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Abstract. We explain how the first step of Hori-Lie procedure is applied in general planetary theory 
to eliminate short-period terms. We extend the investigation to the third-order planetary theory. We 
solved the canonical equations of motion for secular and periodic perturbations by this method, and 
obtained the first integrals of the system of canonical equations. Also we showed the relation between 
the determining function in the sense of Hori and the determining function in the sense of Von 
Zeipel. 

1. Introduction 

The construction of an artificial satellite theory, lunar theory or planetary theory, 

by the method of Von Zeipel has the advantage of eliminating all the short- 
periodic terms and all long periodic terms by two determining functions. The 
Von Zeipel method has the drawback of being based on the inversion formula of 
Lagrange for functions of several independent variables, in order to express the 
initial canonical variables as functions of the variables that result from the 
elimination of short-periodic terms. Also the Von Zeipel method suffers from an 
inconvenience of leading to the formulae that are not, in general, invariant in a 
change of canonical variables. These two inconveniences arise from the fact that 
the determining function that defines the change of canonical variables contains 
mixed variables - i.e. the ancient angular variables and the new linear variables. 
Hori defined a change of canonical variables with the aid of a Lie series which 
introduces a determining function depending on the new linear and angular 
canonical variables. Thus he avoided these two difficulties. Hori expresses the 
ancient canonical variables as functions of the new and reciprocally, without 
returning to the formula of inversion of Lagrange and he obtained expressions 
that are invariant in all changes of canonical variables. (Hori, 1966; Deprit, 
1969; Yusasa, 1971; Cid and Calvo, 1973; Campbell and Jefferys, 1970; Cid et 

al., 1975; Rapaport, 1974). 
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2. Change of Canonical Variables Defined by a Lie Series 

Let us consider the system of 2n canonical equations 

&-aF dyi aF . 

dt -ayi’ dt , -=-ax- 1=1,2,...n 

with F(xI, . . . , xn, yl, . . . , yn) and apply the change of variables. 

Xl,. . . , x,, y1,. . . , y?l+ 51,. . . , 5n, 771,. . . , 77, ; 

defined by the equality 

fbl,. . ., X", Yl,. . 

where f is any function of x1, 
following 

D:f = f, 
Dif =(f, S) 

. > 

. . 

DYf = ((f, 9,. . . , S) 

(1) 

yn) = f; 0,” f(51,. . . , &;1, VI,. . . , T,) (2) 

. 9 X”, Yl, . . . > y,, the operator 0,” is defined by the 

(v times) 

while 

S(&>. . . 5n, 771,. . ., ?!?I) 

is by definition the determining function in the sense of Hori and (f, S) the Poisson 
bracket defined by 

(3) 

Equation (2) shows that the function f is developable in a Lie series and we 
suppose that the Lie series is convergent. 

Let us define a parameter r by the auxiliary system of 2n canonical equations 

a& dS dni as 
-=--2 

d7=i$ dr Gi 
i=l,2,...,n; 

of which the Hamiltonian is the determining function S, we have, according to 

(3), 
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from which 

df d df d’f D~f=D:(Dff)=D:d7.=d7d7=d72; 

and, in general, 

o”f=dYf. 
s dr” 

v=o,1,2 ).... 

If so, we can write Equation (2) as 

fbl, . . ., %a, Yl, . *. 7 Yn) = 2 Ldvf(51:. . . , E”, 771,. . . ,%a) ,,=o v! drU 

= f(.5(7+ l), . . . , %x(7+ 1)); 
from which, supposing thatfis a monotone function of its arguments, 

X1=&(7+1),...,yn=nn(7+1). (4) 

From Equation (4) we see that, since x1, . . . , xn; yl, . . . , yn are 2n canonical 
variables, also the same is true for &(r), . . . , nn(7). 

Let, moreover, 

F’(51,. . ., 5”, 771,. . ., 77”) 

be the transformed Hamiltonian of F(xr, . . . , x,, yl, . . . , yn) in the change of 
canonical variables. Since F does not depend explicitly on the time t, we have 

F(x1, . . . , %z,y1, . . . , yn) = F’(51,. . . 7 tn, 71, . . . 7 7)“). 

Suppose that we have 

(5) 

F= 2 Fk, s= 2 Sk, 
k=O k=l 

F’= f F;, (6) 
k=O 

Fk,F;; k=0,1,2 ,... and Sk; k-l,2 ,.... 

are of degree k with respect to a small parameter E which in the planetary theory 
is of the order of planetary masses. 

Suppose also that the Hamiltonian F(xl, x2, . . . , x,, yl, ~2, . . . , y,J could be 
developed in a Lie series of the form (2). 

The equality (5) could be written according to Equations (2), (6) as 

~o$o+ D:Fk(ti,. . . , tn, ‘VI,. . . , ‘vn) = 

= kzo FZ(Ei . . . . , &n, ~1,. . . , rln) . (7) 
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From (7) we extract the following equalities: 

F,= FL, 

FI + (Fo, Sd = F; , 

Fz + (Fo, S,) + VI, SJ + i ((Fo, W, SJ = F; , 

Fs + (Fo, S,) + @‘I, &> + (&, SI> + 4 ((Fo, Sd, S2> + 

+ i ((Fo, Sz), SI> +i (VI, SA SI) + 

+ i (((Fo, Sd, W, $1 = F; . (8) 

3. Introduction of Pseudo-time t* and Calculation of New 
Hamiltonian F’ and of Hori’s Determining Functions 

Let us define a pseudo-time t” by the auxiliary system of 2n canonical equations 
of the form 

d& dFo dTi dFo -- 
dt*-a?~,' 

-=-- 
dt” $3 ’ 

i=l,2,...,n; 

then we have 

(10) 

with k = 1,2,. . . . 
Let A(r*) be any function of t*, such that the expression 

T 

1 

r I 
A(t*) dt* 

0 

tends to a finite limit when T tends to +a. Let us put 

T 

lim $ j A(t*) dt” = A,(?) ; 
T--t- 

0 

by definition A, (t*) is the mean value of A( t”) when t* varies from zero to +m. 
Put A,(t*) = A(t*) - A,(t*), from which A(t*) = A,(t*) + A,(t*). If, in parti- 

cular, A(t*) is a periodic function of t* and of period T,, we have 

Ti” 
1 

-I TW 
A(t*) dt* = A,(t*) . 

0 
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Let &(t*), . . . , n”(t*) is a solution of (9). The Hamiltonians Fr, F2, . . . are 
functions of t* by the intermediate &, . . . , nn, and suppose that the mean values 
of Fr(t*), F2(t*), . . . exist. 

The second equality of (8) could be written, according to (10) and above 
definitions, as 

Fl,+F,,-s=F;. 01) 

Let us put 

,,-s=O, 

from which 

S1 = 
I 

Flp dt” . (12) 

According to (12), Equation (11) could be rewritten as 

F,, = F; . (13) 

The equalities (12) and (13) give, respectively, the values of the determining 
function and the new Hamiltonian in a first-order theory. The third equality of (8) 
written according to (10) and according to the second equality of (8). 

F2 - $ + (F,, S,) +$ (F; - F,, S1) = F; . 

This means that 

from which according to (13) 

Fzs + Fzp - $ + 3 (2F1, + F+ S,), + i(2F1, + F+ SI), = F; . (14) 

Put 

F+ -z+f(2F,, + Flp, S& = 0 ; 

from which 

(15) 
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According to (15) we can write Equation (14) as 

F,, + i WI, + Kp, Sd, = F; . (16) 

Equation (15) in which S1 is replaced by its value expressed by (12) gives the 
determining function Sz; while Equation (16) gives the new Hamiltonian F;. 

If, in particular, F is reduced to F. + Fl, Equation (15) could be written as 

Sz = $ 
I 

(2F,, + Flp, S&, dt* ; 

and (16), as 

The fourth of Equations (8) may be written according to (10) and the second and 
third equation of (8) as 

4-z+(F,, Sz)+(Fz, Sd+;(F;-FI, &)+4(F;-Fdd- 

- $ ((F,, Sd, S,) - $ ((F’, - FI, SJ, $1 +t (VI, sd, W 

+; ((F; - F,, S,), &) = Fj . 

Let 

F,-$+;(F;+F;,S,)+$(F;+F,,S,)- 

- t ((F; - FI, &L sd = F; , 

form which and according to (13) and (16) 

Fj,+F,,-~+f(2F,,+F,,,S,),+!(2F,,+F,,,Sz),+ 

+ t G% + Fzp, &)s + i W2s + Fzp, &I, + 

+ t (WI, + Fip, &)s, Ws +a KWs + Kp, sds, W, + 

+ h ((Kp, Sd, sds + ii ((Flp, Sd, sd, = F; . 

Put 
(17) 

F+ - 3 + i (2F1, + F+ S& + f C2F2, + Cp, Sd, + 

+ $ ((2% + Kp, Sds, Sd, + h ((Kp, SI), SI), = 0 7 

from which 

s3= [Fxp+i(2F~,+F~p, S2)p+;(2F2s+F2p, &)p+ 
I 

+ $ ((2F1, + Flp, SA, SI), + i? ((FI;~, SI), &),I df* . (18) 
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According to (18), Equation (17) may be written as 

5s +: (2L + Flp, Sd, +$(2&s + F2P, Sds +i ((26, + Ep, Sds, Sds+ 

+ik t(Kp, &I, S,), = F; ; (19) 

while Equation (18) in which Sr is replaced by its value (12) and Sz by its value 
(15) gives the determining function SJ. The equality (19) gives the new Hamil- 
tonian F;. If, in particular, F is reduced to FO + F1, Equation (18) may be 
rewritten 

s3 = [+ (2F,, + Flp, S&, + i ((2F1, + Flp, Sds, SI), + 

+i+ ((Kp, SJ, &),I df* > 
and (19) could be written as 

F; = 4 WL + Kp, S,), + t (WI, + Flp, Sds, S,), + 
+i% t&,, Sd, Sds . 

Thus we determine step-by-step for each value k = 1,2,. . . the determining 
function Sk and the new Hamiltonian FL. The formulae become longer and 
longer but the calculation is tolerable for small powers of the eccentricities and 
inclinations. The difficulties in the planetary theory arise from the development of 
the perturbing function. 

4. Expression for the Initial Canonical Variables xl, . . . , xn, y,, . . . , y. as 
Functions of the New &, . . . , &, ql, . . . , q” and Reciprocal Variables 2,. and 11. 

We obtain that by writing successively 

ftxl,. . .Y xn~ Yl7. . .7 yn) G xi 

and 

fh, . . . , &I, Yl, , . . , y,> = yi . 

Hence, according to (2) we have 

but 

(20) 

(21) 

(22) 
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According to (22) Equations (20) and (21) may be rewritten as 

from which if we neglect the powers of E higher than the third, 

.i=,+~+~+~+~(~,Sl)+~(~,S*)+ 

+~(~31)+t(i~,S1)>S1)+ok4), 

as1 as, as3 1 as1 
Yi=rli-~-agi-agi 2 ati ---(-,sl)-;(~,s*)- 

-~(~~sl)-~((~,sl),sl)+o(~~~, 

(23) 

(24) 

with i = 1,2, . . . , n. 

In (23) and (24), S1, S,, S3 are replaced by their values given by (12), (15) 

(1% 
Let us consider again the equality (2), it could be written as 

fh, . . . , x,, ~1,. . . , yn) = exp MEI,. . . , G, 7)1,. . . , ~1, 

while the operator exp 0, is defined in terms of 0, by 

expU,=v~o&Dr. 

(25) 

From (25) we deduce that 

f(&, . . ‘, &, ~1,. . . , 7,) = (exp DJ’fbl,. . . , L, ~1,. . . , yd. 

But 

(exp DJ’ = exp D-, 

we have then 

f(&, . . . , ~5, ~1,. . . , 77,) = exp D-,fh, . . . , xn, ~1,. . . , YJ 

= io& D-v,fh . . . , x,, ~1, . . . , Y,) , 

from which, in particular, 
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i.e., 

From which - by neglecting powers of E higher than the third - it follows that 

(26) 

(27) 

From Equations (26), (27) we find that the new canonical variables &, ni are 
inversely expressed as functions of the old canonical variables Xi, yi on changing 
in (23), (24) S by -S and on permuting xi and 5i, yi, and 77i. 

5. First Integrals of the System of 2n Canonical Equations of 
the Variables 6, &, . . . , &, 11, rlz,. . . , r), 

Equation (10) holds good for all functions U(&, . . . , &, ql,. . . , 77,). It is parti- 
cularly true for the Hamiltonian F’ of the system of 2n canonical equations. 

dS dF’ dqi dF’ -=-- 
dt-dqi’ dt ah ’ 

(28) 

If we transform Equation (1) in the change of canonical variables 
Xl,. . . , xl%, y1,. . . , yn -+ ‘$1,. . . , &, 771, . . . , q,, as defined by Equation (2), we 
have 

Therefore, F’ does not depend explicitly on t, it is a first integral of (28) and we 
have 

F’(&, . . , &, nl,. . . , nn) = Constant ; 

from which and according to Equations (28), (29) and the first equality of (8) 
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Consequently, 

FL = Constant. 

Accordingly, Equation (28) yields the first two integrals 
F. = constant. Its resolution leads to a system of order 2n - 2. 
we can write 

F’ = constant and 
On the other hand 

(30) 

Equations (30) is a system of 2n - 1 differential equations in, 

t-2, . . . , &a, 71, . . . 3 7, with respect to the independent variable &. Let t2 = 
!$-2(51, c2,. . f , CZ”), . . . 77”(51, c2,. . . , C,,) is its general solution. From Equation 
(9) and the general solution of (30), we can extract 

p = arl, Fo(h 52(51, ‘C2,. . . , Czn), . . . , v,(-$I> C2,. . . , Czn)) > 

from which 

t*+c= 

= dS1 
I I t& Fo(51, 52(51, C2, . . . , Czn), . . . , %I(&, cz, f * *, Czn)) * 

(31) 

Furthermore, from (31), we can write 

51= &(t* + c, c2,. . . , C2,) , (32) 

while from (32) and the general solution of (30), we deduce that 

‘$j = gjct* + c, c2,. . . , C2J 2 

qj = qj(t* + C, C2,. . . ) C2,), i= 1,2,. . . , IE . (33) 

Equation (33) is the general solution of the 2n canonical equations (9) of the 
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Hamiltonian FO, from which it follows that 

t*+ c= 4(51,. . .,(";It 71,. . .,%I), (34) 

Cj = *j(Sl, . . . 7 5d1~,-..d, i=2,3,...,2n. (35) 

The Equations (34), (35) are fundamental because with their aid we can operate 
the integrations with respect to t* and the searching for mean values of the 
functions of t* necessary for the calculations of the determining functions 
Sl, s2, s3,. . . , and the new Hamiltonians F;, F;, . . . . They are equivalent to the 
general integral (33) of the auxiliary system of the 2n canonical Equation (9) of 
the Hamiltonian Fo, that means in the calculations of Sr, S2, . . . ; F;, F;, . . . , it is 
necessary to know a priori the general integral of (9). But in most of the problems 
of celestial mechanics F. has a very simple expression. That is the particular case 
of planetary theory in which it does not depend on the angu!ar variables 

rll,..., n,, and depend only on the linear variables &, . . . , &,b; p < y1 conjugate to 
the angular variables nl, . . . , nr, of the short period terms. 

The solution of Equation (9) leads to n + (n - p) = 2n - p quadratures express- 
ing that 51,. . . , -En, rlp+l,. . . , r), are constants and to p quadratures expressing 
that rn,, . . , nP are the linear functions of time t (Meffroy, 1970-1982). 

6. Relation Between the Determining Function in the Sense of 
Von Zeipel and the Determining Function in the Sense of Hori 

Let R-5,. . . , ~2, ~1,. . . , yn) be the determining function in the sense of Von 
Zeipel applied to a system of 2n canonical equations 

dxi dF dyi aF 
dt=i$ dt- axi ’ 

i-l,2 ,..., n. 

We have 

aS a3 
z= rli - = xi 

ayi 
i=l,2,...,n (36) 

and 

Sk being of order k with respect to a small parameter of the order of masses, and 
So being equal to 

From Equation (36), neglecting the powers of E - higher than the second, we find 
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T)i = yi +$+z+ O(E3), i=1,2,...,n 
I ‘ 

(37) 

where S, and S2 are the determining functions in the sense of Hori of degree 1, 2, 
respectively, with respect to E, we have as we have shown above. 

Xi = g+1)S’+asz+- 1 as1 
( > 
-, s, + O(E3) 

arli 8% 2 8% 

as1 as, 1 as1 
yi = q”-agi-egi-5 ag ( ) 

-, s, + O(E3). 

From (37) and (38) we extract 

as’, a& as1 as, 1 as, -+-....-=++++ --,sl 
aYi aYi ( > a77i arli 2 a77i 

as, a& as1 as, 1 as, 
-+-=-+-+- --,& 

a& ati ( > ati a& 2 ati 

From the first II equalities of (37) we find that 

yi - 7)i = O(E) . 

(38) 

(39) 

(40) 

(41) 

with j = 1,2. 
S is a continuous function of its arguments particularly of yl, . . . , yn. Similarly 

for Sr, S2 and their partial derivatives. 
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as’, as, 
- ayi’ ayi’ i=l,2 ,..., n. 

From (40), (41) we can find for a first order theory 

and for a theory of the second order, with i = 1,2, . . . , II, 

According to (42), (43) we can write equalities (39) as 

+I f a2s1 as1 as, a2s1 (------ 
2 j=l dqi ah dqj 1 a6$ aqi dqj ’ 

* as', I a$ 
z( 

a2S, aS, 
-- -- 

) 
31 I as2 1 

%i Gi j=l a&aqj ag, a& d&i 

+A. f a2S1 aSI as, a2sl (----- 
2 i=l a& acj aqj ) a(j ati aqj . 

From (44) we deduce that 

(441 
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from which 

From (44), (45) we extract 

(45) 

i.e., 

a& as2 1 a n a&as, 
G-aqi 

--+--I -- , 
( 1 2 aqij=l ag dqj 

a$ as, 1 a n as,as, 
agi- 

--+--- -_ . 
i 1 ati 2X j=l a6 avj 

From (46), (47) we obtain 

and from (45), (48) we extract 

(46) 

(47) 

(48) 

(49) 

The equalities (45), (48) give the expressions for the determining functions S1, L?z 
in the sense of Von Zeipel, as function of determining functions in the sense of 
Hori S, and S2, and reciprocally the equalities (49) give the expressions for the 
determining functions in the sense of Hori S, and S, as function of the 
determining functions in the sense of Von Zeipel S, and Sz. We particularly 
notice that we obtain the expression of S, from the expression of Sz by permuting 
the S and the S in (48) and by replacing the coefficient +$ by the coefficient - 4. 
We can calculate $, $, . . . as functions of S1, S,, S3, S+ . . . and we can find the 
corresponding expressions of &, Sq, . . . as function of S1, &,, &, 34, . . . . The 
formulae become increasingly more complicated, but their explicit form is not 
difficult to establish. In particular, 

aS, aS, a2$ 
+4--- 

: aS, a$ a2S1 
a& aqk aqj atk aqj dqk 84 atk 

(50) 

(Mersman, 1970, 1971); see Meffroy (1973, 1975, 1978), Von Zeipel (1916-17), 
or Meffroy (1970-82). 
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Aspects of Future Research Work 

In subsequent papers we shall indicate how the second step of Hori’s method is 
applied to eliminate the long-period terms in general planetary theory. We shall 
refer to Mersman’s improvement of Hori’s technique adapted in celestial 
mechanics theory of perturbation. We shall complete the construction of the third 
order Uranus-Neptune theory, and we shall establish the Jupiter-Saturn third 
order theory, then we shall build the four major planets third order theory 
J-S-U-N. In all the above theories we shall take into consideration the main as 
well as the indirect part of the planetary perturbing function. 
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