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Abstract. Detailed single and multiple scattering calculations were carried out for a spherically symmetric 
cometary atmosphere irradiated by a plane parallel source. Using simplifying assumptions in the single 
scattering approximation, analytical expressions were derived for the total flux impinging the cometary 
nucleus, which was shown to be a decreasing function of the coma opacity. Moreover, while highly 
anisotropic phase functions resulted in more light reaching the nucleus than was the case for isotropic 
phase functions, the net energy flux at the nucleus surface was still found to be smaller in the presence 
of a coma than in the no coma case. This increased flux due to the anisotropic phase functions was 
attributed mostly to the effect of directional scattering in the forward Sun-comet axis. The isotropic 
multiply scattered flux at the surface was found to be an increasing function of the opacity, 7, for 7 s 2.5. 
At larger values of 7, the maximum in the downward directed scattered flux was still seen to increase, but 
occurred at a height of several radii above the nucleus, resulting in a reduction at the surface. On the other 
hand, the total flux at the surface was again shown to be a decreasing function of 7 and always less than 
in the no coma case. Finally, on comparing the multiply scattered flux with that obtained in the plane 
parallel approximation, it was quite apparent that except in the vicinity of the Sun-comet axis, the plane 
parallel geometry tends to underestimate the degree of scattering. 

1. Introduction 

The cometary nucleus and coma interact in a dynamic way. Sublimation of the icy 
nucleus carries off the embedded dust giving rise to the observed coma and tail. On 
the other hand, a dusty cometary atmosphere has been found to modify the heating 
of the nucleus by effectively increasing the capture cross-section of the photons, some 
of which will be scattered towards the nucleus, or conversely by attenuating their path 
(Hellmich and Keller, 1980; Hellmich, 1981; Weissman and Kieffer, 1981, 1984a, b; 
Marconi and Mendis, 1984). 

There are three distinct mechanisms by which the solar flux reaches the nucleus: 
attenuated direct sunlight, diffuse scattering of the sunlight by the typically micron 
sized dust particles, and thermal re-radiation by the dust grains in the infrared. 
Which of the three mechanisms dominates in heating the surface depends on the 
Iopacity of the coma, which is a function of the dust to gas ratio, the sublimation rate, 
and thus the heliocentric distance. Fpr heliocentric distances r > 1- 1.5 AU, thermal 
models suggest that the dust production rate is so small that cometary atmospheres 
are in general optically thin (Hellmich, 1981). Consequently, there will be little or no 
scattering, and the incoming solar flux will reach the nucleus virtually unattenuated. 
As the comet approaches closer to the Sun, the opacity of the coma increases, leading 
possibly to a larger contribution from the scattered and thermally re-radiated fluxes 
than from the attenuated direct flux (Hellmich, 1981; Marconi and Mendis, 1984). 
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Following from this, various different approaches have evolved regarding the 
treatment of the radiation transfer problem in comet thermal models. On the one 
hand, the presence of the dust coma was neglected (Herman and Podolak, 1985; 
Fanale and Savail, 1984), on the premise that the increased flux brought about the 
diffuse radiation fields, more or less compensates for the decreased flux due to the 
attenuation of the direct radiation. Alternatively, in the nucleus thermal models of 
Weissman and Kieffer (1981, 1984a, b), the fraction of multiply scattered and 
thermally re-radiated flux was calculated by using a plane parallel approximation. 
It should be pointed out however, that a significant fraction of the factor 2.4 increase 
in the energy flux reaching the nucleus of comet Halley at perihelion, obtained by 
the above authors, was the result of a numerical error and not the plane parallel 
approximation (P. Weissman, private communication). 

Other work concentrating more on the radiative transfer side of the problem 
include Squyres et al. (1986), who derive an analytical expression for the single 
scattered flux in a spherically symmetric coma, irradiated by a plane parallel source. 
Although they take into account the correct geometry describing the radiation field 
(cylindrical), their solution is valid only in the limit of very small opacities. Their 
results suggest that the presence of dust leads to a decreased net flux. Hellmich (1981) 
solves the full multiple scattering problem in cylindrical coordinates based largely on 
geometrical considerations. He found that the dust halo can increase the total flux 
reaching the nucleus (neglecting thermal re-radiation) by as much as 1.25. 
Unfortunately, Hellmich gives little discussion on the role played by his choice of 
such parameters as the ground albedo or the scattering phase function, making it 
difficult to establish exact numerical values. Finally Marconi and Mendis (1984) solve 
the radiative transfer equation in cylindrical symmetry for the Sun-comet axis, to 
obtain an increased flux of 1.24 for comet Halley at 0.89 AU post-perihelion. In 
contrast to the above results, this increase was attributed to the thermally re-radiated 
flux. 

Thus it is clear that there exists a wide range of results on the extent to which 
the coma controls the flux reaching the nucleus. It is therefore our aim to investigate 
the conditions e.g. coma opacity and scattering phase functions, which result in an 
increase or decrease in the flux, obtained with the inclusion of a coma over that 
without. Both single and multiple scattering are treated for the spherically symmetric, 
dust coma. In the case of single scattering we derive simple analytical expressions for 
the diffuse flux, both for isotropic and nonisotropic phase functions. Although the 
single scattered flux is not representative of the total diffusive flux for moderate and 
large 7, it nevertheless gives important insight into the different factors, for example 
the phase function and the region of scattering in the coma, affecting the amount of 
light reaching the nucleus. For multiple scattering we apply the moment solution of 
Wilson and Sen (1980) to generalize the result of Marconi and Mendis (1984) to 
include all angles of solar incidence. Finally, since most radiative transfer problems 
have been treated using the plane-parallel approximation, we briefly look at this 
approximation and compare the results to those obtained in the correct geometry 
described above. 
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2. Isotropic Single Scattering 

We shall first consider the limit of an optically thin atmosphere, ignoring both 
multiple scattering and the attenuation of the sunlight. This case has been worked 
by Squyres et al. (1986), to what we shall refer to as the ‘zeroth-order’ 
approximation. For convenience, we reproduce the basic assumptions used in 
obtaining their expression for the isotropically single-scattered flux. 

The number density of dust grains is assumed to fall off as n(r) = no (R/r)2, where 
R is the nucleus radius and r is the radial distance measured from the center of the 
nucleus. Hence, the velocity of outflow is assumed to be constant with r. The dust 
is represented by a single characteristic radius, corresponding to an average 
extinction cross-section, u. Thus the relation between the incremental optical depth 
and the geometric distance in the direction of the light ray is d7 = 1~12~ (R/r)2 dz. This 
allows one to express the total optical depth in the Sun-comet axis as T = n,o R. The 
flux scattered at a point along the path of the light ray is WS d7, where w is the single 
scattering albedo and S is the solar flux. However, only a fraction, proportional to 
the solid angle dO subtended by the nucleus, is scattered in the direction of the 
nucleus. This was approximately by da = .lrR2/r2, so that the probability that a 
photon will strike the nucleus is R2/4r2. 

The ‘zeroth-order’ flux scattered in the direction of the nucleus along the ray is 
given by the equation 

(1) 

where we have incorporated the cylindrical coordinates r2 = .z2 + b2; b representing 
the impact parameter, while 7, represents the total optical depth of the light ray 
(Figure la). The phase function p(B) = 1.0 for isotropic scattering. The total flux 
scattered from all such rays is given by the integral of Equation (1) over all shells of 
radius b 

5 

cc 
r(O) = I’(b) x 2rb db. (2) 

R 
Evaluating Equation (2) and dividing by the surface area of the nucleus we find that 

FL;; = wSr~/16. (3) 

One drawback of Squyres et al.‘s. result (Equation (3)), is that it neglects scattering 
in the ‘forward shadow’ region (Figure la). This led us to consider the additional 
contribution to the diffuse flux from the single scattering originating in the sun- 
comet axis. On solving Equations (l)-(3) in spherical polar rather than cylindrical 
coordinates, we obtain the ‘zeroth-order’ spherical approximation to the diffuse flux 

F,(;{ = ’ x TwSR3 7T 
47rR2 s 27~ sin 8 d6 

4 0 
(4) 
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Fig. 1. (a) The coordinate system used in the calculation of the zeroth and first order single scattered 
flux. (b) The division of the spherically-symmetric coma into the Sun-facing ‘spherical half-space’, and 

the back-side ‘cylindrical half-space’. 

Therefore the inclusion of the Sun-comet axis increases the flux by a factor of 4/n. 
However, F$$, includes incorrectly the scattering behind the nucleus which in the 
optically thin limit is zero. From Figure lb it is clear that for small r the corrected 
‘zeroth order’ flux is simply the average of F$‘$ and F($,: i.e., 

$0) = us $ $ + 1 . 
( > 

(5) 

As one would expect, in the optically thin limit the flux varies linearly with r (see 
Table I). We shall return to discuss this result in the light of the higher order 
approximations that follow. 

A second minor modification comes from the adopted form of the solid angle. 
Although computationally convenient, it breaks down for small r (r 5 2R). The solid 
angle is more accurately expressed as 2a[l - (1 - (R/r)2)1’2] (Hellmich, 1981). 
Using this latter form, the flux given by Equation (5) can be shown to be increased 
by approximately 6%. Since it is our aim to present, whenever possible, simple 
analytical expressions for the single scattered flux, we shall assume Squyres et al.‘s. 
(1986) form for the solid angle. However, the 6% correction factor will be 
incorporated into the expression for the total flux given at the end of this section. 
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TABLE I 

Zero and first order isotropically single scattered flux as a function of 7 as 
defined in Equations (5) and (9) respectively. The last two columns show the 
isotropic single scattered flux computed from Equations (AI)-(A7) and 
from the moment equations (27)-(29), respectively. The factors wS is taken 

to be unity, and all fluxes must be multiplied by lo-*. 

7 jm 

0.01 0.223 
0.05 1.116 
0.10 2.232 
0.15 3.348 
0.20 4.463 
0.25 5.579 
0.30 6.695 
0.35 7.811 
0.40 8.927 
0.45 10.043 
0.50 11.159 

p (1) 

0.221 0.23 0.22 
1.078 1.10 1.05 
2.074 2.04 2.04 
3.000 2.85 2.84 
3.857 3.53 3.56 
4.656 4.11 4.18 
5.410 4.60 4.73 
6.099 4.99 5.20 
6.745 5.32 5.59 
7.348 5.58 5.93 
7.912 5.78 6.19 

So far attention has been concentrated on the corrections arising from geometric 
factors (‘forward-shadow’ region and solid angle). A final factor that must be 
considered is the dependence of the flux on the radial distribution of the dust. It turns 
out that with the inclusion of the hydrodynamically calculated velocity of outflow 
(Divine, 1981), the number density falls off somewhere in the range l/r2 to 1/r3. 
However, using a l/r3 distribution for a fixed optical thickness, results in no change 
in the flux if the Sun-comet axis is excluded, and a 15% decrease with the inclusion 
of the ‘forward shadow’ region. Since we are interested in the maximum possible flux 
reaching the nucleus we shall restrict our study to the l/s distribution. 

When calculating the single scattered flux for larger opacities, the attenuation 
(extinction) of the incident beam before scattering must also be taken into account. 
The attenuation of the incident ray through a dust column with optical depth TV, can 
be expressed as S - - S exp( - T&. Integration along the light path gives the 
attenuation of the beam at a point (2, b) 

S exp [dz’/9z’2 + b2)] 1 = 

+ i)], 

where u = rR/b. Substitution (6) into Equation (1) we obtain 

r(‘)(b) = L wSR3 
s 
O” exp [-u(arctan(z/b) + (7r/2)] dz 

4 
, 

-cz (.z2 + b2)2 

(6) 

(7) 
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which is readily integrated to give 

wSR2 (I - ecuT) 
W(b) = 2b2 

(u2+4) * (8) 

Excluding the backward shadow region, Equation (8) was integrated over all shells 
of radius b to give 

(u2 - 2(e--uK’2 - 1)) du + (1 _ e-7x/sin x) x 

0 

x sin 2x dx 

1 2x . (9) 

It is easily verified that in the limit as 7 - 0 Equation (9) simplifies to give Equation 
(5). Equation (9) was evaluated numerically, and compared (see Table I) to the zero 
order flux derived earlier. It is clear from the Table that as 7 increases, the incident 
beam is increasingly attenuated, so that F(O) > F(i). In fact, on including the 
attenuation of the beam before scattering, the scattered flux is reduced by 30% at 
7 = 0.5. It would, therefore, seem logical also to include the attenuation of the 
scattered beam, in order to obtain the ‘true’ single scattered flux, FSS. However, the 
simple geometric approach that has been followed until now can no longer be 
applied, since the optical path after scattering depends on where the light strikes the 
nucleus. We have, therefore, adopted the method whereby the light ray from each 
scattering element in the coma, is traced to discrete surface elements on the nucleus 
surface (see Appendix A). This method, besides correctly including the attenuation 
before and after scattering, also automatically takes into account the correct solid 
angle, and excludes the backward shadow region. Furthermore, it is not restricted 
to any simplifying assumption for the phase function. The fourth column in Table 
I gives FSS calculated in the way described in Appendix A. As one would expect 
F ss < F(l), especially at large r where there is greater attenuation of the scattered 

beam. 
Leaving for a moment the treatment of the scattered flux, we turn our attention 

to the attenuated direct sunlight, given by the Equation Fdir = (Se-7/4). According 
to Equation (6), the attenuation of the tangential light ray (z = 0, b = R) is e-1r7’2. 
Therefore, independent of the nucleus radius the optical depth to the edge of the 
nucleus is a factor of n/2 larger than to the center. Hence, a large fraction of the Sun- 
facing hemisphere is shielded by a substantially thicker dust blanket than implied by 
7. This effect will be most important for moderate values of 7. The correct direct flux 
at the surface per unit area is given by 

s 

x/2 

Fdir = S e-T(e) cos 8 x 23rR2 sin 0 d0/47rR2 = 
0 

= .i,’ gexp [-f ($ - arccosir)l pdp, 
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TABLE II 

The corrected direct flux Fdir as given in Equation (10) 
compared with F = (1/4)e- 7 

7 F Fdir Edir/F 

0.1 0.2262 0.2231 0.986 
0.5 0.1516 0.1415 0.933 
1.0 0.0920 0.0804 0.874 
1.5 0.0558 0.0458 0.821 
3.0 0.0125 0.0086 0.691 

where p = sin 19. For example, if r = 1, Fdir is about 13% smaller than Fdir (Table II). 
We can now evaluate the effects of the dust on the total flux received by the nucleus 

in the limit of small 7. In this limit Equation (10) simplifies to 

Fdir = f (1 -(r-2)7). (11) 

Combining this with the single-scattered flux given by Equation (5) corrected for the 
solid angle, we find that 

FT = 4 z [l -(1.14-0.95 w)~] + F,, , (1.2) 

where F,, denotes the thermally re-radiated flux. Hence, it can be seen that even for 
conservative scattering (w = 1, F,.,. = 0), FT is a decreasing function of the opacity of 
the coma. In the more general case of w < 1, the probability that a photon is absorbed 
by the dust grains is given by (1 - w). If we assume the emissivity E = 1, all absorbed 
radiation will be isotropically thermally re-radiated at infrared wavelengths. In the 
limit of small 7 the probability of striking the nucleus is, therefore, the same for the 
thermally re-radiated and the scattered visible radiation. Hence, the decrease in the 
latter contribution is exactly compensated for by the inclusion of the thermal re- 
radiation. Therefore, the total flux is independent of w, and is obtained by setting 
w = 1 (F,, = 0) in Equation (12). 

3. Anisotropic Single Scattering 

We now turn our attention to anisotropic scattering while remaining in the single 
scattering approximation. The Henyey-Greenstein phase function is most 
commonly used to represent scattering from non-spherical particles. It takes the form 

P(P) = (1 - g2)/U + g2 - 2g P)3’21 (13) 

where - 1 < g < 1, and p is the cosine of the angle between the direction of the initial 
and emerging light ray. However, as will be demonstrated below, Equation (13) can 
be approxima.ted for a restricted range of g, by the computationally convenient 
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truncated Legendre polynomial expansion (Euler phase function) 

P(P) = 1 + xf.6. (14) 

From the definition of the anisotropic factor 

g = ‘/2 j’ , P(P)P &cl, 

the Legendre coefficient X = 3g. Since p(p) is non-negative, X must be less than 1 .O 
or g < l/3, if this truncated expansion is to be used. However, micron-sized silicate 
dust grains are strong forward-scatterers with an anisotropic factor g 5: 0.7 
(Weissman and Kieffer, 1984a; Marconi and Mendis, 1984). 

If we substitute the above equations into Equation (l), analytical integration of 
Equation (13) is only possible over the Sun-facing hemisphere, which when carried 
out yields 

F = US $ [l/g + 1 -(l -g2)/g(l +g2)“2]; 

while the Euler function integrated over the same region, yields 

F = wS $ [l + 3g/2]. 

(1% 

(16) 

For g = 0.1 and 0.3, Equation (16) overestimates the flux by a factor of 1.001 and 
1.015, respectively. Moreover, while Equation (16) is not strictly valid for g = 0.7, 
the flux is overestimated by only 12%. Therefore, in order to obtain closed analytical 
expressions for the nonisotropic flux, we shall assume the Euler phase function given 
by Equation (14). However, it must be kept in mind that this represents an upper 
bound on the impinging flux at the nucleus. 

Squyres et al. (1986) found that in the optically thin limit, the anisotropic 
contribution to the flux cancels, because of the assumed cylindrical symmetry. 
However, if we take into account the asymmetry introduced by the ‘forward shadow’ 
region (Figure lb), the ‘zero-th order’ order flux becomes 

F= +/4 + 1 + g/2]. (17) 

Hence, the important contribution to the diffuse flux arising from the ‘forward 
shadow’ region w&X/48 manifests itself. 

Following along the same lines as the isotropic studies, we now consider larger 
optical depths, so that the attenuation of the initial beam must also be taken into 
account. The additional term to Equation (7) arising from the anisotropic factor is 
X G(l), where 

G(l) = z &R3 

4 cexP [--(a-n (;) +$)I (z2$j5,2 . (18) 
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Fig. 2. The single scattered and total flux impinging the nucleus as a function of the optical depth, 7, 
for an isotropic and a highly forward scattering Henyey-Greenstein phase function. Conservative 

scattering (w = 1) was assumed. 

The integration over dz can be done analytically, after which the integration over the 
impact parameter b leads to the expression 

G(l) = 2 [’ 
’ 2UCuK - (3 + U2)e-uK’2 dU + 

(1 + U2)(9 + U)2 s 
*‘2 (1 _ ,-7x/sin “) x 

0 0 

sin2 x cos x dx 
X 

X I 
9 (19) 

where as before, u = rR/b. Combining this with Equation (9) we obtain the ‘first- 
order’ anisotropically-scattered flux. 

The ‘zeroth-and first-order’ anisotropic terms are given in Table III. Note that the 
attenuation of the flux in G(l) is not symmetrical with respect to the Sun and anti- 
Sun facing directions. Consequently, adding the positive and negative contributions 
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TABLE III 

The non-isotropic contribution to the zeroth 
and first order single scattered flux as a 
function of 7, as defined in Equations (17) 
and (19). The factor wS is taken to be unity, 
and all terms must be multiplied by the factor 

x10-2. 

0.01 0.021 0.021 
0.05 0.104 0.107 
0.10 0.208 0.217 
0.15 0.312 0.331 
0.20 0.417 0.446 
0.25 0.521 0.561 
0.30 0.625 0.676 
0.35 0.729 0.791 
0.40 0.833 0.905 
0.45 0.937 1.015 
0.50 1.042 1.125 

to the anisotropic part of the flux, we obtain a slightly larger value than was found 
for the zeroth-order case. 

Analogously to Equation (12), the total flux for anisotropic scattering in the limit 
of small 7 is given by 

FT = + [l-(0.19-(0.265&,1, 

where we have assumed the Euler phase-function, and the thermal re-radiation is 
incorporated by the way described at the end of Section 2. For g < 0.5 the total flux 
is only slightly overestimated over that which would be obtained on using the 
Henyey-Greenstein phase function. However, the use of the latter function results 
in a decrease in FT with r for all g (Figure 2), contrary to Equation (20) which shows 
an increase in F, for wg > 0.74. It is clear from the figure that P, and, therefore, 
also F, increases as a function of g. For example at r = 0.5 and g = 0.75, E, and 
FT are increased by about 25% and 8% respectively over the isotropic case. This 
increase however is still insufficient to reverse the trend of FT decreasing with 7. 

4. Multiple Scattering 

For moderate to larger values of 7, the single scattering approximation fails. The 
optically thicker atmosphere means that there will be a larger number of scattering 
centers, so that the light ray may change its direction many times before its path 
intersects the nucleus. 

We therefore solved the full radiative transfer equation for a spherically-symmetric 
atmosphere illuminated by parallel solar rays. The equation is given (cf. Sobolev, 
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1975, p. 219) by 

+ (I +p aI 
cos 4 z - y 

Cot $ (l-P21K sin ~ ar _ 
r a+ 

= ck!(r)(B -I), (21) 

where the source function B(r, $, 0, qb) is given by 

2lr 

B=$ d$’ 5 s 7r 

0 0 

I@, $, 8’, 4’) P(6’) sin 8’ de’ + i SP(G)e-T; 

(22) 

where I@, $, 0’) 4’) is the intensity, y = cos 0, and r, # are the spherical coordinates 
of the point in the atmosphere, for which il/ is the angle between the radius vector 
of the point and the direction towards the Sun. Note that $ now corresponds to the 
spherical angle which was denoted by 0 in Section 2. Following Sobolev, we denote 
the incident radiation at the top of the atmosphere by aS, in place of S, used in the 
previous sections; 01(r) is the absorption coefficient, and o is the grain single 
scattering albedo. The phase function for scattering between the (0’, 4’) and (0, 4) 
directions is P(g ‘) = 1 + X cos 6 ’ , where cos 6’ = cos 0 cos 8’ + sin 0 sin 0’ 
cos($ - $‘), and X is related to the anisotropic factor (see Equation (14)). 

The optical depth T, measured from the outer surface to the point in the 
atmosphere is given by 

(IT-r2 sin IJ)” 

T= 
s 

a(r’) dz’ (23) 

r sin II 

where R, is the outer limit of the dust envelope. By assuming a(r) to vary as l/r2, 
Equation (23) can be integrated to give 

T= a(r)/(r sin $) [arctan(R,/r sin $) + $ - 7r/2]. (24) 

The above expression is analogous to Equation (6) in the single-scattering 
approximation. 

Wilson and Sen (1980) developed an approximate technique for solving the 
complex integro-differential equations (21) and (22), by taking their appropriate 
moments and representing the radiation field by three streams, with each stream 
averaged over p.. On the basis of the shadowing effect of the nucleus, the intensities 
were defined as 

Z=I,(r,$)+f(r,$)cos+; n-1,2,3 (25) 

for the three regions CL, 5 ,u I 1, 0 < p < ,I+ and - 1 I p I 0, respectively, where 

pr = [l - (R/r)2]1’2. (26) 
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The multiple scattered flux per unit area Fms is, therefore, the average of Zs-the 
downward directed intensity over the surface area of the nucleus. Substituting 
Equation (25) into the appropriate moment equations, Wilson and Sen (1980) derived 
a closed system of four partial differential equations 

g+ fcot$ 
1 

= a (w- 1) J + 4 awSe-T, (27) 

$+L(jKJ)= -&-&f 
r 

5 [p,(3K-J) + 2H] + ?(3K-J) + $ = 

(28) 

=- (29) 

sin $ SeCT, (30) 

where the moment J, H, and K are defined 

J= 
s 

Zdw/47r; H = 
s 

Z p dw/4a; K = Zp2 dw/4a. (31) 

The boundary conditions are: 
(i) the downward-directed diffuse radiation 1s at the outer boundary of the coma 

is zero. Writing Zs in terms of the above moments J, H, and K, we obtain 

p,J+ 3K- 2(1 + ,u,)H= 0;. (32) 

(ii) the diffuse radiation reflected back to the medium at the inner boundary 
(surface), is given by the albedo A times the downward-directed flux. This leads to 

J+ 2H=A(J- 2H+S cos $ e-7) and K= J/3. (33) 

On the basis of the latter boundary condition, Wilson and Sen (1980) 
approximated the moments J, H, and K, to obtain with the aid of Equation (30), a 
closed expression for f, of the form 

+(3-wX)f= Fsin$SeeT + A$ 
[ 

sin II/ + cos $ aT . 
w 1 (34) 

However, on substituting Equation (24) into (34) it was found that, at the outer 
boundary R,, Equation (34) becomes unbounded. The above authors, and more 
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recently Wilson and Wan (1983), did not encounter this problem because they studied 
an atmosphere whose extent was very small compared to the nucleus radius. Even 
for this case, a close inspection of Table I of Wilson and Sen (1980) discloses 
unphysical fluctuations in the intensity with increasing r for a nonzero ground 
albedo. Marconi and Mendis (1984), chose to solve the above system of equations 
in the Sun-comet axis ($ = 0), where the rotational symmetry of the radiation field 
about this axis implies that f = 0. It does not imply, however, as assumed by the 
authors, that af/arl/ + cot $1 f = 0 (Equations (27) and (29)). This becomes evident in 
the limit R, - 00, where we can approximate Equation (24) by 

T = ar(r)r$/sin $. (35) 

Substituting Equation (35) into (34), and letting $ - 0, we obtain 

(36) 

The factor l/ar in the last term of Equation (36), makes the latter to diverge even 
faster than Equation (34). It would, therefore, appear that the definition of the 
intensity given by Equation (25) contains an inherent singularity. In order to avoid 
this singularity, we chose the ground albedo A = 0 and considered only isotropic 
scattering -i.e., X = 0. This suppresses the right-hand side of Equations (34) and (36) 
to zero. Equations (27)-(29) are now of the same form assumed by Marconi and 
Mendis (1984), and can be used to calculate the impinging flux as a function of $. 
Fortunately, very small albedos have recently been reported for cometary nuclei, 
typically less than 0.1 (e.g. for Halley A = 0.04; cf. Keller et al., 1986); so that the 
restriction on the albedo is not critical for our purposes (see Appendix B). The effects 
of anisotropic scattering will be discussed at the end of this section. 

As a first check of the method we neglected the multiple scattering term in the 
source function of Equation (22), and compared the single scattered flux F, to the 
numerically-integrated flux given in Appendix A. The results are presented in the last 
two columns of Table I. We see that there is very good agreement between the two 
methods differing by at most 7% at 7 = 0.5. This was also found to be true for the 
distribution of the flux with $. 

We now turn to the full solution of the moment Equations (27)-(29). The 
variation in I3 at the surface as a function of $ is shown in Figure 3. It can be seen 
that for small T, I3 is nearly constant with li/, only significantly diminishing close to 
the shadow region behind the nucleus. For larger opacities the diffuse radiation 
decreases more rapidly with increasing $. This is a consequence of the fact that for 
larger II/, the light must travel further before it is scattered towards the nucleus, so 
that it is more strongly attenuated. Nevertheless, the ‘dark-side’ of the nucleus is still 
heated as a result of the diffuse radiation fields, an effect which would not be 
observed in the absence of a coma. It is interesting to note that at 7 = 3.0, I3 at the 
surface is smaller than at 7 = 2.0 for all 4. This effect can also be seen in Figure 4, 
which shows the behaviour of I3 versus height above the nucleus for $ = O”, 60” 
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\1, 
Fig. 3. The downward directed diffuse radiation I, at the surface as a function of $ and 7, obtained 

from the moment equations (27)-(29), for g = A = 0 and O) = 0.9. 

and 120’ at 7 = 3.0, as well as for $ = 0” at 7 = 2.0. In the first case, the maximum 
in I3 occurs at an altitude of approximately 1.6R at 1c/ = 0’) increasing to a height of 
approximarely 2.5R at $ = 120”. This behavior results from the increased 
attenuation of the incident beam with increasing $, as mentioned previously, as well 
as the shadowing effect of the coma by the nucleus for $ > 90”. Furthermore, at 
$ = 0” it can be seen that the maximum in I3 is greater for 7 = 3.0 than for 7 = 2.0. 
Hence, it is quite apparent that although the maximum in I3 increases with 7, it 
occurs at a greater height above the nucleus, resulting in a smaller heat flux at the 
surface. 
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Fig. 4. I, as a function of height above the nucleus for different values of $, obtained from the moment 
equations (27)-(29). The solid lines represent 7 = 3.0 and the dashed line 7 = 2.0. (g = A = 0, w = 0.9). 

The distribution of the total energy flux on the nucleus surface as a function of 
$ for the case of isotropic conservative scattering is presented in Figure 5. In the no 
coma case (7 = 0), the flux simply varies as cos $. With increasing opacity, multiple 
scattering tends to dominate over the attenuated direct flux, re-distributing more 
energy to the unilluminated side of the nucleus. Thus the effect of an optically thick 
coma on the energy flux reaching the nucleus is not only to diminish it, but also to 
make the surface more isothermal. 

For non-conservative scattering, he must also include the contribution from the 
thermal re-radiation. In the Marconi and Mendis (1984) solution, a small but non- 
zero infrared opacity was assumed. Subsequently, they solved the same set of 
Equations (27)-(29) after replacing the source function with the appropriate black 
body radiation term. However as briefly described in Section 2, we have assumed that 
all the visible radiation absorbed is subsequently emitted isotropically at infrared 
wavelengths greater than the average grain size. Consequently, it will undergo only 
a negligible amount of attenuation after scattering before reaching the nucleus. This 
simplifies the calculation as follows. The amount of absorbed radiation for each 
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Fig. 5. The distribution of the total energy flux on the nucleus surface as a function of 7 and $ for 
isotropic conservative scattering. 

volume element in the coma is multiplied by the probability that the re-radiation is 
directed towards the nucleus and then integrated over the entire coma. This leads to 

F = (1-w) 
ri- 4rR2 sss 

~ (‘&+-+J) t1 --j2) (y dl/ 
, 

2 
(37) 

where we have incorporated Hellmich’s (1981) form for the solid angle, and cx 
d V’= r2 sin II/ d$ dr d$. The terms aSe- r and ?rJ correspond to the absorbed direct 
and diffuse radiation (Equation (3 l)), respectively. 

The behaviour of the isotropically multiple scattered, thermally re-radiated, and 
attenuated direct fluxes; FmS, F,,, and Edir, respectively, as well as the total flux 
with and without a coma, are shown in Figure 6 as a function of r for w = 0.9. Also 
shown is the ‘first-order’ single scattered flux E(l), where it will be recalled that the 
attentuation of the scattered beam was neglected. It is immediately evident from the 
figure that for the chosen set of parameters, Fms > Edir for r > 0.8, and F,, > Edir 
for r > 1.8. The smaller contribution from F,,, is a consequence of the large single 
scattering albedo. Most importantly, the sum of all three terms which gives the total 
flux was always less than that obtained in the case of no coma. 

Finally, it is interesting to note that F,, is closely approximated by E(i) for all 
7 < 2.0. In other words, the neglect of the attenuation of the scattered beam after a 
single-scattering event, closely mimics multiple scattering. However for r > 2.0, E(l) 
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Fig. 6. The multiply-scattered, thermally re-radiated and attenuated direct flux, F,,,,, F,,, and Fdir 
(g = A = 0,~ = 0.9) as a function of 7. Also shown is the total flux with and without a coma, and the ‘first 

order’ single scattered flux E(l). 

continues to increase monotonically, whereas Fms reaches a maximum and then 
declines. In addition, for small T the second term in Equation (37) is much smaller 
than the first term, so that Equation (37) can be approximated by scaling EC’) given 
by Equation (9) by (1 - w) in place of o. Therefore, as was observed in the case of 
isotropic single scattering, the thermal re-radiation and the isotropic multiple 
scattering tend to compensate each other. 

As we have stated, the above the results strictly apply to isotropic scattering in the 
case of zero ground albedo. It was later found through Monte Carlo simulations (to 
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be discussed in a future publication) that for g = 0.75, F,,,, was increased by - 25070, 
however still not enough for the total flux to be greater than in the no coma case. 

5. Plane-Parallel Approximation 

The complexity of the calculations in Section 4 arose as a result of the dependence 
of the intensity on the two spatial and two angular variables r, $, 0, $I. In comparison, 
the azimuth-independent intensity in the plane parallel geometry is simply I&, cl,,), 
where CL,, is the cosine of the solar zenith angle (denoted by # in Section 4). This 
greatly simplifies the solution of the radiative transfer equation, and it is for this 
reason that most of the work on planetary atmospheres has been based on this 
approximation (Irvine, 1975). In fact, Sobolev (1971) argues that if the extent of the 
atmosphere is very small compared to the curvature of the planet, a plane-parallel- 
layered atmosphere can be applied provided that the angle of illumination is 
adjusted for the sphericity of the atmosphere. In the case of comets this condition 
is less likely to be satisfied. However, it is still of interest to study the applicability 
of the plane-parallel approximation in the light of the results in Section 4. 

The azimuthally-averaged form of the transfer equation, describing the intensity 
I(7, cl) is of the form 

s 

1 

-1 
P(p, p’) I(T, p’) dp’ + $ P(p, ,uc) e-7/fro, 

(38) 

where (as defined earlier) w is the single-scattering albedo, p and pco are the cosine of 
the emergent and solar zenith angles, respectively; P(p, cc’) is the azimuthally 
averaged scattering phase function for light incident at p’ and scattered in the 
direction ~1; and r,S is the incident solar flux. Equation (38) was solved with the aid 
of the Eddington approximation, which assumes that the intensity can be expressed 
as Z(7, cl) = Z&T) + It(r)p. The solution to Equation (38) is given in Equations 
(12)-(14) of Shettle and Weinman (1970). Although the Eddington approximation 
is slightly less accurate than the more involved higher-order approximations such as 
the 4-stream (Liou, 1974), it is sufficiently accurate for our purpose. In general, it 
turns out that close to the Sun-comet axis (pO = 1) the plane parallel approximation 
overestimates the flux; while for $ > 30’ it tends to underestimate the flux. For small 
7, these differences partially compensate each other if the multiply-scattered flux is 
integrated over $. Thus, in order to obtain an estimate for the multiply-scattered flux 
averaged over the surface, the spherical coma was replaced locally with a plane 
parallel atmosphere of the same total optical depth, illuminated from the 
appropriate directions. It is clear from Figure 7 curves (c) and (d), that for 7 > 0.25 
the plane parallel approximation underestimates the scattered flux. A slightly better 
approximation to Fms was obtained by choosing a suitable pLo to represent the 
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Fig. 7. A comparison between the multiple scattered flux in the plane-parallel approximation with the 
solution of the moment equations. Curves (a) and (b) represent the plane parallel multiply-scattered flux 
(as a function of 7) for fig = 0.25 and 0.5, respectively. The dashed curves (c) and (d) represents the 
average multiply-scattered flux over the nucleus surface in spherical geometry (Section 4), and plane 

parallel geometry (Section 5) respectively. 

effective illumination angle. This is the method used by Weissman and Kieffer 
(1984a), who chose p. = 0.3. While it is clear that no one optimal p,, exists for which 
the plane parallel and the spherical solutions agree over a wide range of 7, over 
discrete intervals of 7 the two solutions will agree with the correct choice of pO. For 
example, on comparing curves (a), (b) with (c), is clear that at r = 0.5 the fluxes are 
in good agreement for p. = 0.25, while r = 1.5 requires the cosine of the effective 
solar zenith angle to be increased to = 0.5. 

6. Discussion 

With the recent satellite flyby missions to comet Halley, much has been learned about 
the more complex properties of the coma. For example, the coma morphology, dust 
jets, the nature of the dust grains, etc, are all properties about which a great deal of 
new insight has been gained (Nature 321). Unfortunately, no direct measurement has 
yet been made of the total coma opacity. Any mention of the opacity of the coma 
entails a priori assumptions about the physical characteristics of the dust grains, e.g. 
their single scattering albedo (Keller et al., 1986). One particular difficulty is the 
presence of discrete dust jets, which can be seen to be many times more optically thick 
than the surrounding area. Similarly, thermal models that incorporate 
hydrodynamical calculations to compute the opacity are subject to numerous 
assumptions such as the dust/gas ratio and the particle size distribution. Thus, 
instead of attempting to derive the opacity and the related heat flux at the surface 
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for particular comets, as was done in the past, a wide range of 7 values was considered 
and the impinging flux at the nucleus subsequently studied. Although this study 
enables us better to understand the factors involved in the radiative transfer problem 
in spherical atmospheres, its application to comets is limited by its assumption that 
the dust density varies uniformly as l/r2 around the nucleus. In reality, the dust 
density has been shown to be asymmetric with respect to latitude, and to depend on 
the rotation of the nucleus (Sekanina and Larson, 1986). 

In the optically-thin limit, closed form expressions were derived describing the 
single scattered flux in a spherically symmetric atmosphere. From these analytical 
expressions it was seen that the ‘forward shadow’ region of the coma makes a 
significant contribution to the flux. Although the non-isotropic singly scattered flux 
was larger than in the isotropic case, the total flux resulting from the diffuse radiation 
fields in the coma, was shown to be a decreasing function of 7. In other words, it 
was always less than the unattenuated direct radiation obtained in the absence of a 
coma. Furthermore, on considering two different forms of the radial distribution of 
the dust, l/r2 and 1/r3, the latter resulted in a smaller flux at least in the isotropic 
case. Since the l/r3 distribution concentrates more dust in a smaller volume 
surrounding the nucleus, this result is in qualitative agreement with the results of the 
plane parallel approximation, in which the average flux was less than that obtained 
in the spherical l/r2 distribution. 

The application of the moment solution of Wilson and Sen (1980) to cometary 
atmospheres (Marconi and Mendis, 1984), was found to be somewhat restrictive; 
being defined only if A = g = 0. However, with these restrictions taken into account, 
the behaviour of the single scattered flux as function of 7 and II/ was found to be in 
good agreement with the method described in Appendix A. For the isotropic 
multiple-scattering case, the downward-directed diffuse intensity 1s was generally 
found to be a non-monotonic function of the radial height r. For example, for 
7 > 2.0, Z3 attained its maximum a few kilometers above the nucleus, yielding a 
slightly lower value at the surface. Furthermore, at larger opacities the flux at the 
surface rapidly decreases with $, which in the case of comets, would result in a 
decreased dust production rate with II/. However, in the region where the dust 
production rate - and, therefore, 7 - is largest, it has been shown to possibly lead 
to a reduced energy flux; so that a negative feedback mechanism would be initiated. 
This would tend to make the surface more isothermal than would be the case if the 
coma were spherically symmetric, or if no coma were present. Most importantly, 
although this study was limited to isotropic scattering, the total flux impinging the 
nucleus was never found to be greater than nS, the direct flux in the absence of a 
coma. 

Finally, the approximation where the spherical atmosphere was replaced locally at 
each rl/ by plane parallel layers, was found to underestimate the flux for moderate 
to large 7. Over discrete intervals of 7 the flux was slightly better approximated by 
choosing an effective fro. Nevertheless, the applicability of the plane parallel 
approximation is still somewhat restricted, since there is no one effective p. which 
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Fig. Al. The coordinate geometry used in the numerical integration of the single scattered flux. 

could be chosen to represent the flux as a function of 7 for a real spherical distribution 
of dust. 
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Appendix A: Calculation of the ‘True’ Single Scattered Flux as a Function of the 
Angle I,L 

Consider a surface element dA = R2 sin rl, d$ d$ on the nucleus, centered at the 
point rc = (R sin 1+5 cos 4, R sin $ sin q5, - R cos $) (Figure Al). As seen from the 
point of scattering, rS = (b, 0, z), it corresponds to a solid angle da = dA cos Q/P, 
where r = I rS - rc I and cos Q! = r;(rS - r,)/(Rr). Here Q! is the angle between the 
outward directed normal at the point rc, and the direction where the point rS is seen 
from the surface. If cos (Y < 0, this surface element is in the shadow of the nucleus 
as seen from the point rS. 
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The total flux falling onto the surface can be expressed as 

‘31) 

G42) 

where ra and r6 denote the optical depths before and after scattering respectively, 
while P(p) is the phase function. The integration limit on z, z,,, = 03 if b > R, and 
2 max = - [R2 - b2]‘12 if b I R, excludes the backward shadow region, while the 
integration on 4 is limited to the region where cos 01> 0. In terms of cylindrical 
coordinates 

cos a = (b cos C$ sin # - z cos $ - R)/{, (A3) 
b= [(b-Rcos+sir~$)~+R~sin~~$sin~$+(z-Rcos$)~)~’~; (A4) 

SO that cos CY 2 0 if cos C$ L (R + z cos rC/)/(b sin 4). The optical distance 7, is 
according to Equation (7) given by 

while 

TR 
7, = - 

b 

rb = TR 
s 

r ds 

0 

y2 ; 

(A9 

where r is the total optical thickness in the Sun-comet axis. The integration is carried 
out over the path after scattering, where the radius vector is r = rs + s (rC - r,)/{. 
Substituting for r2 in Equation (A6) we obtain 

s 

I 
rb = rR 

ds 

s=o s2+ps+q 
= $j [arctan t+)- 

- arctan 
( >I 

P 
lb ’ 

where 
p = 2’;..(r, - r ) S’ 
q = z2 + b2, 

A=4q-p2. 

The cosine of the angle between incident and emerging light beams is simply 

p = (rc - rJ/[.$ = - (R cos $ - z)/f, 

which can be used as an argument in an arbitrary phase function. 

(A7) 
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Fig. B1. The coordinate geometry used in obtained the fraction of reflected radiation scattered back 
from the atmosphere. 

The single scattered flux calculated by using Equation (A2) is shown in Table I. 
It has also been used as an additional check for our generalization of the Marconi 
and Mendis (1984) solution. 

Appendix B 

Consider the case of a non-zero ground albedo. All the visible radiation that impinges 
the nucleus will not go into heating, a fraction AF of it, will be reflected back to be 
further scattered. If P represents the probability that a photon reflected from the 
surface returns to the nucleus, then the flux at the surface is given by the sum of the 
geometric progression 

(l-A)F[l+AP+(AP)* + . ..I = ;;I;; . 

The fraction of radiation scattered back from the coma depends on the angle 
between the direction of reflection and the outward directed surface normal (Figure 
Bl). If this fraction is denotedf(4), the total probability of return from the coma 
is given by the integral 

i 

r/2 
P=2 f(4) ~0s (4) sin ($1 d4 032) 

0 

where the cos 4 term implies a Lambert surface. To evaluatef(4) we use the formula 
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f(4) = [a~R/r2 (R2/4r2) ds, v33) 
0 

corresponding to the ‘zeroth-order’ approximation. Substituting r2 = s2 + 2sR 
cos 4 + R2 into Equation (B3) and integrating yields 

f(4) = z 1 
8 sin2 4 

(B4) 

Finally, on substituting Equation (B4) into (B2) we obtain the probability 
P = (4 - a)/8 7 = 7/9. 

If we now consider the ratio of the total flux in the presence of a coma to that in 
the no coma case, the factor (1 - A) in Equation (Bl) cancels out. The increase in 
the flux due to the reflected photons scattered back from the atmosphere is therefore 
(1 - YIP)-‘. For example, if r = 1.0 and A = 0.04, as observed for comet Halley (cf. 
Keller et al., 1986), the increase in the flux is only = 0.4%. Furthermore if the 
scattering were strongly forward-directed the probability would be even further 
reduced. 

The simplicity of Equations (B2)-(B4) goes back to the fact that we have neglected 
multiple scattering and the attenuation by the atmosphere. However, although these 
equations strictly apply to the case r - 0, Monte Carlo simulations have shown that 
the neglect of both these effects tend to negate each other so that the final result 
P = r/9 is a rather good approximation also for moderate and large 7’s. 
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