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Abstract. We consider a spherical, solid planet surrounded by a thin layer of an incompressible, 
inviscid fluid. The planet rotates with constant angular velocity. 

Within the constraints of the geostrophic approximation of hydrodynamics, we determine the equa- 
tion that governs the motion of a vortex tube within this rotating ocean. This vorticity equation turns 
out to be a nonlinear partial differential equation of the third order for the stream function of the 
motion. 

We next examine the existence of particular solutions to the vorticity equation that represent 
travelling waves of permanent form but decaying at infinity. A particular solution is obtained in terms 
of I~ and K1, the modified Bessel functions of order one. 

The question whether these localized vortices that move like solitary waves could even be solitons 
depends on their behavior during and after collision with each other and has not yet been resolved. 

1. Introduction 

We consider a spherical, solid planet of radius R whose uppermost layer consists 
of a thin, liquid shell of constant thickness h, with h 4 R. The fluid constituting 
this ocean is incompressible and inviscid. The planet is rapidly rotating with 
constant angular velocity w about an axis fixed with respect to its surface. 

We use spherical, polar coordinates with origin 0 at the center of the planet. 
We denote by z the radial distance measured from the center, positive upwards, 
by 8 the colatitude, measured from the rotational axis, and by 4 the longitude, 
positive in the direction of rotation (East). In the tangent plane to the sphere at 
a point P(z, 8, +), we use a local, Cartesian system with the x-axis tangent to the 
parallel of latitude, positive toward the East, and the y-axis tangent to the merid- 
ian, positive northward. Any point Q on this tangent plane can be identified by 
its distance r from P and the azimuth angle (Y that the segment PQ makes with 
the meridian, so that we have x = r sin CY, y = r cos CL 

We shall make use of the geostrophic approximation to the hydrodynamic 
equations of motion, which means that we shall limit ourselves to considering 
motions that correspond to a small Rossby number. Within this context, we are 
interested in (1) obtaining the equation that governs the motion of a vortex tube 
within the thin, liquid, rotating shell, and (2) ascertaining whether such equation 
admits of solutions that represent travelling waves of permanent form that decay 
at infinity. 
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2. Motion of a Vortex Tube within a Thin, Liquid Shell 

In the absence of viscosity, the Navier-Stokes equations are 

Dq -= -&p+V@-2wXq, 
Dt P 

(1) 

where t is time, p the fluid density, p the fluid pressure, @ the gravitational 
potential of the planet, w its rotational velocity, and q = (u, v, w) is the velocity 
vector with respect to a coordinate system rotating with the planet, u being the 
eastward velocity, v the northward, velocity, and w the vertical velocity. The 
operator DIDt is the Lagrangian or molecular derivative defined as 

DIDt = a/at + (q . 0) . (53 

In considering propagation phenomena within a rotating ocean, we must define 
a horizontal length scale L and a typical horizontal velocity scale V. In what 
follows, we shall limit ourselves to motions such that the Rossby number is much 
smaller than one: i.e., 

E=V/OL%l. (3) 

Under such circumstances, we realize that the ratio between the relative acceler- 
ation DqlDt of a particle and its Coriolis acceleration 20 x q is of the order 

V2/L v 1 
-=-=-E 
2ov 2oL 2 . 

(4) 

This means that we can neglect the relative acceleration with respect to the Coriolis 
acceleration; we reach then the geostrophic approximation to the Navier-Stokes 
equation 

2wxq=-ivp+vQ,, 
P 

(5) 

which represents the momentum balance of the liquid column in terms of the 
Coriolis force, the pressure gradient, and the gravitational force. 

In expanding Equation (5)) we shall (1) neglect the ratio w/v because the particle 
trajectories shall be rather flat due to the fact that h/L 6 1, and (2) limit the 
North-South extent of the motion so that it is legitimate to use the local coordinate 
system (P; X, y, z) and eventually assign an average value 0, for the colatitude 
within that range. We reach then the system 

pf~ = -aplay, 

pfv = aptax, 

pg= -apia2; 

(6) 
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where g is the acceleration due to gravity, and 

f= 2ocos 8 (7) 

is the so-called Coriolis parameter; see, e.g., Batchelor (1967) or Pedlovsky (1971). 
We can see at once that the stream function I,!@, y, t) of the motion is 

*=PIPf. (8) 

This is so because, from Equation (6) we have 

v = alyax, u = -a*/lay 

due to the fact that p is a constant and f will not vary within the limited extent of 
colatitude. Because of the same reasons, we can write 

(9) 

where subscripts denote, as usual, partial derivatives. The symbol 5 stands for the 
tidal (or long wave) variation of the height of the liquid column above the average 
depth h of the fluid shell. 

Having defined a model for our fluid ocean, let us now consider a vortex tube 
and note that, since in our approximation the horizontal velocities are virtually 
independent of the z-coordinate and much larger than the vertical velocity, the 
vortex lines can be expected to be nearly vertical and the vorticity V x g = 
(X, Y, 2) of the tube shall consist primarily of its vertical component Z. 

The strength of a vortex tube is the product of its vorticity and its cross-section 
area; mass conservation requires that the cross-section be inversely proportional 
to the length h + f of the tube. The strength of the tube is then proportional to 
the potential vorticity Zl(h + S). The absolute potential vorticity is 

F=f+Z 
h+&-’ 

(10) 

and consists of the vorticity f due to the planet rotation and the vorticity Z of its 
relative motion. By specifying that we deal with a rapidly-rotating planet, we 
imply that f > Z, provided that we are not too close to the equatorial belt, where 
e. - 5-12. One can prove that this quantity F is conserved, which means that 

(11) 

see, e.g., Milne-Thomson (1960), Batchelor (1967), and Platzman (1971). 
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Performing the operation implied by Equation (ll), we find that 

E&f+ 2) = FE&h + l) . 

Now, we can expand the various terms as follows: 

DZ 
~ = z, + uz, + vz, = z, + &Z, - qbyzx ) 
Dt (A) 

where we have made use of the stream function; next we get 

Df v af 20 sin 8 ---=...-- 
Dt-R+hM 

* 
R+h x’ 

because f does not vary with time and depends only on 8; also, because of our 
assumption of limited variation in latitude, we can assign a mean value 0, for the 
colatitude, whereby we can consider f = 20~ cos 0, to be a constant of motion and 
take 

Df 20 sin 19, 
Ft=- R+h h=P*x 

with p a constant, (the so-called P-plane approximation); (C) h does not vary 
either geographically or with time, we have then DhlDt = 0; and finally, 

Fz= F[,+ 

we can ignore the last 
Equation (9) to write 

F(4x + vty) ; CD) 

two quadratic terms, approximate F by f/h, and use 

where A is a positive quantity having the dimension of a length; the approximation 
used here for F is based upon the fact that 5 + h and that Z < f = 2w cos 0, because 
of our assumption of a rapidly rotating planet, provided we are not considering 
any motion in the equatorial belt. 

Upon collecting the above partial results, we can write the equation that governs 
the motion of a vortex tube as 

zt - $ ** + p*x + *xzy - *yzx = 0 , 

where A and /3 are to be considered constants; the vertical component Z of the 
vorticity can be expressed in terms of the stream function as 

z = v, - uy = I& + rG;, . (13) 
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3. Existence of Waves of Permanent Form 

The vorticity equation, Equations (12)-(13), is a nonlinear partial differential 
equation (p.d.e.) of the third order for the stream function $(x, y, t). We plan to 
investigate the nature of its solutions, in particular to ascertain whether any of 
them can represent travelling waves of permanent form. In other words, we wish 
to find a function R(x - ct, y), where c is the constant velocity of propagation that 
will coincide with the stream function 

vqx, y, t> = Nx - ct, Y> (14) 

and necessarily will satisfy the vorticity equation. In terms of this function, the 
vorticity 2 can be represented as 

2(x - ct, y) = A,, + A, . (15) 

We can now eliminate the time variable and get a new p.d.e. in the X, y variables: 

-cz,+~h,+~AX+AXZY-A,ZX=O. (16) 

Upon close examination of the above expression, we realize that by adding and 
subtracting the quantity A,A,,/A’ to the left-hand side of Equation (16), this 
expression becomes the expansion of the Jacobian of the functions 
2 - (A/A’) + py and A + cy with respect to the x, y variables. Thus, Equation 
(16) can be rewritten as 

2 - $ + py; A + cy d(x, y) = 0 . (17) 

This situation is indicative of the existence of a functional relationship between 
these two quantities, which we shall represent as 

2 - +2 + ,5y = H(A + cy) , 

where H is any arbitrary differentiable function whose dimension must be [H] = 
cm-‘; see also Stoker (1957) and Whitham (1974). 

It is convenient, at this stage, to use the polar coordinates (r, CX) in the tangent 
plane to the sphere, where (Y is the azimuth angle reckoned from the meridian. 
We find then that 

2(x - ct, y) = Ax, + AYy = lA,+A,,+LA,,, 
Y r2 

and Equation (18) evolves into 
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r2hrr + rA, + A,, - 2 A + /3r2y = r’H(A + cy) , (19) 

where y = r cos (Y. 
We must solve Equation (19) where H is still an arbitrary function. Although 

we desire to get as general a solution as possible, we must, nevertheless, be 
interested in producing solutions that can be represented by means of convergent 
power series and/or known special functions; these solutions must also vanish at 
infinity. 

For this purpose, we have found it expedient to proceed according to the 
following steps: 

(1) separation of the two variables 

A@, a> = A&)&(~) ; (20) 

(2) choose A,, = AIAz in a most convenient way: e.g., 

A$ = - v2A2 (21) 

with v2 a positive constant; primes here denote derivatives with respect to the 
only variable in the given function; this gives rise to A2(~) = cos(vcu); and 

(3) choose a simple functional expression for H, e.g., H(x) = kx, where k is a 
proportionality factor, whose dimension is {k] = cmm2. 

Equation (19) now becomes 

(22) 

We now have two choices for k at our disposal. By choosing kl = p/c, we cause 
the right-hand side of the equation to vanish; the equation reduces to 

with 

cLz=P+L 
a2 c A2’ 

where a has the dimension of a length and p is a pure number. This is a differential 
equation of the Bessel family. Thus, the choice kl = p/c yields 

(23) 
A,(a) = cos(vcy) ; 
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where I, and K, are the modified Bessel functions of order V, and cl, c2 are 
arbitrary constants. We use here the Watson notation for the Bessel functions; 
see Watson (1966) or Abramowitz and Stegun (1965). 

The other possibility consists of choosing k2 + (l/A’) = u2/u2, (+ being a pure 
number. This, however, entails the selection of I& = cos (Y, i.e., v = 1, if we want 
the separation of variables to occur. Equation (22) becomes 

r2A;+r&-(l+$&=r3c(k2-;), 

which is again a differential equation of the Bessel family. Thus, the selection 
k, = ((r2/a2) - (1/A2) yields 

h2(a) = cos a; 

(24) 

We know that K, becomes infinite at r = 0 and vanishes at infinity, whereas I, 
is bounded at r = 0. We must, therefore, combine these two functions in order to 
obtain a composite solution that remains finite everywhere and vanishes at infinity. 
We must, however, impose continuity for AI, Ai and the vorticity 2 at the patch- 
point, which we choose to be r = a. To this end, we must have at our disposal a 
certain number of free parameters within the functions we employ in order to 
satisfy the conditions imposed by continuity. Because of these reasons, we will 
choose h,(r) = c2K1( ,ur/a) corresponding to kl = p/c with v = 1 for r > a, and 
R,(r) = clZl(cTrla) + Brla corresponding to k2 = (a*/~~) - (l/A2) for r < a. 

Continuity for A,(r) at r = a requires a choice of the parameters so as to render 
the complete solution to be 

h(r, CI) = -ac(cos a) I $--&Zl(y)+(l-$)i, r<a 

(25) 

Continuity for A; 
satisfy the following 

[&KI(:), r)a. 

at r = a imposes the condition that the parameters ZL and g 
equation 

1 Z2(@) 1 K2b) --=--- 
I+ L(g) P Klb-4 ’ 

which has an infinity of solutions; see Watson (1966). 
Finally, evaluation of the vorticity from Equation (25) yields 

(26) 
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qr, cl) = -&osa 1 
~l(~r~~Y~l(~), r<a 

a Kh-laY~~(4, r > a 

which is continuous at r = a. 

(27) 

4. The Soliton Connection 

In conclusion, we have (1) determined the equation of motion for vortices within 
a rotating ocean, and this turns out to be a nonlinear p.d.e. for the stream function; 
and (2) obtained solutions for such an equation that represent waves of permanent 
form. The next question that we should ask is how these waves interact with each 
other at collision. 

Solitons are solutions of nonlinear p.d.e.(s), that behave like solitary waves of 
unchanged form that decay at infinity; however, they do not interact with each 
other, whereby at separation after collision they take back their original profile. 
The theory of solitons as solutions of the Korteweg-de Vries equation and their 
connection to the Inverse Scattering problem can be gathered from early publi- 
cations such as Zabusky and Kruskal (1965), Miura et al. (1968), and Ablowitz et 
al. (1979). 

We have indeed found solutions to a nonlinear p.d.e. (vorticity equation) in the 
form of permanent waves decaying at infinity; the question whether or not our 
solutions behave like solitons when they interact with each other must, however, 
be settled from a numerical point of view and, to the best of our efforts, still 
remains unresolved. 

Other localized vortices of permanent form have been obtained in the past and 
studied by McWilliams and Zabusky (1982); these authors were able to prove that 
their solutions did not behave like solitons. 
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