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Abstract. Three-dimensional gas flow in the solar nebula, which is subject to the gravity of the Sun and 
proto-Jupiter, is numerically calculated by using a three-dimensional hydrodynamic code - i.e., the so- 
called smoothed-particle method. The flow is circulating around the Sun as well as falling into a potential 
well of proto-Jupiter. The results for various masses of proto-Jupiter show that (1) the e-folding growth 
time of proto-Jupiter by accretion of the nebular gas is as short as about 300 years in stages where the 
mass of proto-Jupiter is 0.2 - 0.5 times the present Jovian mass, and that (2) proto-Jupiter begins to push 
away the nebular gas from the orbit of proto-Jupiter and form a gap around the orbit, when its mass is 
about 0.7 times the present Jovian mass. It is possible that this pushing-away process determined the 
present Jovian mass. 

1. Introduction 

Each of the giant planets contains a rock and icy core of lo-30 M, (see a review 
by Stevenson, 1982). This remarkable similarity of masses is consistent with the 
following scenario. Solid planetesimals grow by collisional coagulation in the solar 
nebula which itself is stable against gravitational instability. When the mass of a 
planetesimal exceeds 1024-1025 g, the ambient nebular gas is attracted to form an 
atmosphere around the planetesimal. Hereafter, we call such a massive planetesimal 
a protoplanet and its solid region a core. When the core mass exceeds a critical value 
of about 10 M,, its atmosphere becomes unstable and contracts toward the core 
(Mizuno, 1980). At this time, the mass of the atmosphere is also about 10 M,. This 
critical core mass as well as the atmospheric mass scarcely depends on the distance 
of a protoplanet from the Sun. At the onset of above-mentioned Mizuno’s 
instability, the sum of the core mass and the atmospheric mass is about 20 M, and 
is much smaller than the masses of present Jupiter and Saturn. 

For the further evolution of proto-Jupiter, Bodenheimer (1985) showed that, with 
the growth of proto-Jupiter, its envelope contracts keeping a nearly hydrostatic 
balance, and its mass becomes about 0.2 MJ (MJ being the present Jovian mass) in 
a n+=riod of 5 x lo4 yr. Further he showed that, afterwards, the contraction rate of 
the protoplanet increases so that the radius of its boundary surface becomes as small 
as O.l6r, (rH being the Hill radius) in a period of 2 x lo3 yr, and O.O18r, in 
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7.2 x lo4 yr. Bodenheimer assumed that the gas accretion is negligible in this rapid 
contraction stage, but the effect of accretion is to be taken into account (Safronov 
and Ruskol, 1982). One of the aims of this paper is to find this accretion rate. 

On the other hand, evolution of the nebula itself in this accretion phase was studied 
by Goldreich and Tremaine (1980), and Papaloizou and Lin (1984). They developed 
theories based on linearized hydrodynamic equations, and deduced the transfer rate 
of angular momentum in the protoplanet-nebula system. Their conclusion is that a 
protoplanet in the solar nebula pushed away nebular gases from its orbit, opened up 
a gap in the nebula, and finally terminated the further accretion of gases. Another 
aim of this paper is to study nonlinear effects in the above process by means of 
numerical integration of ‘fully nonlinear’ hydrodynamic equations. 

Previously, the numerical study of the ‘nonlinear’ flow around a protoplanet was 
performed by Miki (1982); he calculated numerically the stationary flow of a 
polytropic gas (n = 1.5) in the neighborhood of a protoplanet in the approximation 
of a two-dimensional flow, where the variation of physical quantities in a direction 
perpendicular to the nebular disk was neglected. His results showed that two trailing 
arms appear near the Jovian position when the proto-Jovian mass exceeds one tenth 
of the present Jovian mass. He did not, however, solve the flow in stages after 
Mizuno’s instability, since his intention at the time of his calculation was mainly to 
find a boundary condition for the primordial atmosphere of a protoplanet (for the 
atmosphere, see Hayashi & al., 1979). 

In this paper, we calculate the three-dimensional flow of an isothermal gas which 
is circulating around the Sun and is, partly, falling into a potential well of proto- 
Jupiter under the gravitational effect of the Sun and proto-Jupiter. We consider 
various masses of proto-Jupiter and restrict ourselves to a region outside the 
photosphere of proto-Jupiter, where density is low enough and gases are transparent 
to visible and infrared radiation. As will be shown in Section 3, a two-arm pattern 
as was found by Miki appears also in the three-dimensional calculation. Further, we 
find that proto-Jupiter itself pushes away gases from its orbit when the mass of 
proto-Jupiter is as large as the present Jovian mass. 

2. Basic Equations and Numerical Method 

In this paper, we intend to find basic features of the nebular gas flow. For this 
purpose, we make the following simplifications: 

(1) The Sun is at rest relative to an inertial frame. 
(2) The motion of a protoplanet is Keplerian. 
(3) We consider stages where the photosphere of the protoplanet has contracted 

to a size much smaller than (say, one fifty of) the Hill radius in. Here, the Hill 
radius is given by 

rH = ap (M,/3 k?B)1/3 = 0.355 (a/5.2 AU).(IM,/M,)1’3 AU, (2.1) 

where ap and MD are the mean orbital radius and the mass of the protoplanet, 
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respectively. According to Bodenheimer (1985) (see Section l), this circumstance is 
realized at 1.2 x lo5 yr after Mizuno’s instability (Bodenheimer, 1985). 

(4) In our calculation, the computation time is mainly consumed by the 
computation of fluid particles rotating rapidly around the protoplanets. In order to 
save this computation time, we cut off the gravitational potential of a protoplanet 
at a sphere with the radius, rc = O.lrH, and the potential in the inner regions is 
approximated by a harmonic potential. That is, the gravitational force of the 
protoplanet is written as 

Q.2) 

where rP is the radial vector from the protoplanet, and rp is the absolute value of $ 
(hereafter, the absolute value of a vector is represented by the light-face letter). We 
further assume that the growth rate of the protoplanet is given by the rate of mass 
inflow across the sphere with the cutoff radius. We have checked that both the flow 
pattern outside the Hill sphere and the growth rate of the protoplanet scarcely depend 
on the adopted value of the cutoff radius r, as long as rc < rH. 

(5) Gravitational force due to the nebular gas is neglected. The effect of this force 
can be approximated by a very slight change of the solar gravity when the nebula is 
nearly axisymmetric. This assumption is valid in such a case. 

(6) We assume the gas to be isothermal and use the value of temperature, T, at 
the orbit of the protoplanet, which is determined by the balance of heating due to 
solar irradiation and cooling due to radiation from grain particles floating in the 
nebula - i.e., 

T= (L~/16m7$~)~‘~ = 123 (aJ5.2 AIJ-“2 K, (2.3) 

where L, is the solar luminosity and CT is the Stefan-Boltzmann constant. Strictly 
speaking, the gas temperature is not constant, that is, the equilibrium temperature 
decreases with the distance from the Sun and also the temperature rises if a gas 
element is compressed relatively rapidly. In this paper, however, we restrict ourselves 
only to study the basic features of the flow around the orbit of a protoplanet; thus 
the calculation with the above assumptions is sufficient for our purpose. 

NOW, we use a rotating coordinate system such that the origin is at the Sun, and 
that the x- and y-axes rotate around the z-axis with the mean angular velocity !l of 
the protoplanet, whose mean position is on the positive x-axis. Then the equation of 
motion of a nebular gas element of the nebular gas is written as 

Dv GMor 
Dt= 

-2fixv-nx(Qxr)- r.3 ___ + FJr,) - fV P + S. (2.4) 

Definitions and notations used in this equation will be described in the following. 
First, v is the velocity and r is the position vector of the gaseous element from the 
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Sun. Furthermore, p is the density and P is the pressure. They satisfy the equation 
of state, 

P = kTp/rn = c2p, (2.5) 

where k is the Boltzmann constant, m is the mean molecular mass 
(= 3.92 x 1OP24 g). Finally S is the artificial viscosity term, whose strength is 
adjusted so that the plane shock wave in the standard shock-tube problem is well 
reproduced. 

In order to integrate, Equation (2.4), we use a Lagrangian hydrodynamic code, 
i.e., the so-called smoothed particle method, details of which will be described in 
Miyama et al. (1986). The number of particles used in our computation is about 
30000. All the particles have the same mass, 2 x 1O26 g. The size of a particle is 
inversely proportional to the cubic root of the local gas density. For instance, the 
initial size of the particle at the Jovian orbit is 0.14 AU and the spatial resolution of 
the computation is limited to the order of this size. We integrate the equation of 
motion of each particle by the Runge-Kutta-Gill method in the fourth order. 

For each model of our calculation, the particles are initially distributed with the 
surface density distribution given by Hayashi (1981): 

p, = 1.4 x lo2 (a/5.2 AU)-3’2 g cme2, (2.6) 

where a is the equatorial distance from the Sun, i.e., a = (x2 + y2)lj2. Then the 
density distribution is written as 

p = 1.5 x lo-” (a/5.2 AU)-3 exp (-(z/H)~) g cmP3, (2.7) 

where H ( = 21’2c/Q) is the vertical scale height. 
We assume that initially each fluid element is in a circular motion around the Sun, 

where the velocity in the present rotating frame is determined by the balance of the 
solar gravity, the pressure force and the centrifugal force: namely, the components 
of the initial velocity in the cylindrical coordinates (a, 4, z) are given by 

uG = &7[(a~/a3-3(c/&z)2)1’2-lj, (2.8) 
and 

u, = u, = 0, (2.9) 

where we have neglected terms on the order of (c/u~)~ - 10m5, where uK is the mean 
Keplerian velocity of the protoplanet. 

The calculation is made for a cylindrical region, O.S3a, <= a 5 1.47a,, which is 
enclosed by smooth and rigid boundaries. In regions just inside and outside the inner 
and outer boundaries, respectively, we put about 5 000 particles whose densities and 
velocities are always given by Equations (2.7), (2.8), and (2.9) and which play a role 
of exerting pressure force on particles in the cylindrical region considered. Owing to 
economic circumstances our calculation was terminated at 2t, for each model, 
where t, is the Keplerian period of the protoplanet. 
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TABLE I 

Parameters used for each model, up: mean ortital radius, e: eccentricity, Mp: mass of a protoplanet. Gas 
accretion time, Mp/ti (&I being gas accretion rate) and number of figure are also listed. Only in model 

E, the x- and y-components of the pressure force are neglected. 

Model OP 
@J-J) 

e Mp/M 
64 

Figure 

5.2 
5.2 
5.2 
5.2 
5.2 
5.2 
5.2 
9.5 
9.5 

0 
0 
0 
0 
0 
0.05 
0.05 
0 
0.05 

2.5 x 10-4 0.26 2.6 x lo2 1 
5.0 x 10-4 0.52 2.6 x 102 2 
1.0 x 10-3 1.04 3.1 x 102 3 
2.0 x 10-3 2.09 3.5 x 102 4 
2.5 x 1O-4 0.26 1.9 x 102 5 
2.5 x 1O-4 0.26 2.5 x lo2 8 
1.0 x 10-3 1.04 3.5 x 102 10 
2.5 x 1O-4 0.26 1.9x 102 11 
2.5 x 10-4 0.26 2.1x102 12 

---‘-‘I , I 1 I , c 
-1.0 0.0 1 .o 

x/a0 

Fig. 1. Postitions of the centers of 30000 fluid elements projected onto the equatorial plane of the 
nebula (the x-y plane) for model A: ap = 5.2 AU, e = 0, Mp = 0.26 MJ and t = 1.75 tK. The Hill sphere 

of the protoplanet is also shown 
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iI-7 1 , 
-1.0 0.0 1.0 

x/aP 

Fig. 2. Model 8: ap = 5.2 AU, e = 0, kfo = 0.52 nCr, and t = 1.75 tK. 

3. Results and Discussion 

A model of the gas flow is characterized by the mean orbital radius, a,,, eccentricity, 
e, and mass, MP, of the protoplanet. Values of these parameters adopted for 
numerical calculations are listed in Table I. Only in model E, the X- and y- 
components of pressure force have been neglected in order to see the pressure effect 
on the flow, In each model, calculation is performed for a period of 2tk with the 
initial condition described in the previous section. The growth time of the 
protoplanet is calculated from the amount of gases trapped within a sphere of the 
cutoff radius rc during this period. 

It is to be noticed that the growth time listed in Table I is meaningful only when 
the mass of proto-Jupiter is smaller than, say, 0.5 MJ for the following reason. In 
our calculation, we have adopted for all the models the initial density distribution 
given by Equation (2.7) without taking into account the evolution of the nebula until 
proto-Jupiter has grown to the masses listed in Table I. In reality, the density of 
nebular gases around the orbit of proto-Jupiter is reduced considerably when the 
mass of proto-Jupiter is about the present Jovian mass (see Figure 3). 

Figures 1-5, 8, and lo-12 show the projection of the centers of all the fluid 
elements onto the x-y plane at t = 1.75t,. Further, choosing model C as an 
example, we show in Figure 6 the pattern of flow velocity in the neighborhood of the 
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I 1 I-I 
-1 .o 0.0 1.0 

x/ap 

Fig. 3. Model C: ap = 5.2 AU, e = 0, Mp = 1.04 MJ and t = 1.75t,. 

protoplanet at t = 1.75tk. It is seen that the orbit of most of the gaseous elements, 
which are dragged by the gravity of the protoplanet, is turned by the Coriolis force 
to pass over to the other side of the protoplanetary orbit. Only a very small fraction 
of the elements falls into the sphere with the cutoff radius; these elements have 
counterclockwise orbital angular momenta around the protoplanet. The flow 
velocity patterns in the other models are similar to that of model C. 

Now, we first compare models A, B, C, and D. In these models, the orbital radius 
of the protoplanet is fixed to the present Jovian value, and the protoplanetary masses 
are about l/4, l/2, 1 and 2 times the present Jovian mass, MJ ( = 9.54 x 10m4 Ma), 
respectively. Two trailing arms extending from the position of proto-Jupiter are 
clearly seen for the case of MP 2 1 iVIJ (see Figures 3 and 4 as compared with Figures 
1 and 2). That is, nebular gases are pushed away from the orbit of proto-Jupiter and 
a ring-like void region is formed. 

In order to understand the reason why such a pattern appears for MP k 1 M,, we 
compare the result of model A with that of a test computation where MP is the same 
and is as small as 0.26 M,, but the x- and y-components of the pressure force are put 
equal to zero (model E, see Figure 5). In model E, the two-arm structure with the 
ring-like void is clearly seen as in model D. This shows that clear patterns do not 
appear in models A and B because the pressure effect of the nebula overcomes the 
gravitational effect of the protoplanet and, hence, the density contrast is reduced 
greatly. 
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i ~/ , I I I I 

-1.0 
I 1 -- 

0.0 1.0 

x/ap 

Fig. 4. Model D: a,, = 5.2 AU, e = 0, Mp = 2.09 h4, and t = 1.73,. 

For comparison, we show in Figure 7 the orbits of test particles moving under the 
gravity of the Sun and a protoplanet alone, i.e., the orbits in the so-called circular 
restricted three-body problem. This figure has been taken from Nishida (1983). The 
arm pattern found in models C, D, and E (Figures 3-5) appears just in regions in 
Figure 7 where the orbits of test particles intersect with each other. This is interpreted 
as that the fluid elements cannot intersect with each other so that density rises 
abruptly when fluid elements collide with each other. It is to be noticed that, even 
in model E where the X- and y-components of the pressure force are neglected, the 
orbit of a fluid element is different from that of a test particle, since in our numerical 
calculation the artificial viscosity term S operates. 

Now, we consider a condition for the formation of the ring-like void and the arm 
pattern. The region where the gravitational force of the protoplanet is more effective 
than that of the Sun is the interior of the Hill sphere with the radius, ru. The 
pressure effect travels over the distance rH in a time, 7rr = r-,/c. On the other hand, 
a fluid element passes through the Hill sphere in a time on order of rK = l/Q. Then, 
the criterion for the ineffectiveness of the pressure is given by rK 5 7pr, that is, c 
5 T#. Using the temperature given by Equation (2.3), we can rewrite the criterion 
as 

Mp 2 0.4 (aJ5.2 AU)3’4MJ. (3.1) 
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0.0 

x/ap 

Fig. 5. Model E: aP = 5.2 AU, e = 0, M,, = 0.26 MJ and t = 1.75t,. The x- and y-components of the 
pressure force are neglected. 

This criterion agrees with the numerical results for models A to D within a factor 2, 
although we make rough estimate of the order of magnitude. 

The above results show that proto-Jupiter itself pushed away the gases lying in its 
feeding zone, i.e., a belt zone around the orbit of proto-Jupiter, where accreting 
gases were circulating. From our numerical results, we find that this pushing-away 
process becomes effective when the mass of proto-Jupiter exceeds about 0.7 MJ. We 
can consider that, when the mass of proto-Jupiter becomes equal to that of present 
Jupiter, the accretion of the nebular gas onto proto-Jupiter stops and hereafter it 
evolves as an isolated system. The Helmholtz-Kelvin contraction of such a system 
was studied by Bodenheimer et al. (1980), Graboske et al. (1973, and Grossman et 
al. (1980). 

Next, in order to find the effect of the eccentric motion of proto-Jupiter on the 
gaseous flow, we compare cases where the eccentricities are 0 and 0.05, although the 
precise value of the eccentricity of proto-Jupiter is not well known. First, we consider 
the cases where MP is 0.26 MJ (models A and F, see Figures 1 and 8, respectively). 
In the case of e = 0, faint arm structure can be seen in both sides of the Jovian orbit 
while, in the case of e = 0.05, the arm in the region y > 0 is clear but the arm in the 
region y < 0 is faint. This effect of the eccentric motion is explained as follows. In 
model F, cap ( = 0.05 up) is greater than rH ( = 0.044aJ and, as shown in Figure 9, 
when the protoplanet is at the perihelion, a nebular gas element which is affected by 
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1lO 

x/ap 

Fig. 6. Flow velocity in the equatorial plane of the nebular gas in model C. The Hill sphere and the 
sphere with the cutoff radius r, are also shown. 

the protoplanet comes from the region with y < 0. Thus the accretion column is 
formed only in the region y > 0 and, hence, the one-arm structure is formed. 

On the other hand, in the case where MP = 1.04 MJ (models C and G, see Figures 
3 and 10, respectively), a similar two-arm structure appears in the both cases of e = 0 
and 0.05. In model G, a nebular gas element which is affected by the protoplanet 
comes from the both regions, y > 0 and y < 0, even at the perihelion since we have 
eaP ( = O.OSa,,) < rH ( = O.O7a,) and, hence, the flow pattern for e = 0.05 resembles 
that for e = 0 (model C). Consequently, the above conclusion that proto-Jupiter 
pushed away gases in its feeding zone when it grew up to the present Jovian mass is 
not altered even if we take into account the effect of eccentricity. 

For comparison, we also made calculation for Saturn’s region. We studied the 
cases where MP = 0.26 Mr and e = 0 and 0.05 (models H and I; see Figures 11 and 
12, respectively). In the both cases, we cannot see a clear pattern like models C and 
D for proto-Jupiter. This is consistent with the criterion given by condition (3.1) for 
ap = 9.5 AU. That is, for A$ s 0.6 M,, the pressure effect overcomes the 
gravitational effect and smooths out the density contrast. Therefore the above- 
mentioned pushing-away process cannot stop the growth of proto-Saturn when its 
mass becomes equal to the present Saturn mass (0.30 M,). The only process that can 
stop the growth of proto-Saturn is probably the escape of the nebular gases 
themselves from the region considered. The formation time of the Saturn core with 
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(x-ad/rH 

-Y.O -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 

Fig. 7. Orbits of test particles moving under the gravity of the Sun and planet 
(taken from Nishida, 1983). 

10 MB in the solar nebula is several times as long as that of the Jovian core 
(Hayashi et al., 1977; Nakano, 1986). Thus, it is possible that a considerable amount 
of the nebular gases in Saturn’s feeding zone had been blown off before proto-Saturn 
reached the stage of Mizuno’s instability (Hayashi et al., 1985). 

4. Conclusions 

We calculated numerically the three-dimensional gas flow in the solar nebula 
circulating under the gravity of the Sun and proto-Jupiter, under the assumption that 
the self-gravity of the nebula is negligible and that the gas is isothermal. We obtain 
the following results: 

(i) The e-folding growth time of proto-Jupiter is as short as 300 yr in stages where 
its mass is 0.2 - 0.5 times the present Jovian mass, i.e., in stages where the 
photosphere of proto-Jupiter has already contracted within a sphere with a radius 
smaller than one tenth of the Hill sphere. 
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‘fl- 

Fig. 8. Model F: ap = 5.2 AU, e = 0.05, Mp = 0.26 MJ and t = 1.75t,. The protoplanet is at the 
perihelion. 

0:8 or9 110 
x/a0 

Fig. 9. Flow velocity of the nebular gas in model F. The Hill sphere and the sphere with the radius rC 
are also shown. 
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T I’ i I II I II I’ 1 
-1.0 0.0 1.0 

x/ap 

Fig. 10. Model G: a,, = 5.2 AU, e = 0.05, Mp = 1.04 M, and t = 1.75t,. The protoplanet is at the 
perihelion. 

0.0 

x/ap 

Fig. 11. Model H: ap = 9.5 AU, e = 0, IVY = 0.26 MJ and t = 1.7%,. 
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H-r--, I I I I , I t 

-1.0 0.0 1.0 

x/ap 

Fig. 12. Model I: aP = 9.5 AU, e = 0.05, Mp = 0.26 MJ and t = 1.75f,. The protoplanet is at the 
perihelion. 

(ii) When the mass of proto-Jupiter becomes about 0.7 times the present Jovian 
value, proto-Jupiter begins to push away gases from its orbit and form a gap around 
the orbit. It is considered that this process determined the present Jovian mass. This 
result does not depend on the eccentricity e of the orbit as far as e 5 0.05. 

(iii) The reason why the present mass of Saturn is much smaller than that of Jupiter 
is probably that the core formation time of Saturn was longer than that of Jupiter 
and a considerable amount of the nebular gases had escaped before proto-Saturn 
reached the stage of Mizuno’s instability. 

It is desired in the future to perform a numerical simulation of the simultaneous 
evolution of proto-Jupiter and the nebula. In this simulation, we have to take into 
account complex but important processes in the gas flow, such as the energy transfer 
by radiation and convection and the angular momentum transfer by turbulent 
viscosity. 
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