NUMERICALINVESTIGATION OF COLLISION ORBITS OF LUNAR SATELLITES

MARIA GOUSIDOU-KOUTITA
University of Thessaloniki, Thessaloniki, Greece

(Received 13 July, 1984)

Abstract

In the present study an investigation of the collision orbits of natural satellites of the Moon (considered to be of finite dimensions) is developed, and the tendency of natural satellites of the Moon to collide on the visible or the far side of the Moon is studied. The collision course of the satellite is studied up to its impact on the lunar surface for perturbations of its initial orbit arbitrarily induced, for example, by the explosion of a meteorite. Several initial conditions regarding the position of the satellite to collide with the Moon on its near (visible) or far (invisible) side is examined in connection to the initial conditions and the direction of the motion of the satellite. The distribution of the lunar craters-originating impact of lunar satellites or celestial bodies which followed a course around the Moon and lost their stability - is examined. First, we consider the planar motion of the natural satellite and its collision on the Moon's surface without the presence of the Earth and Sun. The initial velocities of the satellite ate determined in such a way so its impact on the lunar surface takes place on the visible side of the Moon. Then, we continue imparting these velocities to the satellite, but now in the presence of the Earth and Sun; and study the forementioned impacts of the satellites but now in the Earth-Moon-Satellite system influenced also by the Sun. The initial distances of the satellite are taken as the distances which have been used to compute periodic orbits in the planar restricted three-body problem (cf. Gousidou-Koutita, 1980) and its direction takes different angles with the x-axis (Earth-Moon axis). Finally, we summarise the tendency of the satellite's impact on the visible or invisible side of the Moon.

1. Introduction

The external theory of the lunar's craters is connected with the effects which are produced by the impacts of other celestial bodies, for example, meteorites, asteroids or comets on the Moon's surface. So, the lunar surface can be considered as an 'impact counter' of external bodies collided with the Moon of. Kopal (1966), as well as, a boundary condition of all internal processes which may have been taken place in lunar interior.

Galileo Galilei was the first telescopic observer of the Moon and he has recorded in his 'Sidereal Messenger' (1610), that, the surface of the Moon is 'full of inequalities'.

Robert Hooke (1667), dropped bullets into a pipe clay and water mixture and saw formations arise which one could call 'impact craters'. But Hooke also boiled a mixture of powdered alabaster with water and observed that this too produced transient craterlike structures on the surface of the liquid. Hooke himself rejected the impact analogy because it would be difficult to imagine whence those bodies should come.

Gilbert (1893), who reviewed the characteristics of Moon's craters to those of the various types of terrestrial volcanoes, concluded that the differences in form were so great that a volcanic origin for the Moon's craters seemed improbable. So, Gilbert developed an
impact hypothesis for the origin of the lunar craters, which was based on some acute telescopic observations of the Moon as well as upon laboratory experiments. During the 20th century (until now) the astronomers began to incline towards the impact hypothesis. It is known that there are bodies in space small compared with the planets which move around the Sun as the planets do. The interplanetary space between the motions of the Earth, Moon around the Sun contains a wide number of particles; from the elementary micrometeors to major meteorites, asteroids or comets whose orbits may intersect the path of the Moon and occasionally collide with it; such bodies created most of the craters, as Kopal mentions in his book 'Introduction to the Study of the Moon' (1966).

In the present work, the collision courses of such meteorites are numerically computed when these bodies lose their stability. Arbitrary initial conditions are applied for the case when the presence of the Earth and Sun does not affect the meteorite's path. The evolution of collision courses of the Moon's natural satellites are subsequently computed in the presence of the Earth and Sun giving, now, the previous initial condition for the two-body problem.

First of all, we apply such initial conditions to the satellite that permit it to fall on the visible side of the Moon, experimenting with a large number of starting directions. These conditions, which lead to collision on the visible side of the Moon in the two-body problem, are reapplied to the satellite for the case for the existence of the Earth and Sun. Now, the perturbed satellite's orbit follows a new collision path and it is investigated if this collision continues to take place or not on the visible side of the Moon.

2. Initial Conditions for Collision Orbits in the Two-Body Problem (Moon and its Satellite)

We consider the Moon-Satellite system assuming that the satellite's orbit around the Moon is elliptic. The equations of motion in polar coordinates are given by the relations

$$
\begin{align*}
& \ddot{\tau}=\tau \dot{\theta}^{2}-\frac{G\left(m_{1}+m_{2}\right)}{\tau^{2}}, \tag{1}\\
& \ddot{\theta}=-\frac{2 \dot{\tau} \dot{\theta}}{\tau} . \tag{2}
\end{align*}
$$

The satellite starts its motion at $t=0$ from a point on the x-axis with distances from the centre of the Moon equal to the distances that gave periodic orbits in the three-body problem for the systeri Earth-Moon-Satellite (Gousidou-Koutita, 1980). The initial velocity V_{0} has been taken in such a way that the meteorite's ellipse is tangent to the Moon's surface in the visible side, that is, the pericentre is equal to the Moon's radius R (Figure 1). This condition is expressed by the equation

$$
\begin{equation*}
a(1-e)=R \tag{3}
\end{equation*}
$$

The velocity V_{0} satisfies the equations of angular momentum and the kinetic energy

$$
\begin{equation*}
L=\left|\tau_{0} \times \mathbf{V}\right|=\tau_{0} V \sin \varphi \tag{4}
\end{equation*}
$$

Fig. 1.

$$
\begin{equation*}
E=\frac{1}{2} V^{2}-\frac{G m_{\mathrm{M}}}{\tau_{0}} \tag{5}
\end{equation*}
$$

where φ is the angle of ejection of the satellite, τ_{0} the initial distance equal to the distance which gave periodic orbit in the three-body problem and m_{M} is the Moon's mass. According to the relations

$$
\begin{align*}
& a=-K / 2 E,\left(K=G m_{\mathrm{M}}\right) \tag{6}\\
& e=\left(1+2 E L^{2} / K^{2}\right)^{1 / 2} \tag{7}
\end{align*}
$$

and the relations (3), (4), and (5), we compute the initial velocity $V_{0}\left(\tau_{0}, \varphi\right)$ from

$$
\begin{align*}
\left|V_{0}\left(\tau_{0}, \varphi\right)\right|= & {\left[\left[-K\left(2 R^{2}-\tau_{0}^{2} \sin ^{2} \varphi-\tau_{0} R\right)-K\left[\left(2 R^{2}-\tau_{0}^{2} \sin ^{2} \varphi-\right.\right.\right.\right.} \\
& \left.\left.\left.\tau_{0} R\right)^{2}-4 R\left(\tau_{0}-R\right)\left(\tau_{0}^{2} \sin ^{2} \varphi-R^{2}\right)\right]^{1 / 2}\right] /\left[\tau _ { 0 } \left(\tau_{0}^{2} \sin ^{2} \varphi-\right.\right. \\
& \left.\left.\left.R^{2}\right)\right]\right]^{1 / 2} \tag{8}
\end{align*}
$$

By means of the relation

$$
\begin{equation*}
\tau_{0}=a\left(1-e^{2}\right) /\left(1+e \cos \theta_{0}\right) \tag{9}
\end{equation*}
$$

we compute the angle θ_{0} between the x-axis and the radius R (Figure 1) for different vaues of φ and consequently for different values of $V_{0}(\varphi)$. The angles of ejection φ of the satellite have been taken equal to $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}, 210^{\circ}, 240^{\circ}, 270^{\circ}$, $300^{\circ}, 330^{\circ}$ for $\tau_{0}=0.043865$. The corresponding values of $V_{0}\left(\tau_{0}, \varphi\right)$ and $\theta_{0}\left(V_{0}\right)$ are given in Table I.

For the above values of φ and τ_{0}, the corresponding values of $V_{1}\left(\tau_{0}, \varphi\right)$ - where $V_{1}\left(\tau_{0}, \varphi\right)$ represents the values of initial velocities of the meteorite leading it on orbits meeting the Moon on its pole B (Figure 1) - have been calculated.

This velocity $V_{1}\left(\tau_{0}, \varphi\right)$ can be calculated from Equations (4) and (5). Then, the semimajor axis a and the eccentricity e are computed from Equations (6) and (7). From the hypothesis, that V_{1} is the initial velocity that constrains the meteorite to move in an ellipse meeting the Moon on its pole B and the Figure 1 we can, easily, obtain the relation

TABLE I
Values of φ and the corresponding values of velocities $V_{0}(\varphi)$ and $V_{1}(\varphi)$ for distance $\tau_{0}=0.043865014$.

φ	V_{0}	θ_{0}	V_{1}	θ_{1}
30°	0.46256	$-202^{\circ} .5$	0.3113	$-189^{\circ} .425$
45°	0.32351	-193°.	0.22752	$-185^{\circ} .885$
60°	0.26319	$-188^{\circ} .3$	0.18955	$-183^{\circ} .5$
90°	0.22752	180°	0.16897	-180°
120°	0.26319	$172^{\circ} .4$	0.20119	$-175^{\circ} .9$
150°	0.46256	$-157^{\circ} .5$	0.37286	$-166^{\circ} .05$
210°	0.46256	$+157^{\circ} .5$	0.37286	$+166^{\circ} .05$
240°	0.26319	$-188^{\circ} .3$	0.20119	$+175^{\circ} .9$
270°	0.22752	180°	0.16897	$+180^{\circ}$
300°	0.26319	$-172^{\circ} .4$	0.18955	$+183^{\circ} .5$
330°	0.46256	$+157^{\circ} .5$	0.3113	$+189^{\circ} .425$

$$
\begin{equation*}
\frac{\tau_{0}}{R}=\frac{1+e \cos \theta_{1}^{\prime}}{1+e \cos \theta_{1}} \tag{10}
\end{equation*}
$$

with $\theta_{1}=\theta_{1}^{\prime}+\pi / 2$. Consequently, we can take the term $\cos \theta_{1}$ as a function of V_{1} as

$$
\begin{align*}
\cos \theta_{1}= & {\left[-\tau_{0}\left(\tau_{0}-R\right) \pm R\left[e^{2}\left(R^{2}+\tau_{0}^{2}\right)-\right.\right.} \\
& \left.\left.-\left(\tau_{0}-R\right)^{2}\right]^{1 / 2}\right] /\left[e\left(R^{2}+\tau_{0}^{2}\right)\right], \tag{11}
\end{align*}
$$

and the initial velocity $V_{1}\left(\tau_{0}, \varphi\right)$ can be calculated from the relation

$$
\begin{equation*}
\tau_{0}=a\left(1-e^{2}\right) /\left(1+e \cos \theta_{1}\right) \tag{12}
\end{equation*}
$$

in accordance with the relations (4), (5), (6) and (7): the result is

$$
\begin{align*}
\left|V_{1}\left(\tau_{0}, \varphi\right)\right|= & {\left[\left[\left[K \tau _ { 0 } \operatorname { s i n } ^ { 2 } \varphi \left(R^{4}+\tau_{0}^{2} R^{2}+\tau_{0}\left(\tau_{0}^{-}-R\right)\left(R^{2}+\tau_{0}^{2}\right)-\right.\right.\right.\right.} \\
& \left.-\left(R^{2}+\tau_{0}^{2}\right)^{2}\right] \pm\left[\left(K \tau _ { 0 } \operatorname { s i n } ^ { 2 } \varphi \left(R^{4}+\tau_{0}^{2} R^{2}+\tau_{0}\left(\tau_{0}-\right.\right.\right.\right. \\
& \left.-R)\left(R^{2}+\tau_{0}^{2}\right)^{2}-\left(R^{2}+\tau_{0}^{2}\right)^{2}\right)^{2}+\tau_{0}^{2}\left(R^{2}+\tau_{0}^{2}\right) \sin ^{2} \varphi\left(R^{2}-\right. \\
& \left.\left.\left.-\sin ^{2} \varphi\left(R^{2}+\tau_{0}^{2}\right)\right) K^{2} R^{2}\left(\tau_{0}^{2}+R^{2}\right)\right]^{1 / 2}\right] /\left[\tau_{0}^{2}\left(R^{2}+\tau_{0}^{2}\right) \times\right. \\
& \times \sin ^{2} \varphi\left(R^{2}-\sin ^{2} \varphi\left(R^{2}-\sin ^{2} \varphi\left(R^{2}+\tau_{0}^{2}\right)\right)\right]^{1 / 2} . \tag{13}
\end{align*}
$$

As we have seen from Figure 1 for values of velocity between the values V_{1} and V_{0} the meteorite's orbit intersects the lunar surface on its visible side. On the other hand, for values of V outside of that region the meteorite does not collide with the Moon on its visible side. The figure 2 a and 2 b represents the relation between the angle φ and the velocities $V_{0}(\varphi)$ and $V_{1}(\varphi)$ for a constant value of τ_{0}. The point $P\left(\varphi_{p}, V_{p}\right)$ is the point with velocity equal to velocity giving periodic orbit in the Earth-Moon-Satellite system, with initial distance $\tau_{0}=0.043865014$. Table II gives the values of φ and the corresponding values of velocities $V_{0}(\varphi)$ and $V_{1}(\varphi)$ for distance $\tau_{0}=0.024963723073$ equal

Fig. 2a.

Fig. 2b.

Fig. 3a.
TABLE II

φ	V_{0}	V_{1}
30°	0.81531	0.51809
45°	0.55590	0.38636
60°	0.44867	0.32621
90°	0.38636	0.29691
120°	0.44867	0.36231
135°	0.55590	0.46401
150°	0.81531	0.71680
210°	0.81531	0.71680
225°	0.55590	0.46401
240°	0.44867	0.36231
270°	0.38636	0.29691
300°	0.44867	0.32621
315°	0.55590	0.38636
330°	0.81531	0.51809

Fig. 3b.

TABLE III

φ	V_{0}	V_{1}
60°	1.37868	0.96304
90°	1.08316	0.96545
120°	1.37868	1.37225
240°	1.37868	1.37225
270°	1.08316	0.96545
300°	1.37868	0.96304

to distance for which we had periodic orbit in the Earth-Moon-Satellite system. Figures 3 a and 3 b give the relation between φ and velocities $V_{0}(\varphi)$ and $V_{1}(\varphi)$ for the above distance. Table III gives the values of φ and the corresponding values of initial velocities $V_{0}(\varphi)$ and $V_{1}(\varphi)$ for initial distance $\tau_{0}=0.007677215777$ at which we also have taken periodic orbit in the E-M-S system. Figures 4 a and 4 b represent the curves of velocities $V_{0}(\varphi)$ and $V_{1}(\varphi)$.

Fig. 4a.

Fig. 4b.

3. The Behavior of the Collision Orbits of the Moon's Satellite in the Presence of the Earth and Sun

Let us consider first, the E-M-S system as an elliptic restricted three-body problem with the satellite's mass very small in comparison to the masses of Earth and Moon. The equations of motion in dimensionless rotating coordinate system Oxy with the two masses lying always on the rotating x-axis and oscillating on it, have been given by Hadjidemetriou (1975) as

$$
\begin{equation*}
\ddot{x}-2 \dot{y} \dot{\theta}-\ddot{\theta} y-x \dot{\theta}^{2}=-(1-\mu) \frac{x-\mu \tau}{\tau_{1}^{3}}-\frac{x-(1-\mu) \tau}{\tau_{2}^{3}} \tag{14a}
\end{equation*}
$$

$$
\begin{equation*}
\ddot{y}+2 \dot{x} \dot{\theta}+\ddot{\theta} x-y \dot{\theta}^{2}=-(1-\mu) \frac{y}{\tau_{1}^{3}}-\mu \frac{y}{\tau_{2}^{3}}, \tag{14b}
\end{equation*}
$$

where $\mu=m_{2} /\left(m_{1}+m_{2}\right)$ and τ_{1}, τ_{2} are the distances of the satellite from the Earth and Moon, respectively, given by the relations

$$
\begin{align*}
& \tau_{1}^{2}=(x+\mu \tau)^{2}+y^{2} \tag{15a}\\
& \tau_{2}^{2}=[x-(1-\mu) \tau]^{2}+y^{2} \tag{15b}
\end{align*}
$$

By use of the above equations, symmetric periodic orbits have been found in a distance from the Moon equal to a small fraction of the Earth-Moon's distance (cf. GousidouKoutita, 1980).

Normalised distances giving symmetric periodic orbits in the Earth-Moon-Satellite system have been found equal to $0.043865014,0.024963723073,0.007677215777$. These periodic orbits have been studied, next, in the presence of the Sun. Thus, the three-body problem (Earth-Moon-Satellite) is transformed to a four-body problem (Sun-Earth-Moon-Satellite) incorporating the perturbations induced by the Sun on the E-M-S system; since the Earth-Sun distance is very large in comparison to Earth-Moon distance.

Let R_{D} be the disturbing function, arising from the attraction of the Sun on the Moon. The expression for R_{D} is of the form

$$
\begin{align*}
R_{D}= & n^{\prime 2} a^{2}\left[\frac{1}{4}+\frac{3}{4} \cos \left(2 \lambda-2 \lambda^{\prime}\right)-\frac{1}{2} e \cos (\lambda-\tilde{\omega})-\frac{9}{4} e \cos \left(\lambda-2 \lambda^{\prime}+\right.\right. \\
& +\tilde{\omega})+\frac{3}{4} e \cos \left(3 \lambda-2 \lambda^{\prime}-\tilde{\omega}\right)+\frac{3}{4} e^{\prime} \cos \left(\lambda^{\prime}-\tilde{\omega}^{\prime}\right)+\frac{3}{8} e^{2}+ \\
& +\frac{15}{8} e^{2} \cos \left(2 \lambda^{\prime}-2 \tilde{\omega}\right)+\frac{3}{8} e^{\prime 2}-\frac{3}{8} \gamma^{2}+\frac{3}{8} \gamma^{2} \cos \left(2 \lambda^{\prime}-2 \Omega\right)+ \\
& +\frac{3}{8} \frac{a}{a^{\prime}} \cos \left(\lambda-\lambda^{\prime}\right)+\frac{5}{8} \frac{a}{a^{\prime}} \cos \left(3 \lambda-3 \lambda^{\prime}\right)-\frac{15}{16} \frac{a}{a^{\prime}} e \cos \left(\lambda^{\prime}-\tilde{\omega}\right)- \\
& \left.-\frac{15}{16} \frac{a}{a^{\prime}} e e^{\prime} \cos \left(\tilde{\omega}-\tilde{\omega}^{\prime}\right)\right] . \tag{16}
\end{align*}
$$

Only the most significant terms of the Moon's motion are retained (cf. Brouwer and Clemence, 1961).

The term with argument $2 \lambda-2 \lambda$ ' in the disturbing function is known as 'variation' and its period is $2 \pi / 2\left(n-n^{\prime}\right)=T / 2(1-m)=14.765294$ days $\left(m=n^{\prime} / n\right)$. This term is equal to $\frac{3}{4} n^{\prime 2} a^{2} \cos \left(2 \lambda-2 \lambda^{\prime}\right)$ and a first approximation to the variation is given by Brouwer and Clemence (op. cit.) as

$$
\begin{align*}
\delta \psi & =+\frac{11}{8} m^{2} \sin \left(2 \lambda-2 \lambda^{\prime}\right) \tag{17a}\\
\delta \tau & =-a m^{2} \cos \left(2 \lambda-2 \lambda^{\prime}\right) \tag{17b}
\end{align*}
$$

The term with argument $2 \lambda^{\prime}-2 \widetilde{\omega}$ in the disturbing function is known as 'evection' and it has the form $+\frac{15}{8} n^{\prime 2} a^{2} e^{2} \cos \left(2 \lambda^{\prime}-2 \tilde{\omega}\right)$. A first approximation of the evection is

$$
\begin{align*}
& \delta \psi=+\frac{15}{4} m e \sin \left(\lambda-2 \lambda^{\prime}+\tilde{\omega}\right) \tag{18a}\\
& \frac{\delta \tau}{a}=-\frac{15}{8} m e \cos \left(\lambda-2 \lambda^{\prime}+\widetilde{\omega}\right) \tag{18b}
\end{align*}
$$

and the period of evection is $2 \pi /\left(2 n-2 n^{\prime}-c n\right)=T /(1-2 m+1-c)=31.807472$ days. The effect of the action of the Sun is producing evection, is to cause periodic variations of the eccentricity and of the longitude of perigee of the Moon. The evcction is the largest periodic perturbation in the Moon's longitude.

We have taken into account the above two perturbations in the motion of the Moon around the Earth as the most important perturbations in this motion.

The initial conditions for the position of the Moon's satellite and its velocity have been taken identical to those giving periodic orbits in the unperturbed E-M-S system (cf. Gousidou-Koutita, 1980).

Keeping the initial distance of the satellite from the centre of Moon's mass the same as above, we gave such velocities to the satellite that led to collisions on the visible side of the Moon in the two-body problem M-S system, that is, in the area [V_{1}, V_{0}] as we have mentioned in Section 2. Thus, here we investigated whether or not these collisions occur preferentially on the visible side of the Moon. The procedure has been repeated for values of the velocity outside this area for different values of the angle φ, supposing that the meteorite undergoes an instantaneous explosion at $t=0$, so that the meteorite's pieces begin their motions at that time with different values of φ and V. Their collision orbits and their collapses on the lunar surface have been studied.

The collision points of the meteorite with the lunar surface - with the presence of the Earth and Sun exhibit a transition on the lunar surface relatively to the collisions in absence of the Earth and Sun, and with the collision orbits which the meteorites execute for several revolutions around the Moon before falling on the lunar surface for some values of V.

These collisions with different values of φ and V and the number of revolutions around the Moon before the meteorite fall on the lunar surface are given in next section.

4. Collisions of the Satellites on the Visible Side of the Moon. Numerical Results.

Initial velocity values have been given, for each value of φ, to lunar satellites with values inside the region [V_{1}, V_{0}] and outside of it. Numerical results for all cases are given in the following Tables IV, V, VI.

As we have mentioned in the previous paragraph, in the case of the perturbed threebody problem the satellite having the same initial conditions as in the case of two-body problem, falls on the lunar surface, for most of the initial conditions, after some revolutions around the Moon. The collision points are in different positions on the Moon's surface relatively to the two-body problem. Now, in order to locate the collision points of the meteorite on the lunar surface we have considered the Moon as a circle in the orbital plane with radius $R=0.004521332$ in nondimensional units. The number of revolutions of the satellite around the Moon before collision is given in the next tables.

Fig. 10. Some of the orbits of Figure 7 in
the perturbed three-body problem
(Earth-Moon-Satellite).

[^0]MARIA GOUSIDOU-KOUTITA
TABLE IV
The Cartesian coordinates of collision points in the perturbed three-body problem (Earth-Moon-Satellite) for each value of velocity V and ejections angle φ. Initial Moon-Satellite distance equal to $r_{0}=0.043865014$.

φ	V	x	y	$r_{0}=0.043865014$			x	y	n_{θ} number of revolutions
				n_{0}	φ	V			
30°	0.24	0.000192260	0.004499107		330°	0.24	0.002400906	-0.002740816	
	0.3113	-0.002522784	0.003431046			0.3113	0.000917835	-0.003389186	
	0.36	-0.004180140	0.001074479			0.36	0.000397961	-0.004 393519	
	0.46256	0.003756295	-0.001983965	6		0.46256	-0.002638840	-0.002819472	
	0.50	0.002131851	-0.003873347	5		0.50	-0.003273838	-0.002 544991	
150°	0.32	-0.002195453	0.003523933		210°	0.32	0.002706447	-0.003 453053	
	0.36	-0.004 163966	0.001674216			0.36	0.002076183	-0.003818771	
	0.37286	0.004359816	-0.000223228	6		0.37286	0.001672555	-0.003825421	
	0.42	0.004485113	0.000507608	5		0.42	0.000887155	-0.004 171441	
	0.46256	0.004249027	0.001510786	4		0.46256	-0.000001390	-0.004 337047	
	0.50	0.001255639	-0.003586402	4		0.50	-0.001 064558	-0.004 211893	
45°	0.18	-0.000 505313	0.004203589						
	0.22752	-0.003024693	0.002986549						
	0.26	0.003415762	0.002786405	10					
	0.30	0.004437509	-0.000078947	13					
	0.32351	-0.008 35619	-0.003362850	65					

TABLE V
The same as in Table IV but with initial Moon-Satellite distance $r_{0}=0.024963723073$

φ	V	x	y	$\begin{aligned} & n_{0} \\ & \text { (number of revolutions) } \end{aligned}$
30°	0.48	-0.000119850	0.004123793	
	0.51809	-0.000726065	0.004197543	
	0.66	-0.003 346504	0.002775042	
	0.70	-0.003851402	0.001971156	
	0.81531	-0.000136853	0.004943889	
45°	0.34	-0.000070677	0.003905378	
	0.38636	-0.000 823319	0.004336969	
	0.50	-0.004 339422	0.000662493	
	0.55590	0.003824411	0.002233502	19
	0.58	0.004499563	0.000277289	21
60°	0.30	-0.000260351	0.004173674	
	0.32621	-0.001476278	0.003646521	
	0.40	-0.004103613	0.001448382	
90°	0.26	0.000333692	0.004340265	
	0.29691	-0.001323 009	0.004003547	
	0.34	-0.003314243	0.002948716	
	0.36	-0.000347197	0.004496744	12
120°	0.32	-0.000 085410	0.004153204	
	0.36231	-0.001310073	0.004144189	
	0.40	-0.002924594	0.003418972	
	0.44867	0.003534590	0.002793715	17
135°	0.42	-0.000 604618	0.00399945	
	0.46401	-0.00157535	0.003991731	
	0.50	-0.002965 836	0.003285749	
	0.5559	0.003443402	0.002857735	11
150°	0.62	-0.000099608	0.004149755	
	0.7168	-0.001673754	0.004096696	
	0.74	-0.003 022613	0.003194845	
	0.81531	0.002230676	-0.003078318	2
330°	0.48	0.000984864	-0.004 163046	
	0.51809	0.000379920	-0.004364596	
	0.66	-0.002602270	-0.002315311	
	0.70	-0.003303626	-0.002004 187	
	0.78	-0.004 142034	-0.001074753	
315°	0.34	0.001687353	-0.004 190242	
	0.38636	0.000159978	-0.004 018839	
	0.50	-0.002862277	-0.003 049675	
	0.55590	-0.004 187437	-0.001458213	
	0.58	-0.004234119	0.000787450	

TABLE V (continued)

φ	V	x	y	$n 0$
300°	0.30	0.001328604	-0.004 244581	
	0.32621	0.000110118	--0.003953539	
	0.40	-0.002277498	-0.003 315660	
	0.44867	-0.003 770270	-0.002405736	
270°	0.26	0.001549244	-0.004010897	
	0.29691	0.000056219	-0.003911975	
	0.34	-0.001507286	-0.003626983	
	0.38636	-0.003 406540	-0.002400599	
240°	0.32	0.000887845	-0.003674999	
	0.36231	0.000202589	-0.004 049327	
	0.40	-0.000 280943	-0.004 511865	
	0.44867	-0.002 256112	-0.003855906	
225°	0.42	0.000750999	-0.003767408	
	0.46401	0.000488158	-0.004 245450	
	0.50	-0.000411217	-0.004203186	
	0.5559	-0.001596107	-0.004 223422	
	0.58	-0.002777063	-0.003 499833	
210°	0.62	0.000947946	-0.003692582	
	0.7168	0.000228134	-0.004 117519	
	0.74	-0.000 383273	-0.003 972167	
	0.81531	-0.001201479	-0.004 147291	

Numerical results have been also obtained for collision orbits of the meteorite in the case that the satelite begins its motion when it lies between Earth and Moon - i.e. we consider the system E-S-M at $t=0$.

In that case we give the results for initial distance equal to $r_{0}=-0.024963723073$ (Table VII).
TABLE VI
As in Table IV but with initial distance $r_{0}=0.007677215777$

$r_{0}=0.007677215777$									
φ	V	x	y	n_{0}	φ	V	x	y	n_{0}
60°	0.90	0.000326897	0.004077107		300°	0.90	. 0000824411	-0.004 292476	
	0.96304	-0.005005062	0.005818834			0.96304	-0.000 136322	-0.004 355557	
	1.0	-0.000980778	0.004212378			1.0	-0.000690991	-0.004 362565	
	1.2	-0.004 236439	0.000919856			1.2	-0.004 116475	-0.000 983495	
						1.37868	-0.001525814	0.004226817	
120°	1.0	0.001807044	0.002967576		240°	1.0	0.001746261	-0.002882546	
	1.37225	0.001191407	0.004321906			1.37225	0.001133775	-0.004 216044	
	1.37868	0.001180034	0.004348245			1.37868	0.001122350	-0.004 242357	
90°	0.94	0.000179670	0.004427675		270°	0.94	0.000011162	-0.004 238444	
	0.96545	-0.000506006	0.004359851			0.96545	-0.000687577	-0.004 118971	
	1.08316	-0.001828565	0.003861711			1.08316	-0.004 186881	-0.00159265	

TABLE VII
The samc as in Table IV but in the system Earth-Satellite-Moon and initial Moon-Satellite distance equal to $r_{0}=-0.024963723073$

φ	V	x	y	n_{0}	φ	V	x	y	n_{0}
60°	0.32	-0.000 968270	0.00372204		300°	0.32	0.00000557	-0.004207206	
	0.36231	-0.000 275290	0.004098391			0.36231	0.001239487	-0.004 20458	
	0.40	0.001046889	0.00383307			0.40	0.002867221	-0.00348798	
	0.44867	0.002200865	0.003914523						
	0.48	0.004363913	0.00091868						
120°	0.26	-0.001 705035	0.003519592		$240^{\text {c }}$	0.26	-0.000 976025	-0.004 083264	
	0.32621	-0.000 327724	0.004143558			0.32621	0.001268361	-0.003 894124	
	0.40	0.002095152	0.00363075			0.40	0.004006409	-0.00182544	
	0.44867	0.003840289	0.001717075						
	0.48	0.004285931	-0.00108637						
150°	0.46	-0.001420659	0.004122530		210°	0.46	-0.000 186175	-0.004 023254	
	0.51809	-0.000 516258	0.004456602			0.51809	0.000452193	-0.004 45703	
	0.70	0.003000152	0.003170262			0.70	0.003494447	-0.002 276992	
	0.81531	0.003505239	0.00214683			0.81531	0.000456202	-0.003 574232	

Fig. 11. Collision points on the Moon's surface in the perturbed three-body problem for different value of ejection φ and initial Moon-Satellite distance equal to $r_{0}=0.04386014$. The numbers around the Moon indicate the velocities of Satellite's ejection and the numbers denoted by darker arrows corredy problem as in Figure 5.

Fig. 12. As in Figure 11 but with initial Moon-Satellite distance equal to $r_{0}=0.024963723073$.

Figure 12. (continued).

Fig. 13. As in Figure 11 but now with initial Moon-Satellite distance equal to $r_{0}=0.0076772157$.

From the numerical results we observe that we have collisions on the visible side of the Moon for the following regions of velocities:

TABLE VIII
Regions of velocities and the corresponding angles of ejection for collisions on the visible side of the Moon.

$r_{0}=0.043865014$			$r_{0}=0.007677215777$		
φ	V		φ	V	
30°	[0.24	, 0.36]	60°	[0.94, 1.6]	
45°	[0.18	, 0.32351]	90°	[0.92, 1.08316$]$	
150°	[0.26	,0.36]	270°	[0.94, 1.083 16]	
210°	[0.462	, 0.56]	300°	[0.94, 1.37868]	
330°	[0.38	, 0.58]			
$r_{0}=0.024963723073$			$r_{0}=-0.024963723073$		
φ	V		φ		
			Velocity values less than		
30°	[0.48	, 0.78]		60°	0.38
45°	$[0.34$, 0.50]	120°	0.33	
60°	$[0.30$, 0.40]	150°	0.54	
90°	[0.26	, 0.34]	210°	0.50	
120°	[0.32	, 0.40]	240°	0.30	
135°	$[0.40$, 0.50]	300°	0.32	
150°	$[0.62$, 0.74]			
210°	[0.72	, 0.84]			
225°	$[0.48$, 0.58]			
240°	10.38	, 0.48]			
270°	[0.269	, 0.38636$]$			
300°	[0.34	, 0.48]			
315°	[0.40	, 0.60]			
330°	[0.52	, 0.78]			

5. Conclusions

From all the above it is obvious that the presence of the Earth and Sun has an important influence on the meteorite's collision orbits and, therefore, to the collision points on the lunar surface. For all initial distances of the lunar satellite in both the E-M-S of E-S-M systems and for all satellite launch angles a shift of the collision points is observed as it is seen from the numerical results. The shift occurs in a counterclockwise direction.

For values of the velocity beyond a certain bound the satellite makes a number of revolutions around the Moon before its eventual impact. Certainly, in that case the collision may not occur on the visible side of the Moon, as it happens in the case of launch angles inside the range ($\pi, 2 \pi$). For launch angles $\varphi \in(\pi, 2 \pi)$ the collision points are displaced in a counterclockwise direction on the Moon's surface resulting in colisions on the far side (in presence of the Earth and Sun) - contrary to the case when Earth and

Sun is not taken in consideration. From the distribution of the collision points on the Moon we conclude that a tendency exists for collisions to occur along the ancient equatorial plane of the Moon.

Acknowledgement

The substantial contributions of Profs. J. D. Hadjidemetriou and Z. Kopal to the realisation of this work - in the form of fruitful discussions and review comments - is acknowledged.

References

Brouwer, D. and Clemence, G. M.: 1961, Methods of Celestial Mechanics, Academic Press, New York and London.
Gousidou-Koutita, M.: 1980, Ph. D. Thesis, University of Manchester.
Hadjidemetriou, J. D.: 1975, Celes. Mechan. 12, 155.
Kopal, Z.: 1966, An Introduction to the Study of the Moon, D. Reidel Publ. Co., Dordrecht. Holland.

[^0]: Fig. 9. Some of the orbits of Figure 6 in the perturbed three-body problem (Earth-Moon-Satellite).

