angle of the terrain. These boundary lines are perpendicular to the 
plane containing the local normal to the terrain and the line of sight from the radar 
to the terrain point. If the constant azimuthal interval, Ay, corresponding to 
azimuthal resolution, is bounded by two loci of constant azimuth, they will cut the 
two rangqrelated lines so as to form a small parallelogram as the area for specific- 
intensity integration. The azimuth-related lines will have separation, Ay. But this 
makes the area of the parallelogram ArAy cot i set cp, where cp is the position angle 
of the local normal with respect to the local vertical as seen from the radar. While 
ArAy is a constant, cot i set cp is not. In certain limits, this effective integration-area 
for the specific intensity achieves infinite dimensions. Of course the finite limits of 
antenna pattern will cut off any such effects, and the differential treatment of the 
local terrain will fail even sooner. Insofar as set cp is never far from 1, it can be 
neglected. In that case, a backscatter-intensity versus incidence angle curve obtained 
from CW active microwave measurements proposed to provide a photometric 
function for radar photoclinometry need only be multiplied by cot i in order to 
provide an effective curve that may be applied as though the DN values in the radar 
image were proportional to ‘specific intensity’. Of course linear transduction must 
still hold. The foregoing picture may also be oversimplified when applied to aperture- 
synthesis in terms of an effective Ar and Ay. As parallel efforts by others in the 
development of calibrated imaging radars achieve fruition, we will be justified in 
removing this largely heuristic limitation. Such is planned for future continuing 
investigations. 

B. DIFFERENTIAL GEOMETRY 

Photoclinometry is quite generally described by an inhomogeneous non-linear first- 
order partial differential equation in the topography, considered in the form of 
height-above-mean-datum, Z, as a function of Cartesian coordinates x and y on the 
mean datum. Consider any photometric function, @(g, i, E). Let the topography be 
given by z = z(x, y). In three dimensions, the topography can be viewed in terms of 
an equipotential surface 

V(x, y, z) = z - z(x, y) = 0, (1) 

where z appears in the dual context of independent variable and name of a function. 
The gradient of this potential function will point perpendicularly to the equipotential 
surface, i.e., the topography: i.e., 

VI/= -azi^-zy+k, 
ax ay 

(2) 
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The unit normal vector which will always have a positive z component is then given 
by 

(3) 

Let unit vectors C and j: point toward the observer and the illuminator, respectively. 
They may or may not be nearly constant vectors in an image, but they are in any event 
known functions of no more than x and y. The same may be said of the phase angle, 
g. Now we will have 

cos E = P. A, (4) 

cos i = d-ii. (5) 

If we now let the given specific intensity of the image, transformed if necessary, be 
b(x, y); doing photoclinometry consists in solving the equation 

@.(g, i, 4 = CW, v> (6) 

for the function z(x, y), where C is a calibration constant dependent on the 
illuminating flux and the normal albedo. Because g, i, and t depend on x, y, &z/ax, 
&/ay, (&z/ax)2, and (&S3y)2 through Equations (3), (4), and (5), Equation (6) is a 
non-linear first-order partial differential equation with a driving function, Cb(x, y). 
In the corresponding numerical analysis, an equation involving both first derivatives 
is a triangular 3-point condition on a corresponding integration mesh of discrete 
values of x and y. If a single profile in z is given for all x at a constant value of y, 
profiles in x for the adjacent values of y may be generated. Thus the fundamental 
indeterminacy of photoclinometry reduces to the requirement of a one-dimensional 
boundary condition. Because the equations are non-linear and driven, and only real 
values of z are meaningful, the boundary condition cannot be specified arbitrarily 
and independently. We may also use the lunar example to note that the boundary 
profile may not necessarily be sufficient if arbitrarily directed, e.g., in the phase- 
plane. 

Let us now direct ourselves specifically toward radarclinometry. Because + = +(E), 
for a given C, the image may be readily conceived directly as cosine of incidence 
angle, rather than specific intensity. Let p = cos i. Then Equation (6) becomes 

6. ri = p(x, y) (7) 

or 

-eaZ-eaZ 

f+$-$$ = cL(x,y)f 
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which is more readily useable in standard quadratic form 

[$)21 - px E - ez]'] = 0. (8) 

A further simplification is possible, with a proper choice of coordinates, due to the 
inherently panoramic nature of radar imagery. Let us choose the x axis positive 
directly downrange from the radar position. Let the positive y axis point in the 
direction of motion of the radar platform. It will then always turn out for all x and 
y that e, = 0. 

Equation (8) can be quickly solved to yield 

(9) 

Let u and v be integers identifying the numerical lattice of integration. If one is at 
point (x0, yy) on a boundary profile or the profile of an immediately preceding 
integration, Wax is formed from (z,+ I,~ - z,,,)/(x,+ I - x,), while p, e,, e, are 
known. Formula (9) then yields &z/ay; and the value of z at the mesh point (x0, y, + ,) 
is then increased over the value at (xD, yv) by Ay times this amount. 

As mentioned earlier, x and y are the true coordinates of features on the mean 
datum. They are the ultimately preferred coordinates. In terms of image coordinates, 
x ’ and y ‘, we must use the transformation derivable from Figure 1: 

y’=y, x ’ = x - z(x, y) tan 01, (10) 

where CY is the depression angle of the radar, and tan CY = - ez/eX. The elements of 
the Jacobeans for the direct and inverse transformations are: 

C=l+e/e aZ 
ax 

z x 
ax’ 

!c=e/e az 
ay ‘%ay’ 

w o ---Z 
ax ’ 

ayl -= 1 
ay ’ 

(11) 

ax 1 
ax= 

1 +e/e 2’ z Y 
ax 
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e,/e, .S 
ax ay -= - 

w l+e/e az z x 

ay 0 
ax 

-=, 
ax! 

One integrates in the domain of the image, accumulating the necessary 
transformation to ensure that each new value of z is put in proper correspondence 
with x and y. The sign ambiguity in Equation (9) can be resolved by making the rather 
reasonable assumption that the local isophote describes a surface line-element along 
which the normal vector is locally unchanging. If the isophotic direction is compared 
with the sign of &z/ax as found from the current profile, a reasonable sign for az/ay 
can be found. For example, if the isophote trends from (- , -) to (+ , +) in the 
x ‘, y ’ plane, and &z/ax is locally positive, then az/ay should be negative. 

The foregoing analysis represents an operationally complete scheme, in principle, 
and emphasizes the requirement for one-dimensional ground-truth. It seems 
reasonable to suppose that if one can supply such a boundary profile, one has 
sufficient technology at one’s disposal as to make reliance on photoclinometry 
unnecessary in any event. We therefore need to consider auxiliary mathematical 
assumptions that will enable the generation of such a boundary profile from initial 
point conditions photoclinometrically. Assuming that all slopes along a line of 
constant y are either directly toward or away from the radar seems unacceptable. One 
does not obtain the correct down-radar slope to the exclusion of the cross-radar slope 
when one does this. &z/ax and az/ay are not mathematically separable in the 
equations of photoclinometry. One simply obtains the wrong value of az/ax. Mental 
reflection regarding radarclinometry performed on a hemispherical convexity, 
employing such a simplistic assumption, reveals that the profile which bisects the 
structure will be correct. For all parallel profiles the slopes down-radar will be under- 
estimated (effectively rotating fi about E into the vertical plane) so that the derived 
structure will have a ridgeline oriented down-range with depressed sides. A bilaterally 
symmetric ridge, or convex mathematical cylinder, trending obliquely, would be 
scaled down non-linearly in the vertical dimension and the flat terrain on the opposite 
sides would separate in elevation. 

Let’s begin this search for a reasonable auxiliary assumption by examining the 
significance of information expansion in the form of not only the value of p at each 
x ’ and y ’ in the image but of the two-dimensional gradient of p as well. We will need 
the components expressed in terms of the coordinates on the mean-datum. By the 
chain-rule, 
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&- ap ad I + w 
ax 37 ax af ax ’ 

A- all a.d I + w 
ay -axl ay ay’ ay . (12) 

In Equations (12), the derivatives with respect to x ’ and y ’ are directly the pixel 
differences in the image, and other derivatives are from Equations (11). Equations 
(12) represent the transformed measurements which apply. We have, on the other 
hand, the theoretical equivalents of the left-hand-sides of Equations (12) obtained 
by differentiating Equation (7) with e, set to zero: i.e., 

g= [l+ [$$)‘+ [$]2]-3’2[bXz-eZ) ge- 

-e, [[$)2+1] -f$-ez$-$], 

$= [l+ [%I’+ [z)2]-3’2 [bX$-eZ) 2%- 

We do not expect that merely looking at the gradient introduces determinacy, and 
that is surely the case, for by adding the two gradient equations we have introduced 
three unknown second derivatives not present in our original Equation (7). Thus, 
instead of promoting determinacy we have now, on the contrary, a theory with two 
remaining degrees of freedom instead of one. The ‘hypothesis-of-local-cylindricity’ 
will now be,jnvoked. The second derivatives now involved in the argument describe 
fully the local curvature properties of the topography. We will assume the curvature 
is locally cylindrical in nature, of arbitrary orientation. That is, there exists a 
direction in space in which the curvature is maximum and another direction 
perpendicular to the first in which it is zero. This defines a local tangent plane to the 
topography. The local curvature in all other directions in the plane is a projection 
of the maximum. Thus is defined a local tangent cylinder of equivalent local 
curvature as well. I emphasize that this is a local and not a global assumption about 
the topography. To be reasonable, it is only necessary that local curvature possess 
a fairly dominant direction. Aside from such features as granite domes and the 
summits of mountain peaks, local-cylindricity (LC) seems to me to be fairly 
consistent with topography on the Earth, probably due to the dominance of down- 
slope movement in the erosion-transport process. If the hypothesis tends to fail the 
more as curvature of any kind becomes slight, there is compensation in the fact that 
it means local slope is changing negligibly from an already established value. 
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What are the consequences of LC for the equations at hand? Consider an 
alternative set of x and y axes, say x” and y”, that are rotated about the z axis with 
respect to x and y. Assuming that LC prevails, let the axis of the local tangent-and- 
equivalently-curved cylinder be parallel to the y”z plane. It may have an arbitrary 
axial elevation angle. The following facts then follow from LC. 

a2z # 0 - . 
ax II2 

but 

a22 o -= , 
ay 112 

a22 o ----c. 
ax Ilay 11 

(14) 

Let the angle of rotation into the (x, y, z) system from the (x”, y”, z) system be 6. 
The transformation matrix for 2-dimensional vectors defined in the (x, y) plane is 
thus given by 

cos I9 sin 0 
Y m’ = 

; 1. 

(15) 
-sin0 cos8 

Now the topography certainly has a physical meaning independent of the coordinate 
system used to represent it. Its functional representation is a true scalar in the group- 
theoretical sense. Its second derivatives therefore have a second-rank tensor 
character and the appropriate transformation laws may be used to re-represent the 
set of values shown in Equations (14) in terms of x and y as 

a2z 2,2 a% ___ = c y&J yqv ___ 
ax,ax, 0=l axdx, * 

V=l 
(16) 

If we let o and v each refer to the (x”, y”) system and E and r] each refer to the (x, y) 
system, applying Equation (16) using the values shown in Equations (15) and (14) we 
have 

a22 - cos2 (j! a22 
a.2 ax ((2’ 

a22 a?2 __ = -sinOcos8--- 
axay ax tr2’ (17) 

a2z - sin2 0 &o 
a? ax fr2’ 

the essential importance of which is that it leads to the conclusion that there exists 
a parameter X, which we may identify as tan 0, such that 

a22 - 
axay 

-A!!$ and $ = X2 3. 
a.2 (18) 
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In Equations (18) one quickly sees that the three unknown second derivatives have 
been traded for two unknown values of X and J’z/&?. Equations (18) can be used 
to substitute into Equations (13). Thus we have reduced two remaining degrees of 
freedom back to one. 

The parameter X deserves deeper inquiry. It is the tangent of the angle, as we have 
seen, between they axis and the projection of the local cylindrical axis onto the mean 
datum. The line in the surface that is in the cylindrical-axial direction must be a locus 
of constant A. As such, its image must be an isophote. In terms of the image mapping 
in x and y, we therefore conclude: 

(19) 

This follows from the requirement that dp = 0 along the line-element for which 
dy/dx = l/X. In terms of the directly measured gradient in the image, using the chain 
rule and Equations (1 l), we have 

With the appearance of Equation (20), the illusion is created that we have finally ar- 
rived at complete determinacy of all first and second derivatives. One extra equation 
has been found to account for the remaining degree of freedom. Such is not the case. 
If we combine Equations (1 l), (12), and (13), and substitute for the mixed derivative 
and the second derivative with respect to y from Equations (18), thereafter 
eliminating the parameter X thus introduced by substitution from Equation (20), and 
finally eliminating the radical by substitution for it from Equation (7), we extract the 
following two equations for the two components of the image gradient: 

az 2 a22 +- c II ay z+& (ex+2ezej $=O; (21) 

and a second equation which turns out to be none other than Equation (21) multiplied 
on the left-hand-side by the factor 

ap I ee -1 ap az 
ay’ zx ad ay * 

Thus the LC hypothesis does not result in a set of equations which are algebraically 
determinant. It does, however, result in a set of equations which are one- 
dimensionally integrable starting from a point boundary condition. They therefore 
complement the earlier set of non-LC equations which are two-dimensionally in- 
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tegrable starting from a line boundary condition. That Equations (12) and (13) did 
not produce two independent equations in the end is not too surprising. One certainly 
expects to identify image-brightness gradient with surface curvature, but a one-to- 
one correspondence is achieved only with a projection of the latter into the two- 
dimensional space of the image, even after the LC hypothesis is used to equalize the 
number of independent components of the two entities. A knowledge of X constrains 
the rotational orientation of the projected line in the image, but the projection scaling 
remains unknown, The mapping peculiarities of radar do not ameliorate this limita- 
tion on determinacy. 

In principle, then, the integration of an entire topography can now proceed as 
follows. We may define the basic quantity which is stepped in the integration produc- 
ing the boundary profile as the ratio of the slope components 

which must be specified initially be eyeball estimate, though the influence of the star- 
ting value on the subsequent course of profile development is somewhat stochastic. 
Equation (7) may be rewritten in terms of az/ax and T) as 

[p2 (1 -q2) - ex2] 
c I 
5 2 + 26?& 3 + (JL2 - ez2) = 0. 

ax 
(22) 

For a given value of q that is either the starting value or the current value from the 
last integration step, one solves Equation (22), using the immediate image datum, p, 
for az/ax. Discrimination between the two roots of the quadratic is on the basis that 
no slope steeper than the incident wave plane of the radar has been admitted into the 
processing. With r known, az/ay immediately follows. These two slope components 
together with the immediate pixel differences, +,0x ’ and +,&‘, can be inserted into 
Equation (21) which is then easily solved for a’.&@. One then uses Equation (20) 
to find X, and one of Equations (18) to find &/ax@. We now step to the next in- 
tegration point as 

az a.2 a22 aw 
axYG+ax” ’ 

-+az+ a2z b az 

aY aY axay ’ 

at+ aY 
‘az 
ax 

(23) 

z+z+az~+LaLz,,,, 
ax 2ax2 * 
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The process can now be repeated. An important acknowledgement is necessary in 
order that a local strike-line may evolve successfully through the plane containing the 
local vertical and radar line-of-sight. It will be noted that TJ is not updated through 
a differential formula, but from new values of the slope components that are thus 
linearized individually and updated. It would not otherwise be possible for q to pass 
through the perfectly meaningful discontinuity (+ CO +, - 00). While &/ax and az/ay 
are continuous variables, 17 is simply a discrete set. 

When the boundary profile is complete, one proceeds according to the non-LC ap- 
proach described in the first part of this section. Presumably the integration mesh 
is constant in x ’ rather than x, so that one operates pixel-to-pixel in the image. The 
value of Ax in the foregoing is therefore given by 

&- axkf+L a2x 
a.d 

2 --g (A.0, (24) 

where the second order term is available because topographic second derivatives have 
been determined. Noting that ax/ax ’ is a function of &/ax in Equations (1 l), one 
writes by virtue of the chain-rule 

a2x ez le, a22 ax -= - + a22 ay -- -- 
ad2 -c 1 

(25) 

1 + e,/e, az a2 ai ayax ax 1 ’ 

ax 

whose parameters are known every step of the way. 

3. Calibration 

A radar back-scattering curve with a relative scattering cross-section scale must be 
independently available, together with a knowledge of the radar’s depression angle, 
01, so that eX and eZ may be determined. If the radar frame is wide-field, that informa- 
tion is necessary to compute the variation in CY and 8 over the frame. Beyond this, 
only the digitized radar frame itself is needed. That frame is desirably the most 
photometric rendition of the refative strength of true radar surface-brightness and 
not merely a monotonic substitute. 

Given the above, the simplest approach to the evaluation of C in Equation (6), 
where +(g, i, E) is now simply (p(z), would be to evaluate (b), the average brightness 
for the entire frame, and then take Cas cp(n/L - a)/(b). This assumes that the average 
incidence angle of the terrain is the same as that of the mean-datum, which is not 
true for a rough surface that is statistically isotropic in x and y. It is especially untrue 
considering the fact that isotropy on the mean datum transforms to anisotropy in the 
picture domain. In addition it assumes that cp(i) is approximately linear over the range 
about i = r/2 - Q! that was significant in producing the variations in b. 

Accordingly, this first-order calibration is given a small iteration arrived at in the 
following manner. Let A be any locally defineable property of the terrain. Thus A 
may be considered a function of x and y (or x ’ and y ’ for that matter). We shall 
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subsequently want A to represent p and ,u’. Let A also be functionally determined by 
the local components of slope, I~Z/C?X and &/13y, which we shall temporarily refer to 
as zX and zY, in order to avoid some unwidely expressions. We will assume that the 
probability distribution for slopes is isotropic and gaussian as related to sampling 
that is uniform on the mean-datum. 

P(zx, zy) = 
1 - e- exp[ - (2 + i$)/20. (26) 

2T0 

Accordingly, we will have alternative prescriptions for the average value of A. 

(A) = Sirn S+m P(zx, zy) A(zx, zy> dzx dzy, (27) 
--a0 -cc 

(A) = sy2 j- A(x, Y> dx dr 1 [(~2 -YI) (~2 -a>], (28) 
YI XI 

If we take an average over a radar picture-frame we do not have the kind of average 
indicated in Equations (27) and (28), because we are not sampling uniformly on the 
mean-datum. We know that slopes toward the radar are rendered in diminished dura- 
tion compared to slopes away from the radar. If we let P ‘(z,, zY) be a corresponding 
probability distribution for uniform sampling over the radar image-frame, then the 
average value we will measure, for example, of p, by converting brightnesses, pixel- 
by-pixel, to p and summing line-by-line over the frame, would be represented by 
substituting P ’ for P in Equation (27) and x ’ for x and y ’ for y in Equation (28). 
Our immediate problem is to find P ‘. In order to do this we must rethink Equation 
(27) as a condensed integral over the actual slopes of the surface, with P representing 
the normalized multiplicity of distinct pairs of zX and zY. If Equation (28) is mapped 
from the space of x and y to the space of zX and z,,, the result can be called the 
equivalent of Equation (27) and interidentification of terms can be achieved. In order 
to do this properly the integral of Equation (28) should be divided up into however 
many integrals over separate domains are required in order that a one-to-one mapp- 
ing between each individual domain in x and y and the single domain in zX and z,, is 
achieved. Let n label such a domain and let there be a total of N of them. Inasmuch 
as the domains are contiguous, then, the leading reciprocal of integration-range in 
Equation (28) is unaffected and the equation becomes 

(A) = (Y2 -Y$’ (x2 -x1>-’ jI 1” San A(x, Y> dx dy, (29) 
Ylfl Xl?8 

the mapped form of which is given by 

(A) = (Yr -Yl)-’ (x2 -xl)-’ 
N, Jzm szx2n 

ZYl” Zxln 
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The Jacobian of the foregoing equation is the reciprocal of the one whose elements 
are the second derivatives of the surface function, z; and its behavior in any one do- 
main is independent of its behavior in all the others, so that it can properly be given 
a subscript, IZ. Equation (29) inter-identifies with Equation (27) and would constitute 
the empirical basis for the probability distribution, P, whose form we have assumed. 
The original integration relating to P is defined on the mean datum. We may find 
P ’ by combining this result with the result of the same procedure applied to mapping 
the integration over the radar image-frame into the space of zX and zY. Remember that 
zX and zY still represent az/ax and az/ay; not az/ax ’ nor az/ay ‘. The repeat perfor- 
mance yields 

(A)’ = (yl-ylv (xi-xi)- 1 jg, izizn S”‘” x 
Zy:y’ln F~ln 

(30) 

which inter-identifies with Equation (27) written with P ’ substituted for P. If the 
Jacobians for the transformations between (x, y) and (x ‘, y ‘), both direct and in- 
verse, vanish nowhere in the regions of interest (there are no terrain slopes steeper 
than the radar wavefront) then the topological relations between the slope domain 
and the mean datum are the same as between the slope domain and the image-frame. 
Therefore N’ = N and the individual domains in Equation (29) can be inter- 
identified with those of Equation (30) on a one-to-one basis. 

Now the probability, P, under discussion, can be interpreted as a sum of individual 
probabilities, P,,, each one of which is a joint probability of (1) being in the domain 
12, and (2) the slope probability distribution applicable to the particular domain. This 
enables the detailed inter-identification between Equations (27) and (29) to be given 
by 

Pn = (yz-yl)p (x2-x1)-’ 

and, similarly, 

P1: = (yi-yip (x&xi)-’ 

We assume that the frame is sufficiently large that there is negligible difference in 
overall integration ranges, i.e., ~2’ - yi = yz - yr and xi - xi = xz - xl. And 
therefore, 
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But by Jacobi’s theorem, the ratio of the two Jacobians is 

A quick glance at Equations (11) reveals that this Jacobian is uniquely defined by the 
values of zX and zY at the point of the contribution to the integral over zX and zy, so 
that the subscript n is no longer necessary or significant. Factorization is therefore 
possible, resulting in 

or 

PI = 5 P,: = a(d,f) c" P, 
n=l a(% y) n=l 

P’(zx, zy) = P(z*, zy) a(x’J v’); 
at4 Y) 

(33) 

P’ (z,, zy) = !’ +;iztex] exp [ -<d + d)/20] , (34) 

With this expression for P ’ substituted for P in Equation (27), we may compute (cl) 
and (11’) in terms of u, using Equation (7). 

Now it is also possible to compute directly from the data, using the provisional 
calibration, the frame average values of (CL) and ( pc2). The provisional calibration 
is based on setting the average brightness in correspondence with e,. Even if (p) = e, 
in reality, the non-linearity of the calibration curve will cause the (p) read out of the 
data in this way to be different from e,. Let us denote by cp the photometric function 
that has cc, instead of i, as its arguments. Then according to the provisional 
calibration, 

(b> = C&J. 

We have a (II> computed from the data through this provisional calibration which 
we’ll call (P)o, from which we obtain a value bo. 

bo = CP((F)O). 

Now if we believe (cc) actually should be e,, we may make a correction to C in that 
direction by adopting as the new value of C, bo/cp(eJ. 

With the correction for the non-linearity of the photometric function thus 
established, the correction for the fact that (p) # e, can now be made. The calcula- 
tions using Equations (34), (27), and (7) need be carried out only to 2nd order in zX 
and +, for the non-exponential factors in the integrands. The results are 

($) = & - (4& - &)a and (1~) = ez(l - 24, 
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from which, to 2nd order, 

u = ((A/#)/& (351 

We therefore calculate u in Equation (34) from the frame averages, ((a~)~> = ($) 
- (P)~, and then use it to revise (cc) from the immediately preceding equation. We 
finally revise our calibration constant by multiplying it by the ratio cp(eJcp((p)). 

4. Practice 

As an idealizable numerical-analytical procedure, radarclinometry has been com- 
pletely described at this point. It is even practical in the sense that it has been reduced 
to an initial value problem rather than one in which all the unknowns must be dealt 
with simultaneously, and, as a result, a very large matrix inverted. Nevertheless, a 
number of considerations contrive to make practice confine itself narrowly in com- 
parison to theory as broadly guided by the foregoing sections. 

The simplest consideration in this area relates to the mesh fine-ness of integration 
as optimized in numerical analysis, on the one hand, and the proper application of 
sampling theory in the digital rendition of an image, on the other. According to the 
Nyquist criterion, if the digital sampling frequency is equal to or greater than twice 
the highest sinusoidal frequency in the Fourier transform of a continuous signal, 
there will be neither a loss of information from, nor an introduction of aliasing errors 
into, that signal, as represented by the resulting digital file. Economics dictates the 
use of no higher a sampling frequency than necessary. By comparison, the proper 
step-size in the independent variables of a system of differential equations to be 
rendered as corresponding finite-difference equations, is properly one over which 
considerably less function development can take place. The interval over which solu- 
tion is required is usually externally imposed. In this case it is the size of an image 
processed, in kilometers. One must first avoid divergence and thereupon seek preci- 
sion. The higher the precision of arithmetic one is willing to employ the finer the step- 
Ijing interval one may use and the better will be the solution, in first-order systems 
at least. But when the driving function of an inhomogeneous equation is not a given, 
potentially infinitely-precise function, but instead is a record of data in the presence 
of systematic error and noise, the problem becomes greatly compounded. Bad 
enough that the factor of at least 10 over the Nyquist frequency, that is desirable for 
the avoidance of accumulated truncation and linear-extrapolation errors, greatly in- 
creases computation time and allocated memory. In fact, the accumulation of true 
noise in the integration cannot be alleviated by increasing the mesh-fineness. Nor can 
it be substantially tolerated in an arithmetically non-linear process. Given the signal- 
to-noise ratio of the radar images that have thus far been available to us, the net result 
of these considerations is that the highly information-cumulative method of in- 
tegrating area-wise photoclinometric extrapolations of topographic profiles has been 
abandoned in favor of the independent line-pair-by-line-pair application of the 
method of boundary profile formation already discussed. Thus the local-cylindricity 
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hypothesis pervades the entire topographic file produced rather than merely the 
boundary profile. The starting value of Y) for each line is found using the initial 
calculations of #z/~y2 and a2z/&ay from the preceding line and an equation 
analogous to the q re-evaluation in Equations (23). One can see quite specifically part 
of the intolerance to noise of the original theoretical approach in the fact that what 
is essentially brightness-gradient information is required to determine the sign of 
az/ay according to Equation (9). When the gradient becomes low the sign fluctuation 
that can set in due to data noise produces fluctuations in &z/ax in the next line of 
integration that tends to drive &/ay to imaginary values. A practical threshold on 
the gradient, below which one uses the preceding sign of az/ay rather than an im- 
mediately determined signature is necessary in any event. We may reasonably hope 
for future radar image quality that will permit the original unprejudiced approach 
to be used. In the mean time a method which precludes the image-wide propagation 
of errors is being employed. 

When the incorporation of multiple practical expediencies into an already 
mathematically correct procedure is undertaken, the problem of optimizing the com- 
bination may involve far more computation than can be practically funded. One still 
sees things one would like to try but priorities do not permit. One may also wish to 
undo a feature incorporated before other changes were made, with the same limita- 
tion on action. That may be the nature of the following procedural modification: 

In order to avoid enlarging the region of the radar image into which it was 
necessary to venture on the basis of Equations (lo), and to minimize the effects of 
broadly distributed photometric non-uniformity, an iterative procedure designed to 
adapt the calibration constant to each line in the enforcement of zero average slope 
was formulated. Thus the value of z and x at x ’ = 0 are assigned to zero. Each line 
is integrated twice with revised value of C following each integration. An integral for 
the correction to C designed to force the value of z at the opposite end of the line 
to zero can be found based on Newton’s method. Specifically acknowledging the 
dependence of this value of z (at x ’ = x = i) on C, then ideally, 

z(I, c) = 0. 

But if not, then determine a correction, AC, such that 

Z(I, C) + *AC = 0. 
dC 

Now 

z(l, c) = .F 
I az - dx 
0 ax 

carried out at constant y, so that 

dz ’ --= 
.i 

22 + dx -~ 
. dC 0 apax dc (36) 
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In Equation (39, dddC = -(p(p),& dp/dk; and if we assume 7 is insensitive to C, the 
mixed partial can be found by differentiating Equation (7); 

(37) 

where all the ingredients of the right hand side are calculated at each point of the in- 
tegration of topography. The method converges quite rapidly. An iteration is re- 
jected only if I z(l, c) I gets larger and the number of incidents of imaginary slopes 
goes up. With the best data currently available, the imaginary-slope incidence rate 
stands at a third of a percent. 

When an entire topographic file has been integrated according to the foregoing 
scheme, a linear adjustment is made on each line of topography employing the 
average indications of the data for that line to the effect that its mean slope toward 
the radar is not zero and its mean height differs from that of its adjacent and 
preceding line. When an average is a line-average rather than a frame-average it will 
be denoted by a subscript y. We note that (az/r3x), < 0 will bias the calibration in 
the opposite sense from (&z/13x), > 0 whereas only ( I &/8yl jr matters for the 
azimuth component. We therefore form (&/8y), for each line in the original set of 
integrations as indicative of variation in (z>~, notwithstanding the ongoing 
manipulation of the calibration constant. After all, the choice of z = 0 at x = x ’ = 0 
was entirely arbitrary and independent of the photoclinometric procedure. Secondly, 
we form (&$3x), different from zero as an effect due entirely to the variation from 
nominal calibration and indicative of a proper Z(i) - z(0). The line-average of az/ax 
will be much less than its peak value and a first-order calculation attributing all 
departure in (p), from e, as due entirely to <&/ax>, # 0 is warranted. Thus 

Az(Xmin> = (Z>y 
I az 

- - 
2 

0 - ax,’ 

Az(xmax)= ‘,z>, 
I az 

-- 
2 

0 - 9 axy 
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The original line of topography is now remapped from the interval 0 + 1 to the inter- 
val Xmin -+ xmax. At each of the new positions on the mean datum a AZ is linearly inter- 
polated between the extreme values indicated by the last two members of equation 
set (38) and added to the value of z which was mapped from the original integration 
file. 

The foregoing procedure enables one to develop topography in correspondence 
with an entire image. In retrospect, it seems superior to retain the original frame-wide 
calibration and operate photoclinometrically on a sub-frame of the image. Thus the 
values of &By and $z/+J~ computed at the beginning of each line determine an in- 
tegration step to the starting value of z when beginning integration on the subsequent 
line, and not merely a new starting value of 71’. Thereby, also, one must reposition 
the correspondence with the image, since x ’ = 0 no longer corresponds to x = 0, as 
indeed, in general, it should not. 

A few additional minor practicalities are worthy of mention. Solution of Equation 
(22) by the quadratic formula occasionally comes perilously close to zero-over-zero. 
The first order solution, &z/ax = (e, - p)le, should be used when a value check in- 
dicates it is applicable. Closeness to division by zero also must be checked in the 7 
iterations, and the step avoided if indicated. A check should also be run on the 
closeness of the argument of the square-root to zero, whether positive or negative, 
assuming a reasonable value for numerical noise, in solving Equation (22). Under ap- 
propriate conditions the plane of constant TJ is then taken as tangent to the cone of 
constant I”. Given all these considerations, it will still happen occasionally that Equa- 
tion (22) yields a distinctly complex rather than a real slope. When this happens it 
is time to admit that the integration has accumulated sufficient noise and error that 
it is currently absurd. It must be either that current erroneous variations in 1 or the 
wayward development of TJ are responsible for this. When this occurs, no integration 
step is taken and 77 is reset to zero. The last real value of &/ax is stored. The attemp- 
ted integration proceeds until a real value of &~/ax is again found. The arithmetic 
mean of this value and the stored value is adopted and used to integrate over the gap 
that has developed. No second order terms are allowed in the stepping when this 
occurs. 

Since errors of a significant size do appear in photoclinometry and are 
l-dimensionally concentrated due to quasi-independent line-by-line integration 
techniques, one wishes to develop a counterpart to the adjustment theory which 
serves photogrammetry. Though mathematically quite different, it should be based 
on the same criteria that such errors as are already present should be more equitably 
distributed and if not reduced, at least not increased; and such adjustment as is 
employed should not lead to a loss of real information. 

Let’s begin with the assumption that sampling theory has been properly observed 
in determining the original digital image. Then the spatial spectrum of that image will 
be fully contained below a Fourier frequency of % the digital sampling frequency. 
The only difference between the original continuous-image spectrum and the spec- 
trum of the digitized image is that the latter consists of the scaled original plus its 
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scaled reproductions, shifted from a center at zero to centers at the sampling frequen- 
cy and its harmonics. The Nyquist criterion simply requires that the assemblage of 
shifted Fourier transforms contains no overlap. 

A function and all its derivatives have Fourier transforms whose non-zero extent 
are confined to the same spatial frequency interval; and if photoclinometry were a 
mathematically linear process we could conclude straight-away that the topography 
must have a Fourier transform confined to the same frequency interval as that of the 
image. We may appeal to the convolution theorem of Fourier analysis to conclude 
that the highest power to which p(x, v) or its gradient components are raised in the 
determination of photoclinometric topography is equal to the ratio of the confining 
spatial frequency range for the Fourier transform of the topography to that for the 
Fourier transform of ,u(x, JJ). This conclusion is valid for fractional as well as multiple 
exponents. What are its implications? 

Let us rewrite Equation (7) in a more immediately useful form 

2 
ez - 2e e az + e2 a’ 2 = [p( x y)12 

“ax ’ aX c) 
, [l+EJ2 + [$]2]. 

(40) 

This equation is the most general of those used and contains implicity the conse- 
quences of all the rest for our immediate goals. Let’s refer to the Fourier transform 
of z(x, .Y) as i% y, wu) (so the Fourier transform of az/ax is KQ,+~, oY) and the 
Fourier transform of p as U(wx, wY). We will use the enlarged line-level asterisk to 
denote convolution. Taking the Fourier transform of both sides of Equation (39), 
we find that 

&-4&d - 2wv-d(~x, qJ - &w,~GJ,, ~441 * b,i%h +)I = 
= U(a, %I * U(G9 f-+1 * 1&4~(~,) - bwxJJx, qJ)l * [WXUWX, +)I - 
- kd-(0x9 qJ1 * LwxJJx, qJlI* (41) 

Equation (40) is really of interest to us only because it requires the spatial frequency 
bandwiths of both sides to accomodate one another. The bandwidths of the Dirac 
delta-functions shown are zero and we dismiss them immediately. When we convolve 
WJ with itself, the result has double the bandwidth of wJ. Therefore, the left-hand- 
side of Equation (40) has a bandwidth double that of {, or double that of the spatial 
spectrum of z(x, y) itself. The greatest number of convolutions on the right-hand- 
side of (40) is four, and it seems to demand a bandwidth equal to the sum of twice 
the bandwidth of { plus twice the bandwidth of U. This may seem contradictory until 
we remember that the functions in the equation are not independent of one another. 
Let’s look at Equation (40) more closely. On the face of it, there is no way the left- 
hand-side can be non-zero for values of ox or w, greater than twice the cut-off fre- 
quencies in the topographic spectrum. Similarly, there is no way the right-hand-side 
can be non-zero for spatial frequencies outside the larger range mentioned above. 
Evidently, then, for spatial frequencies that are intermediate - outside the smaller 
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band but inside the larger band - there is a way for the right-hand-side to be zero 
that relies on the special relations between !: and U, so that the equation can be 
satisfied. For spatial frequencies inside the smaller band, then, we have no grounds 
for forcing both sides of Equation (40) to zero. On the other hand, the first term on 
the right-hand-side of Equation (40) is U* U, whose bandwidth is, independently of 
j-, twice the bandwidth of U. Hence, twice the bandwidth of { equals twice the band- 
width of U, or simply, the spatial frequency cut-offs are the same in the derived 
topography as for the image. 

Based on the foregoing conclusion, any extension of the Fourier transform of our 
derived topography to frequencies in excess of one-half the digital sampling frequen- 
cy for the original image is not real topographic information and may be justifiably 
removed. The spectra of the original image and the final topography should both 
smoothly apodize to zero at the same spatial frequency cut-off. 

The physical formation of an image of an object by a lens passing incoherent light 
is one in which the apodizing function acting on the Fourier transform of the object 
to produce the Fourier transform of the image is almost linear. To the extent that 
radar does not emulate this practice it is thoroughly uncooperative! It is always 
helpful, when practical, to re-apodize SAR images before applying radarclinometry. 

If we let T(wX, c+) be of form r(w), with w = (0: + &l/2, and which equals 1 when 
its argument is zero and proceeds linearly to zero when its spatial frequency argument 
equals ‘/2 the sampling frequency, then an optimum procedure might be to take the 
Fourier transform of the topography and then take the inverse Fourier transform of 
t(w,, w,,) ‘?(wX, c+) as a final adopted topography. Unfortunately, two-dimensional 
Fourier transforms are not practical for most of us, so a compromise is desired. 
Remembering that Z(X, y) was produced as a set of quasi-independent tabulated in- 
definite integrals in the x direction, we may well expect that the spurious high- 
frequency Fourier components should be concentrated in w, relative to ox. Further- 
more, the accumulation of spurious slopes in the integration in the x direction will 
introduce spurious low frequencies as well as spurious high frequencies in ox, whereas 
almost exclusively high frequencies are introduced in w,. A reasonable approach is 
therefore to rotate the topography 90” so that a read-in line to be operated on is now 
a sequence delineated by y rather than X, and do a one-dimensional re-apodization 
on a line-by-line basis. Instead of simply removing all artifactual striping’in x, such 
an approach will tend also to introduce such striping in the dimension perpendicular 
to x. However, it should be greatly subdued. This is the approach that has been 
adopted. 

5. Contingency-Processing 

The procedures outlined in the foregoing sections, whether optimal or otherwise, 
may be characterized as general. One would apply all of them, in one form or 
another, in order to maximize the extraction of topographic information from the 
radar data. By contingency-processing we shall mean those operations which are 
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known to invade the information spectrum to at least some degree, but whose com- 
promising effects are deemed to be offset by the obvious alleviation of problems 
created by random noise and systematic error in the data. I have felt obliged to create 
one such algorithm, which applies in the following way. 

The tendency toward artifactual ‘striping’ is alleviated by the one-dimensional 
Fourier filtering of the entire image, as described in the previous section, at no ex- 
pense to the actual information. A technique is necessary in order to deal with artifac- 
tual ‘banding’, i.e., the presence of this form of noise at spatial frequencies well 
below the Nyquist cut-off. The approach that has been developed for dealing with 
this problem is based on the assumption that it exists primarily as the result of error 
in the adjustment of the mean-height and mean-slope of each range-line integration. 
Using this assumption we refrain from adjusting directly the amplitudes of the 
Fourier components of the topographic array, and instead operate on the spatial 
spectra of the linearization parameters. The process is carried out in four steps. (1) 
Four one-dimensional arrays are created by the least-square fitting of straight lines 
to each topographic profile in range, as a member of a set delineated in azimuth, and 
each topographic profile in azimuth, as a member of a set delineated in range. (2) 
The next and all remaining steps are applied to the constants and the linear coeffi- 
cients independently. The power-spectra as well as the complex Fourier transforms 
are taken of, say, the constants, now conceived as two functions, one of azimuth and 
the other of range. (3) Beginning at a spatial frequency that is specified on the basis 
of a visual appraisal of the topographic file portrayed as an image, the Fourier 
transform of linearization-constant-versus-azimuth is normalized in amplitude so 
that, maintaining continuity at the beginning wavelength, the corresponding power 
spectrum is brought into constant ratio with the power spectrum of linearization- 
constant-versus-range at all higher spatial frequencies. (4) The inverse transform is 
taken of the result and the revised constant-versus-azimuth is used together with a 
similarly revised linear-coefficient-versus-azimuth to readjust both the heights and 
mean-datum-placements of each topographic profile down range. 

It is difficult to justify the above process on other than pragmatic grounds. It is 
certainly reasonable to suppose that when artifactual banding is parallel to ground- 
range, the run of linearization constants with azimuth will show such banding, 
whereas the orthogonally fitted run of linearization constants with ground-range will 
smooth out such effects. We thus hope to alleviate the effect on the topographic file 
as a whole by requiring the first run to emulate the second insofar as its Fourier 
amplitudes above a certain frequency are concerned, while preserving intact all the 
relative phases. It can further be stated that this procedure will not introduce any 
systematic errors of its own if the assumption be granted that the two-dimensional 
autocorrelation function of the topography is isotropic in all but the broadest scale 
of its variations. Other methods of dealing with the problem of poor photometric 
leverage on azimuthal slope components will be welcomed in future investigations, 
however they have yet to be conceived. 
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6. Results of Application 

The first application of radarclinometry to real data was made on a digital radar im- 
age of the Algodones sand dune field near Yuma, Arizona, obtained by the SEASAT 
SAR. Except for the setting of an automatic-gain-control the image signal is available 
in a form proportional to the reflected electric vector amplitude and is in this sense 
photometrically calibrated. The back-scattering function employed in the data reduc- 
tion was taken from the ‘Radar Cross-section Handbook’ (Ruck et al., 1970) for dry 
sand. There is also an obvious sense in which the terrain is homogeneous, naively 
assumable to benefit our prospects of success. Although the main program suc- 
cessfully produced a result, it appeared to have little genuine topographic 
significance. A worse choice would have been difficult to find, and this appears to 
have been the case for a composite of reasons: 

(1) The extreme depression angle of 72” greatly increased the likelihood of a 
vanishing Jacobian and also made horizontal pixel-shifting extremely sensitive to 
photometric error. 

(2) The digital sampling interval appeared not to obey the Nyquist criterion. The 
average dune dimension did not greatly exceed the sampling interval. When the image 
was re-apodized for the alleviation of this problem and the speckle problem, only the 
broader topographic variations emerged, which the automatic-gain-control rendered 
meaningless. 

(3) Sand is a specular reflector at radar wavelengths. The mimicry of diffuse 
reflection occurs only because the resolution element of the image is large enough to 
contain a statistical aggregate of optical facets, somewhat randomly aligned. But a 
resolution element 20 meters across does not present a satisfyingly large statistical 
sample of optical facets. The possibility of the reflection being dominated by a single 
facet aligned almost normally to the radar propagation vector also contributes to a 
situation wherein the terrain is actually not very homogeneous in radar back- 
scattering function. Operating on the steep shoulder of the radar back-scattering 
function compounds this problem. 

(4) The state of the sand has some bearing on the statistical distribution of optical 
facets. A back-scattering curve obtained by working off the vertical on flat sand is 
not identifiable with one obtained by varying the tilt of the sand. Leeward and wind- 
ward dune faces can be expected to possess different radar photometric functions. 
Thus the diffuse reflectivity of the surface can be expected to be inhomogeneous in 
both sporadic and systematic ways. The findings of Blom and Elachi (1981) cor- 
roborate this view. 

After the frustations of the preceding effort, it was decided to concentrate work 
on low depression-angle SLAR frames. The one drawback to this choice was the total 
unavailability of photometric calibrations. The assumed calibration was thus com- 
pletely heuristic. Only a qualitative test is thus encountered. Inasmuch as the method 
has been designed to approach the metric integrity of photogrammetry as closely as 
possible, no small concession has been made in doing this. Although low depression 
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Fig. 2. Motorola radar image of Crazy Jug Point in Grand Canyon National Park. 

angles introduce radar shadows, the processing problem thus presented is a mild one; 
the envelope of radar-ray distribution assumes the role of the terrain. 

The form in which the SLAR data was made available was that of second- 
generation positive photographic transparency. The source of data was the Motorola 
Corporation. These film strips are archival at the U.S. Geological Survey in 
Flagstaff, Arizona, so a negative transparency suitable for digitizing at the USGS 
Flagstaff Image Processing Facility was generated by the photographic laboratory of 
the Flagstaff Field Center. An Optronics output of the re-apodized digital radar im- 
age is shown in Figure 2. The region investigated is Crazy Jug Point in the Grand 
Canyon of the Colorado River. North is approximately at the top and the frame is 
about 15 kilometers wide. Digitally, the frame is 630 lines by 630 samples. This is the 
frame which was processed with the 0.3% slope-abort-incidence-rate mentioned 
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earlier. The Radar Cross-Section Handbook curve for broken desert was used and 
the photometric calibration curve was obtained by assuming that the digital values 
of optical density, after subtraction of the darkest radar shadow, were proportional 
to the radar reflected specific intensity. This is equivalent to assuming that one 
photon in the final printing renders one photographic grain stably developable, and 
that the accumulated cross-section density of developable grains is much less than 
one. Of course the final photon flux density is assumed proportional to the original 
radar specific intensity. These assumptions are demonstrably unrealistic, but they are 
as realistic as any available alternatives, and more easily incorporated. 

The main radarclinometry program required 20 hours of computation time on the 
DEC PDP11/45 of the U.S.G.S. Flagstaff computer, using the DOS BATCH 
operating system. The subsequent spatial frequency filtering and amplitude- 
normalization programs for height/tilt readjustment made use of a Floating Point 
Systems Array Processor and required only a few minutes. 

Because no photometric calibration exists, we have elected not to present a direct 
comparison of a topographic contour-mapped version of our digital topographic file 
with the corresponding region of topographic map N3600- WI 1145/28 x 60 compil- 
ed by the U.S. Geological Survey and the U.S. Coast and Geodetic Survey, though 
that will be a result of future research, if successful. It would be scientifically 
ludicrous to present a test of the fortuitousness with which a photometric calibration 
had been randomly achieved. A method of testing is needed which separates this ef- 
fect from the qualitative appreciation of the relative placement of heights of promon- 
tories and depressions. Accordingly, the following procedure was carried through. 
A corresponding digital topographic file was hand-punched from the USGSUSCGS 
map. Registration of corners was eye-estimated without preserving orthogonality. A 
crude attempt was made to match the resolution of the radarclinometric file. Both 
this topographic file (photogrammetric) and the radarclinometric topographic file 
were processed to produce shaded relief maps in stereo-optical pairs. The shaded- 
relief files were generated by placing an artificial sun 30 degrees above the north 
horizon (opposite the original radar) and generating surface brightness according to 
Lambert scattering and the incidence angles implied by the topographic file, using 
the algorithm originally devised by Batson et al. (1975). The synthetic stereo-mate 
was generated by shifting pixels in the shaded relief file along the East- West line pro- 
portional to the values of z in the topographic file (Batson et al. 1976). The result 
is presented in Figure 3, which speaks for itself. 

7. Future Prospects 

Several realignments of effort have already been discussed, but the most urgent con- 
sideration is the reduction of computation time. It is the principle reason why a wider 
variety of processing and a larger volume of products have not been reported in this 
paper. A refined method for re-apodizing the original image can lead to discarding 
the calibration-iteration procedure and the elimination of some averaging techniques 
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Fig. 3. Two stereograms in shaded-relief images of Crazy Jug Point. The upper stereo-pair was 
generated from a radarclinometric topographic file. The lower stereo-pair was generated from a 
photogrammetric topographic file. The effective sun-angles of the shaded relief renditions are not the 

same because of unknown relative tilt in the two mean datums. 

that are costly in terms of disk-file manipulation. We can reasonably hope to cut run- 
time by a factor of four. If a number of fail-safe-motivated logical branchings can 
also be eliminated, use may be made of the Array Processor in the main program to 
achieve an additional factor of two or even higher. From this point on, only a trial- 
and-error evolution of the method can be foreseen, and improvement will require 
considerable effort. 

The poor photometric leverage on cross-slopes remains a serious problem and 
some additional creative ideas for dealing with it that involve a minimal invention 
of science-fiction would be welcome. 

Two obvious recommendations come out of this study. (1) The photometric 
calibration of radar images is very important. It should receive far more attention 
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from the developers of imaging radars and their signal reduction systems than has 
been the case up to now. Upgrading the signal-to-noise ratio of a pixel, and look- 
smoothing of speckle, also deserve higher priority. A radar image is no longer simply 
the object of a subjective Gestalt formation, but an important quantitative array. (2) 
Almost all the depression angles that have been used are either too large or too small 
from a radarclinometric viewpoint, though too small is definitely preferable. Forty- 
five degrees is about optimum. Only the Space Shuttle radar (SIR-A and SIR-B ex- 
periments) comes close to this, at 50 degrees. I look forward to working with it in 
the future. 

Among other related future research efforts are field investigations of the back- 
scattering versus incidence angle for a wider variety of terrain types and under a 
variety of seasonal variations. Included in this would be measurements of 
heterogeneity within a given terrain type under a given seasonal condition. The pre- 
sent method also offers possibilities where no others may be forthcoming for the 
determination of file-scale Cytherean topography from radar images to be obtained 
by the Venus Radar Mapper mission later in the decade. I am also looking into the 
application of the local-cylindricity hypothesis to traditional sun-observer 
photoclinometry, and alternative integrability-assumptions such as local sphericity, 
which might be of a non-default character and occasionally triggered into processing 
on the basis of criteria related to higher derivatives of the image. 

In summary, radarclinometry has proven to hold significant promise as a method 
of determining topography under conditions which make it a useful alternative. The 
extension of the present work in future efforts is concretely self suggesting in a variety 
of ways. 
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