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Abstract. This paper concerns with the study of KS uniformly regular canonical elements with Earth’s 
oblateness. These elements, ten in number, are all constant in the unperturbed motion and even in the 
perturbed motion, the substitution is straightforward and elementary due to the transformation laws being 
explicit and closed expression. By utilizing the recursion formulas of Legendre’s polynomials, we are able 
to include any number of Earth’s zonal harmonics J, in the package and also economize the computations. 
A fixed step-size fourth-order Rung+Kutta-Gill method is employed for numerical integration of the 
canonical equations. 

Utilizing 5 test cases covering a large range of semimajor axis and eccentricity, we have carried out 
computations to study the effects of Earth’s zonal harmonics (up to J& and integration step-size varia- 
tion. Bilinear relations and energy equation are used for checking the accuracies of numerical integration. 
From the application point of view, the package is utilized to study the behaviour of 900 km height 
near-circular sun-synchronous satellite orbit over a longer duration of 220 days time (nearly 3078 revolu- 
tions) and the necessity of including more number of Earth’s zonal harmonic terms is noticed. The package 
is also used to study the effect of higher zonal harmonics on three 900 km height near-circular orbits with 
inclinations of 60, 63.2, and 65 degrees, by including Earth’s zonal harmonics up to Jz4. The mean 
eccentricity (e,) is found to have long-periods of 459.6, 6925.1 and 1077.6 days, respectively. Sharp 
changes in the variation of o, near the minima to e, are noticed. The values of w, are found to be very 
near to + 90 degrees at the extrema of e,,,. The same orbit is employed to study the effect of variation of 
inclination from 0 to 180 degrees on long-period (T) of eccentricity with Jz to Jz4 terms. T is found to 
increase rapidly as we proceed towards the critical inclinations. 

1. Introduction 

The problem of orbit computation of artificial satellites has wide applications in 
mission planning, satellite geodesy and spacecraft navigation, etc. The precision in 
the orbit computation has become necessary due to the availability of very accurate 
satellite tracking systems at present. Search is presently in progress for computation 
techniques which are faster and more accurate. Basically, three mathematical solu- 
tion techniques, analytical, semianalytical and numerical are used for generating the 
ephemeris of a satellite. Though numerical integration methods are costly, they 
provide the most accurate ephemeris of a satellite with respect to any type of per- 
turbing forces. 

In the past, orbit computation has been done by integration of the equations in 
Cartesian coordinates (Cowell’s method) or calculating perturbations to a set of 
Keplerian or equivalent elements. The elements of the orbit need not be the standard 
Keplerian elements, provided they are slowly varying and completely specify the state 
of the vehicle. The method of Kustaanheimo and Stiefel (1965), known as KS 
method, provides such a set of elements by introducing a new independent variable 

Earth, Moon, and Planets 42 (1988) 163-178. 
0 1988 by Kluwer Academic Publishers. 



164 RAM KRISHAN SHARMA AND M. X. JAMES RAJ 

called ‘fictitious time’ and transforming to a four-dimensional coordinate system. In 
the new system, a set of equations (cf. Stiefel and Scheifele, 1971; p. 91), called KS 
perturbational equations, is obtained which has the form of a set of perturbed har- 
monic oscillators. The KS method provides one of the most stable, accurate techniques 
for orbit prediction presently available. In Sharma (1981) a detaile numerical study 
was carried out with KS perturbational equations with respect to a force model 
consisting of Earth’s oblateness with Earth’s zonal harmonic terms J2 to J6. In 
Sharma ( 1984) and Sharma and Mani (1985), a detailed numerical study was carried 
out with these equations by including perturbations due to atmospheric drag (analyt- 
ical oblate atmospheric model) and oblateness (J2 to J6 terms) in the force model and 
an orbital decay study of the Indian satellite RS-1 was made. The studies clearly 
established that long-term orbit computations could be done accurately with larger 
integration step sizes with KS perturbational equations. Another form of KS differ- 
ential equations (Stiefel and Scheifele, 1971; p 86) was utilized by Sharaf and Awad 
(1987) to develop an orbit computation package by including any number of Earth’s 
zonal harmonic terms with the help of recursion formulas of Legendre polynomials. 
However, the package was used for orbit computation during small durations. 

Since the canonical approach to a given mechanical system converts the system 
into a simpler form through transformations, our aim in this paper has been to make 
a detailed numerical study of a canonical form of the KS theory with respect to a 
complex force model. The derivation of canonical differential systems describing the 
perturbed motion, is by no means trivial, since, for instance, the adopted law of the 
time-transformation must be incorporated in the canonical set. The satisfaction of 
this requirement implies the knowledge of more refined instruments of general canon- 
ical theory as, for instance the enlargement of the phase space and the appropriate 
restrictions on the initial conditions. 

For detailed numerical study, we have chosen the uniformly regular KS canonical 
elements (Stiefel and Scheifele, 1971; p 251) where all the elements aj, & are constant 
in the Keplerian motion. We have developed an orbit computation package by 
including the effect of Earth’s oblateness. The recursion formulas of Legendre poly- 
nomials are utilized to include up to any number of Earth’s zonal harmonic terms J,. 
However, the numerical computations are done with terms up to J3+ 

Four test cases (A, B, C, D) with different perigee and apogee heights to cover large 
range of semimajor axis and eccentricity are chosen for numerical study. The integra- 
tion of KS uniform canonical equations of motion is carried out with fixed step size, 
fourth-order Runge-Kutta-Gill method. Bilinear relations and energy equation are 
used for checking the accuracies of numerical integration. It is concluded from the 
study that a larger integration step size (say, 36 steps/rev.) can be utilized for moder- 
ate eccentricity cases for accurate orbit computations during long-term intergrations. 

From the application point of view, the package is utilized to study the long-term 
behaviour of 900 km height near-circular sun-synchronous satellite orbit of PSLV 
mission. The mean orbital elements are generated for 220 days time (nearly 3078 
revolutions) with Earth’s zonal harmonic terms up to Jz4. The long-periodic terms in 
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eccentricity and inclination are found to have a period of 129.9 days. The extrema of 
mean eccentricity and inclination is found to occur very near to + 90 degrees of mean 
argument of perigee. Long-term orbital computations are also made for the 900 km 
height orbit with inclinations nearer to critical inclination (63”26’). The higher zonal 
harmonics are found to have significant effect on the mean eccentricity. The long- 
periodic terms in eccentricity are found to have large period. Sharp changes in the 
variation of o, near the minima of e, are noticed. The same orbit is used to study 
the effect of orbital inclination variation from 0 to 180 degrees on long-period of 
eccentricity with J2 to Jz4 terms. This period increases rapidly as we proceed towards 
the critical inclinations. For example, the period increases from 459.6 to 6925.1 days 
as the inclination increases from 60 to 63.2 degrees. The growth will be much higher 
as we further proceed towards critical inclination, indicating the serious difficulties 
involved in solving the critical inclination problem with Earth’s higher zonal 
harmonics. 

2. KS Canonical Equations of Motion 

The sixth-order system of differential equations 

describing the motion of a particle in the rectangular coordinates (x,, x2, xg) under 
the perturbed time-independent potential V, can be written in the canonical form as 

dxk aH dp, i3H -=- -=-- 
dt apk2 dt ax,' (k = 1,2, 3) 

with the Hamiltonian 

H=;(p:+p:+p:)-F+ V, 

where xk and pk are generalized coordinates and momenta, r is the distance of the 
particle from the central body, t is the time and K2 is the gravitational constant. 

Adding the negative total energy p. to the Hamiltonian H, to obtain homogeneous 
Hamiltonian and then applying the transformation dt/ds = r, we obtain the 
Hamiltonian 

H,=i(p:+p:+p:)r+p,,r+rV-K2, 

with the equations of motion 

~-ml dpi- 
ds -api’ ds 

- -2, (j=O, 1,2,3) 
I 

(1) 

(2) 

where the function x0 is equal to t. 
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Employing the canonical KS-transformation given by Xl Xl 
(1 t-1 x2 =A(%) ;I ? x0 = 20, 

x3 
x4 

Pl 

d) 

Pl 

1 

p2 = 2(x: + 2; + jz: + Xi) 
A(9 ;. ,po=&, 

3 
0 P4 

where 

to Equations (1) and (2), we obtain the new Hamiltonian as 

The bilinear quantity 
-- -- -- -- 

z(ij~ %) =Plx4-P2x3 +P3x2-P4xI 

is a first integral of the new canonical equations 

dXk aH djjk aR -=- -=-- 
ds apk' ds 

ax , (k = 0, 1,2,3,4) 
k 

i.e. dllds = 0. 
Hence the Hamiltonian I? in (3) reduces to 

(3) 

E? = $ IpI2 + polx12 + IXIV - K2. (4) 

The basic canonical system with respect to the fictitious time s is obtained by utilizing 
the canonical transformation 

1 
2. = - x0, 

2 
.$ = xi, - j?o=2@o, bi=pi, (j= 1,2,3,4) 

and the scaling factor i to the Hamiltonian (4). The resulting Hamiltonian is 

H = ; lw12 + ; woIul’ + ; 1111~ V - ;, (5) 

where 

lul2 = 24:+24:+u:+u~, IW~2=W:+W:+W:+W~, 
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and the new canonical variables are 

ilk = 2k, 
1 

wk =-bk, 
4 

(k = 0, 1, 2, 3,4). 

The final transformation can be written as 

x() = 2u, ( = t), 

Ul 
Xl 0 i) x2 = A(u) 1: 3 

x3 
u4 

PO = 2w0, 

Wl 
Pl 

w2 u i) “1 =&w w3 . 

w4 

On any solution, the value of p. is the negative physical energy and the value of If is 
zero. 

The canonical equations 

duk aH dW, aH -=- -=-- 
ds aw,’ ds au , (k = 0, 122, 394). 

k 

corresponding to the Hamiltonian (5), are the equations of a perturbed harmonic 
oscillator. 

The separation of Jacobi’s equation corresponding to the unperturbed Hamilto- 
nian of (5) can be achieved through the canonical transformation 

wk = g, /lk = $, (k = 0, 1,2,3,4) 
k k 

having the generating function 

S = i dw duk + tx,,uo, 
k=l s 

and the transformed unperturbed Hamiltonian becomes 

Ho = c11+ ~(2 + a3 + ~4. 

The perturbed Hamiltonian is 

H = a, + u2 + a3 + cc4 + 

(6) 
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The generating function 

through the canonical transformation 

as 
ui=-G 

xi= -$ (j=O, 1,2,3,4) 
J 

transforms the Hamiltonian (6) to the form 

1 

and the canonical element equations are 

dpi-aE7 daj- - 
ds -dol,’ ds 

- -$ (j=O, 1,2,3,4). 
J 

From Equations (S), it follows that the ten elements OI~, /I, are constant in unperturbed 
motion. This is the uniformly regular set of elements. 

3. Perturbations and Numerical Results 

In the present paper we shall assume that the only forces acting on an artificial 
satellite are those due to the Earth’s gravitational field with axial symmetry in which 
case, we have 

V=$,,E2Jn 4 n 
0 

P, (cos v), cos v = :, (9) 

where R is the equatorial radius, r the distance of the particle from the central body. 
Jn’s are dimensionless constants known as zonal harmonics and P,, are Legendre 
polynomials of degree n. The values of J,, are taken from Hough (1981). 

With respect to V in (9) we have developed an orbit computation package through 
the uniformly regular KS canonical Equations (8). For the economic computation of 
V and aV/ax with respect to Legendre polynomial of any degree n, we have utilized 
the recurrence formulas of Legendre’s polynomials 

nP,(x) = (2n - l)xP,- i(X) - (n - l)P, -z(x), 

having starting values 

P&x) = 1, PI(X) = x; 

and 

PA(x) = xPL - 1(x) + nP, - 1(x), 
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with 

P&c) = 0. 

For numerical integration of the Equations (S), we have employed a fixed step size 
fourth-order Runge-KuttaaGill method. The computations are done with terms up 
to J36. Detailed numerical computations are made for 4 test cases A, B, C, and D, 
whose initial conditions (position, velocity and osculating orbital parameters) are 
provided in Table I. Case A has a sufficiently large semimajor axis and eccentricity. 
Case B is highly eccentric with very large semimajor axis. Orbits corresponding to 
cases C and D are near-Earth orbits with small eccentricities. Orbital inclination in 
all the cases is 30 degrees. 

Orbit computation has been done for the 4 cases A to D up to approximately 25, 
10, 25, and 50 revolutions, respectively, with respect to Earth’s zonal harmonic terms 
up to J2, J,,, Jz4, Js6 and with integration step sizes of approximately 24, 48, 7’2, 96, 
120 steps/revolution. However, for illustration purpose, we have provided in Table 
II, the value of the more perturbed parameter, the osculating semimajor axis, under 
the effect of Earth’s oblateness. Table II also provides similar details for the 900 km 
height near-circular Sun-synchronous orbit (Case E) after 60 revolutions, whose 
initial orbital parameters are provided in Table a of Section 5. It may be noticed from 
the table that a larger integration step size between 24 and 48 steps/revolution is 
sufficient to provide accurate osculating semimajor axis for the cases A, C, D, and E, 
even after 25, 25, 50 and 60 revolutions, respectively. It has been noticed that the 

TABLE I 

Initial conditions (position, velocity and osculating orbital parameters) 

CASE 

Variables A B C D 

x0 (km) 0.0 0.0 0.0 0.0 
y. (km) - 5888.9727 - 5888.9727 - 5888.9727 - 5888.9727 
z. (km) - 3400.0 -3400.0 -3400.0 - 3400.0 
k. (km set-‘) 8.3 10.691338 7.8 7.6 
j. (km set-‘) 0.0 0.0 0.0 0.0 
i, (km set-‘) 0.0 0.0 0.0 0.0 
a (km) 8244.826652 136000.418457 7067.946406 6701.926072 
e 0.17524040 0.95000015 0.03791008 0.01463369 
i (ded 30.0 30.0 30.0 30.0 
0 (ded 270.0 270.0 270.0 90.0 
fl (de4 0.0 0.0 0.0 0.0 
~4 (ded 0.0 0.0 0.0 180.0 
r,=a(l-e)(km) 6800.0 6800.0 6800.0 6603.8 
r,=a(l+e)(km) 9689.7 265200.8 7335.9 6800.0 
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other orbital parameters are also accurate under similar integrations. However for 
the high eccentricity case B, as can be noticed from the Table II, a smaller integration 
step size (96 steps/rev., say) is necessary for accurate computation of semimajor axis 
after 10 revolutions, including the cases with higher zonal harmonic terms. Though 
the computational details presented in Sharma and Raj ( 1986) are not included here, 
our study points out that the inclusion of higher degree zonal harmonic terms be- 
comes necessary for low-eccentricity cases. 

4. Checks During Numerical Integration 

The bilinear relations 

and 

uqw1- u3wz + u*w3 - u1wq = 0, (11) 

satisfied by the canonical variables aJi and u,,w,ji = 1,2, 3,4) are used as checks for 
numerical integration accuracies of the Equations (8) with respect to the force model 
given by (9). In our computations, the value obtained from the L.H.S. of Equation 
(10) turns out to be the negative of the value obtained from the L.H.S. of Equation 
(11). In Table III, we have provided the values obtained from the relation (11) for the 
four cases A, B, C, D with respect to the zonal harmonic terms J2 to Jj6. The table 
also provides the difference between the initial energy and the energy at the instant 
of computation from the energy equation 

These values also serve as a good test for the accuracies of numerical integration. 
Though the values from the bilinear relation ( 11) and energy Equation (12) reported 
in Table III are only with respect to J2 to Jx6 terms, we have observed (Sharma and 
Raj, 1986) that these values change very little with respect to an integration step size 
when the zonal harmonic terms up to J2, J,, or J14 are included in the force model. 
This clearly indicates that the canonical Equations (8) could be used effectively for 
numerical integration with respect to complex force models. It may be pointed out 
that the bilinear relation and energy equation values do not remain constant during 
a revolution. For illustration purpose, we have depicted in Figure 1 their variations 
during a revolution for the case A with respect to the force model containing the 
zonal harmonic terms up to Jj6. Further it has been noticed from the numerical study 
of the 4 cases that the parameters c1r, . . . > o/4, &I> . . . , b4 have more uniform varia- 
tions with relatively less amplitudes than the corresponding orbital parameters a, e, 
i, R, o and h4 during a revolution and provide better accuracies during numerical 
integration. 
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Fig. 1. Variation in energy and bilinear relation with Jz, . , J36 terms during one revolution (Case A). 

5. Sun-Synchronous Orbit 

From the application point of view, we have utilized the developed orbit computation 
package to generate mean orbital elements of 900 km near-circular Sun-synchronous 
orbit for 220 days time (nearly 3078 revolutions). Its initial osculating orbital ele- 
ments chosen for the study along with mean elements are given in Table a: 

TABLE a 

(Case E) 

Parameter Osculating Mean 

a W-4 7282.7 7277.6969 
e 0.00063 0.000717 
i (ded 99.033 99.091146 
Q (ded 290.033 290.0376 
0 (de& 207.844 180.014 
M (deg) 0.0 27.744 

The conversion of the osculating orbital elements to mean orbital elements is done 
through Chebotarev’s (1964) first-order short-periodic variations due to J2. As can be 
seen from Table II, a metre level accuracy can be obtained in the osculating semi- 
major axis computation with 36 steps/rev. after 60 revolutions. The mean orbital 
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Fig. 2. Variation of mean eccentricity (e,), argument of perigee (CO,) and inclination (i,). 

elements for this case are generated with J2 to Jz4 terms up to 220 days time (nearly 
3078 revolutions). It is noted that the mean semimajor axis (a,) remains nearly 
constant, while the mean right ascension of ascending node (C&J varies almost lin- 
early during the 220 days time. The variation of mean eccentricity (e,), argument of 
perigee (0,) and inclination (i,) are depicted in Figure 2 up to 220 days time. It can 
be easily noticed from the Figure 2 that the eccentricity and the inclination have 
long-periodic terms of period 129.9 days and occur almost at the same time. A slight 
increase in the peak values of i,,, is also noted. The extrema of these variations occur 
when the argument of perigee is near to + 90 degrees. The argument of perigee varies 
rapidly near the minimum of e, and i,. Variation of e, and m, with terms up to J2 
and J6 is also shown in the figure to show the effect of higher zonal harmonic terms. 
It can be easily noticed that the terms J3 to Jz4 have very significant effect on e,, o,, 
and i,. Effect of J7 to Jz4 is also noticed on e,,,. The figure also depicts that J2 has no 
long-periodic effect on e,. 

6. Near-Circular Near Critical Inclination Orbits 

To show that the higher zonal harmonics have very significant effect near a critical 
inclination (63”26’) orbit, we have generated the mean orbital elements for the three 
cases with i = 60, 63.2 and 65 degrees. The other initial osculating orbital elements 
are same as for case E. Variation of e, and o, for i = 60 degrees with terms up to Jz4 
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for 600 days time is shown in Figure 3. Variations in these parameters with J2, J3 
terms is also shown in the figure. It can be easily noted that the variation of e, with 
up to Jz4 terms is much higher than with J2, J3 terms and the extrema occur at 
different times when their respective CD,,, are very near to f90 degrees. Figure 4 
depicts the variation of e, and o, for 3750 days time for i = 63.2 degrees case with 
respect to J2 to Jz4 force model. In order to show that the higher zonal harmonics 
have significant effect, we have shown in the figure, the variation of e, and co, with 
J2 to J4 terms for 500 days time. A vast difference is noticed between the timings of 
minima occurrence of e, for the two cases and at the extrema of e,, o, are very near 
to +90 degrees. The variation of e, and o, for i = 65 degrees case with J2 to Jz4 
terms for 650 days time is plotted in the Figure 5. The figure also contains the 
variation of these parameters with J2 to J4 terms. As can be seen, the variation of e, 
and CD,,, is quite different in the two cases, showing the significant effect of the higher 
zonal harmonic terms. Also, CD, is found to be very near to +90 degrees at the 
extrema of e,. Though we are using the words ‘very near to 90 degrees’ due to the 
numerical nature of our studies, however from the large number of computations we 
have done with different inclinations, we strongly feel that at the extrema of e,, o, 
becomes + 90 degrees. As can be seen from Figures 3 to 5, the long periodic terms in 
eccentricity have quite large periods (459.6, 6925.1 and 1077.6 days for 60, 63.2, and 
65 degrees inclinations, respectively). As we approach the critical inclination (63”26’), 
this period increases rapidly showing the difficulties involved in the critical inclination 
problem when Earth’s higher zonal harmonics are considered. 

0 oo,a- 

i+KLlNATlON = 6 5O 

0 00!6- 

0 0014- 

0.0012- 

300 DAYS- 4oo 

Fig. 5. Variation of-mean eccentricity (e,) and argument of perigee (0,). 
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Computations are done to study the effect of orbital inclination on long-period (T) 
of eccentricity of case E with the force model consisting of Earth’s zonal harmonics 
up to Jz4. Figure 6 provides the variation of log T when the inclination varies from 
0 to 180 degrees. T increases rapidly as we proceed towards the critical inclinations 
(63”26’, 116”34’) from the right of 0 degree and left of 180 degrees. Though we 
evaluated T at 63.2 degrees inclination, it increases sharply as we proceed towards 
63”26’. Again, from 90 degrees, as we proceed towards the critical inclinations, T 
increases rapidly. It may be noticed that T at 90 degrees inclination is much higher 
than at 0 or 180 degrees inclination. 

7. Computational Time 

All the numerical computations in the paper have been done in single precision 
arithmetic on CDC CYBER 170/730 computed at VSSC. A comparison for orbit 
computation for 1000 revolutions for the case E was made between single and double 



178 RAM KRISHAN SHARMA AND M. X. JAMES RAJ 

TABLE IV 

Computational time (CP sets) 

Case Step size (set km-‘) Zonal harmonic terms up to 

A 0.01875 0.858 1.585 2.440 3.330 
B 0.076280808005 0.892 1.617 2.490 3.374 
C 0.01743 0.842 1.569 2.456 3.301 
D 0.016974 0.877 1.605 2.488 3.343 
E 0.01767 0.898 1.620 2.472 3.335 

Integration step size = 48 steps/rev. approximately. 

precision arithmetic computations. It was found that the single precision arithmetic 
computations are quite acceptable from the practical point of view, even for integra- 
tions over long durations. Computational time comparison for single precision arith- 
metic has been done for the 5 cases A to E through Table IV, which provides the 
computational time in CP seconds for one revolution with integration step size of 
approx. 48 steps/revolution with respect to zonal harmonics up to J2, J12, Jz4 and J36. 
As can be noticed from the table, the computational time is approximately 0.9, 1.6, 
2.5 and 3.4 CP seconds in all the five cases, which shows that we have to spend about 
four times the computer time when the additional zonal harmonic terms J3 to Jx6 are 
included in the force model. 

8. Conclusions 

KS uniform regular canonical equations with Earth’s oblateness perturbations 
provide a very efficient and accurate integration method for orbit computation even 
during long durations. Usage of the Legendre polynomials recurrence formulas to 
compute Earth’s potential and its partial derivatives, economizes the computational 
time. Inclusion of a larger number of zonal harmonic terms in the Earth’s potential 
becomes a necessity for near-circular satellite orbits. Near the critical inclinations, the 
effect of oblateness is very prominent on some of the orbital parameters of near- 
circular orbits and the long-periodic terms have very large period. 
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