Skip to main content
Log in

Cardioprotective effect of angiotensin-converting enzyme inhibitors in patients with coronary artery disease

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Clinical and experiments study with angiotensin-converting enzyme (ACE) inhibitors suggest that these agents may improve coronary artery disease by acting at multiple sites in the series of events leading to end-stage heart disease. These agents reduce blood pressure, improve prognosis and symptoms in patients with severe heart failure and in patients after acute myocardial infarction with left ventricular dysfunction. They are useful in the early, acute phase of myocardial infarction. More recently, ACE inhibitors have been shown to reduce in vitro vascular hypertrophy, to attenuate arteriosclerosis, and to maintain endothelium function. Whether these effects occur at clinical levels is still uncertain. The exciting clinical data have led to the proposal that alteration of ACE activity, particularly in tissue, is an important factor in development and progression of CAD. The ACE system is complex, with endocrine, paracrine, and autocrine effects. ACE is present in cardiac and vascular tissue. Therefore, the beneficial effects of ACE inhibitors can be classified as “cardio” and “vasculo” protective. This article summarizes a number of independent and complementary mechanisms pointing to a role of ACE and ACE inhibition in coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dzau, V, Braunwald, E, et al. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: A workshop consensus statement. Am Heart J 1991;121:1244–1203.

    Google Scholar 

  2. Dzau, VJ. Angiotensin-converting enzyme as a multimech-anistic factor in CAD. J Myocard Ischemia 1995;7(Suppl.1): 6–14.

    Google Scholar 

  3. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Low-dose captopril for the treatment of mild to moderate hypertension. Arch Intern Med 1984;144:1947–1953.

    Google Scholar 

  4. Zusman, RM. Renin- and non-renin-mediated antihyper-tensive actions of converting-enzyme inhibitors. Kidney Int 1984;25:969–983.

    Google Scholar 

  5. Tewksbury, DA. Angiotensinogen: Biochemistry and molecular biology. In: Laragh, JH, Bremer, BM, eds. Hypertension: Pathophysiology, Diagnosis and Management. New York: Raven Press, 1990:1197–1216.

    Google Scholar 

  6. The CONSENSUS Trial Group. Effect of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987;316:1429–1435.

    Google Scholar 

  7. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;325: 293–302.

    Google Scholar 

  8. The SOLVD Investigators. Effect of enalapril on mortality and development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685–691.

    Google Scholar 

  9. Pfeffer, MA, Braunwald, E, Moye, LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1992;327:669–677.

    Google Scholar 

  10. Pfeffer, MA, Lasmas, GA, Vaughn, DE, Parisi, AF, Braunwald, E. Effect of captopril on progressive ventricular dilation after anterior myocardial infarction. N Engl J Med 1988;319:80–86.

    Google Scholar 

  11. Sharpe, N, Smith, H, Murphy, J, Greaves, S, Hart, H, Gamble, G. Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin converting enzyme inhibition. Lancet 1991;337:872–876.

    Google Scholar 

  12. Lonn, EM, Yusuf, S, Jha, P. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 1994;90:2056–2068.

    Google Scholar 

  13. Admiraal, PJJ, Derkx, FHM, Danser, J, et al. Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 1990;15: 44–45.

    Google Scholar 

  14. Dzau, VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med 1993;153: 937–942.

    Google Scholar 

  15. Paul, M, Schunkert, H, Allen, P, et al. Widespread distribution of angiotensin converting enzyme mRNA in human tissues. J Hypertens 1990;8(Suppl. 3):S36.

    Google Scholar 

  16. Okamura, T, Miyazaki, M, Ingami, T, et al. Vascular renin-angiotensin system in two-kidney, one clip hypertensive rats. Hypertension 1986;8:560–565.

    Google Scholar 

  17. Schunkert, H, Dzau, VJ, Tang, SS, et al. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: Effects on coronary resistance, contractility and relaxation. J Clin Invest 1990;86:1913–1920.

    Google Scholar 

  18. Hirsch, AT, Talsness, CE, Schunkert, H, et al. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991;69: 475–482.

    Google Scholar 

  19. Baumgarten, CR, Linz, W, Kunkel, G, et al. Ramiprilat increases bradykinin outflow from isolated hearts of rat. Br J Pharmacol 1993;108:293–295.

    Google Scholar 

  20. Campbell, DJ, Kladis, A, Duncan, AM. Bradykinin peptides in kidney, blood and other tissues of the rat. Hypertension 1993;21:155–165.

    Google Scholar 

  21. Ferrari, R, Anand, IS. Neurohumoral changes in untreated heart failure. Cardiovasc Drugs Ther 1989;3:979–986.

    Google Scholar 

  22. Ferrari, R, Anand, IS. Neurohumoral changes in untreated cardiac failure. I: Cortina, A, ed. Congestive Cardiac Failure, Pathophysiological Bases and Therapeutic Implications. Oviedo, Spain: Prous Science Publishers, 1992: 49–58.

    Google Scholar 

  23. Ferrari, R, Ceconi, C, deGiuli, F, Panzali, AF, Harris, P. Temporal relations of the endocrine response to hypotension with sodium. Cardioscience 1992;3:51–59.

    Google Scholar 

  24. Ferrari, R, Rodella, A, deGiuli, F, Panzali, AF, Harris, P. Temporal relations of the endocrine response to exercise. Cardioscience 1991;2:131–139.

    Google Scholar 

  25. Ferrari, R, Ceconi, C, Rodella, A, Harris, P, Visioli, O. Hormonal response in untreated myocardial infarction. Cardioscience 1989;1:55–60.

    Google Scholar 

  26. Anand, IS, Ferrari, R, Kalra, GS, Wahi, PL, Poole-Wilson, PA, Harris, P. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 1989;80:299–305.

    Google Scholar 

  27. Dzau, VJ. Angiotensin converting enzyme inhibitors and the cardiovascular system. J Hypertens 1992;10(Suppl. 3): S3-S10.

    Google Scholar 

  28. Ertl, G, Kloner, RA, Alexander, RW, Braunwald, E. Limitation of experimental infarct size by an angiotensin converting enzyme inhibitor. Circulation 1982;66:1249–1255.

    Google Scholar 

  29. Lefer, AM, Peck, RC. Cardioprotective effects of enalapril in acute myocardial ischemia. Pharmacology 1984;29:61–69.

    Google Scholar 

  30. Sweet, CS. Issues surrounding a local cardiac renin system and the beneficial actions of angiotensin-converting enzyme inhibitors in ischemic myocardium. Am J Cardiol 1990;65:111–113.

    Google Scholar 

  31. Liang, C, Gavras, I, Black, J, Sherman, LG, Hood, WB. Renin-angiotensin enzyme inhibitors in acute myocardial infarction in dogs. Circulation 1982;66:1249–1255.

    Google Scholar 

  32. Daniell, HB, Carson, RR, Ballard, KD, Thomas, GR, Privitera, PJ. Effect of captopril on limiting infarct size in conscious dogs. J Cardiovasc Pharmacol 1984;6:1043–1047.

    Google Scholar 

  33. Westlin, W, Mullane, K. Does captopril attenuate reperfusion induced myocardial dysfunction by scavenging free radicals? (abstr). Circulation 1988;77(Suppl. I):130.

    Google Scholar 

  34. Przyklenk, K, Kloner, RA. Acute effects of hydralazine and enalapril on contractile function of post-ischemic stunned myocardium. Am J Cardiol 1987;60:934–936.

    Google Scholar 

  35. Przyklenk, K, Kloner, RA. Relationships between structure and effects of ACE inhibitors: Comparative effects in myocardial ischemia/reperfusion injury. Br J Clin Pharmacol 1989;28:167S-175S.

    Google Scholar 

  36. Cargnoni, A, Boraso, A, Scotti, C, et al. Effect of angiotensin converting enzyme inhibition with quinaprilat on the ischaemic and reperfused myocardium. J Mol Cell Cardiol 1994;26:69–86.

    Google Scholar 

  37. Ferrari, R, Cargnoni, A, Curello, S, Boraso, A, Visioli, O. Protection of the ischemic myocardium by the converting enzyme inhibitor zofenopril: insight into its mechanism of action. J Cardiovasc Pharmacol 1992;20:694–704.

    Google Scholar 

  38. VanGilst, VM, deGraeff, PA, Wesseling, H, deLangen, CDJ. Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: A comparison of captopril, enalapril and HOE498. J Cardiovasc Pharmacol 1986;8:722–728.

    Google Scholar 

  39. Linz, W, Martorana, PA, Scholkens, BA. Local inhibition of bradykinin degradation in ischemic hearts. J Cardiovasc Pharmacol 1990;15(Suppl. 6):S99-S109.

    Google Scholar 

  40. Kigma, JH, deGraeff, PA, vanGilst, WH, Binsbergen, E, deLangen, CDJ, Wesseling, H. Effects of intravenous captopril on inducible sustained ventricular tachycardia one week after experimental infarction in anesthetized pig. Postgrad Med J 1986;62(Suppl. I):159–163.

    Google Scholar 

  41. Pi, X, Chen, X. Captopril and ramiprilat protect against free radical injury in isolated working rat heart. J Mol Cell Cardiol 1989;21:1261–1271.

    Google Scholar 

  42. Mak, IT, Freedman, AM, Dickens, BF, Weglicki, WB. Protective effects of sulfydryl-containing angiotensin converting enzyme inhibitors against free radical injury in endothelial cells. Biochem Pharmacol 1990;40:2169–2175.

    Google Scholar 

  43. Bickerton, RK, Buckley, JP. Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol Med 1961;106:834–836.

    Google Scholar 

  44. Ferrario, CM, Gildenberg, PL, McCubbin, JW. Cardiovascular actions of angiotensin mediated by the central nervous system. Circ Res 1972;30:257–262.

    Google Scholar 

  45. Zimmermann, BG. Evaluation of peripheral and central components of action of angiotensin on the sympathetic nervous system. J Pharmacol Exp Ther 1967;158:1–10.

    Google Scholar 

  46. Zimmerman, BG, Sybertz, EJ, Wong, PC. Interaction between sympathetic and renin-angiotensin system. Hypertension 1984;2:581–587.

    Google Scholar 

  47. Ziogas, J, Story, DF, Rand, MJ. Effects of locally generated angiotensin II on noradrenergic transmission in guinea pig isolated atria. Eur J Pharmacol 1985;106:11–18.

    Google Scholar 

  48. Goldsmith, SR, Haskins, GJ, Miller, E. Angiotensin II and sympathetic activity in patients with congestive heart failure. J Am Coll Cardiol 1993;21:1107–1113.

    Google Scholar 

  49. Richard, DP, Benedict, CR, Kronenberg, MW, et al. for the SOLVD Investigators. Effect of long-term enalapril on adrenergic activity and sensitivity during exercise in patients with left ventricular dysfunction (abstr). Circulation 1993; 88:I293.

    Google Scholar 

  50. Gilbert, EM, Sandoval, A, Larrabee, P, Rentund, DG, O'Connell, JB, Bristow, MR. Lisinopril lowers cardiac adrenergic drive and increases β-receptor density in the failing human heart. Circulation 1993;88:472–480.

    Google Scholar 

  51. Ferrari, R, Menotti, A, Gei, P, deGiuli, F, Tabaglio, A, Anans, IS. Hemodynamics and hormonal changes in chronic heart failure: Effect of ACE inhibition. J Cardiovas Pharmacol 1992;20:S49-S59.

    Google Scholar 

  52. Anand, IS, Kalra, GS, Ferrari, R, Wahi, PL, Harris, P, Poole-Wilson, PA. Enalapril as initial and sole treatment in severe chronic heart failure with sodium retention. Int J Cardiol 1990;28:341–346.

    Google Scholar 

  53. Gavras, H, Brown, JJ, Lever, AF, Macadam, RF, Robertson, JJS. Acute renal failure, tubular necrosis and myocardial infarction induced into the rabbit by intravenous angiotensin-II. Lancet 1971;122:1382–1388.

    Google Scholar 

  54. Krasney, JA, Thompson, JL, Lowe, RF. Cardiac effects of angiotensin injections into perfused right coronary artery. Am J Physiol 1967;213:134–138.

    Google Scholar 

  55. Rouleau, JL, Chatterjee, K, Benge, W, Parmley, WW, Hiramatsu, B. Alterations in left ventricular function and coronary hemodynamics with captopril, hydralazine and prazosin in chronic ischemic heart failure: A comparative study. Circulation 1982;65:671–678.

    Google Scholar 

  56. Chatterjee, K, Rouleau, JL, Parmley, WW. Haemodynamic effects of captopril in chronic heart failure. Br Heart J 1982;47:233–238.

    Google Scholar 

  57. Halperin, JL, Faxon, DP, Creager, MA, et al. Coronary hemodynamic effects of angiotensin inhibition by captopril and teprotide in patients with congestive heart failure. Am J Cardiol 1982;50:967–972.

    Google Scholar 

  58. Wenting, GJ, Man in't Veld, AJ, Woittiez, AJ, et al. Acute and chronic heart failure: Correlation with plasma levels of noradrenaline, renin and aldosterone. Br Heart J 1983; 49:65–76.

    Google Scholar 

  59. Mattioli, G, Ricci, S, Rigo, R, Roberto, R, Fusaro, MT, Cappello, C. Effects of captopril in heart failure complicating acute myocardial infarction and persistence of acute hemodynamic effect in chronic heart failure after 3 years of treatment. Postgrad Med J 1986;62(Suppl. I): 164–166.

    Google Scholar 

  60. Schultheiss, HP, Ullrich, M, Schindler, M, Schulze, SK, Strauer, BE. The effect of ACE inhibition on myocardial energy metabolism. Eur Heart J 1990;11(Suppl. B): 116–122.

    Google Scholar 

  61. Magrini, F, Reggiani, P, Roberts, N, Mezza, R, Ciulla, M, Zanchetti, A. Effects of angiotensin and angiotensin blockade on coronary circulation and coronary reserve. Am J Med 1988;84(Suppl. 3A):55–60.

    Google Scholar 

  62. Linz, KW, Scholkens, BA, Han, YF. Beneficial effects of converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 1986;88(Suppl. 10): S91-S99.

    Google Scholar 

  63. vanGilst, WH, deGraeff, PA, Scholtens, E, et al. Potentiation of isosorbide dinitrate-induced coronary dilation by captopril. J Cardiovasc Pharmacol 1987;9:254–255.

    Google Scholar 

  64. Daly, P, Rouleau, JL, Cousineau, D, Burgess, JH. Acute effect of captopril on the coronary circulation of patients with hypertension and angina. Am J Med 1984;76(Suppl. B): 111–115.

    Google Scholar 

  65. Daly, P, Mettauer, P, Rouleau, JL, Cousineau, D, Burgess, JH. Lack of reflex increase in myocardial sympathetic tone after captopril: Potential antianginal effect. Circulation 1985;71:317–325.

    Google Scholar 

  66. Dzau, VJ. Short and long-term determinants of cardiovascular function and therapy. Contributions of circulating and tissue renin-angiotensin systems. J Cardiovasc Pharmacol 1989;14(Suppl. 4):S1-S5.

    Google Scholar 

  67. Strozzi, C, Portaluppi, F, Cocco, G, Urso, L. Ergometric evaluation of the effects of enalapril maleate in normotensive patients with stable angina. Clin Cardiol 1988;11: 246–249.

    Google Scholar 

  68. Strozzi, C, Cocco, G, Portaluppi, F, et al. Effects of captopril on the physical work capacity of normotensive patients with stable effort angina pectoris. Cardiology 1987;74: 226–228.

    Google Scholar 

  69. Gibbs, JSR, Crean, PA, Mockus, L, Wright, C, Sutton, GC, Fox, JM. The variable effects of angiotensin converting enzyme inhibition on myocardial ischaemia in chronic stable angina. Br Heart J 1989;62:112–117.

    Google Scholar 

  70. Bussman, WD, Goerke, S, Schneider, W, Kaltenbach, M. Angiotensin-Converting-Enzyme-Hemmer bei Angina Pectoris. Deutsch Med Wochenschr 1988;113:548–550.

    Google Scholar 

  71. Cleland, JGF, Henderson, E, McLenachan, JM, Findlay, IN, Dargie, HJ. Effect of captopril, an angiotensin-converting enzyme inhibitor, in patients with angina pectoris and heart failure. J Am Coll Cardiol 1991;17:733–739.

    Google Scholar 

  72. Thurmanm, P, Odenthal, HJ, Rletbrock, N. Converting enzyme inhibition in coronary artery disease: A randomized, placebo controlled trial with benazepril. J Cardiovasc Pharmacol 1991;17:718–723.

    Google Scholar 

  73. Kannel, WB, Gordon, T, Castelli, WP, Margolis, JR. Electro-cardiographic left ventricular hypertrophy and risk of coronary heart disease: The Framingham Study. Ann Intern Med 1970;72:813–822.

    Google Scholar 

  74. Kannel, WB, Schatzkin, A. Sudden death: Lessons from subsets in population studies. J Am Coll Cardiol 1985; 5(Suppl.):141B-149B.

    Google Scholar 

  75. Levy, D, Garrison, MS, Savage, DD, Kannel, WB, Castelli, WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561–1565.

    Google Scholar 

  76. Dunn, FG, Oigman, W, Ventura, HO, Messerli, FH, Kobrin, I. Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol 1984;53:105–108.

    Google Scholar 

  77. Mujais, SK, Fouad, FM, Tarazi, RC. Reversal of left ventricular hypertrophy with captopril: Heterogenicity of response among hypertensive patients. Clin Cardiol 1983;6: 595–602.

    Google Scholar 

  78. Dal Palu', C, Pessina, AC, Pagman, A, et al. Effect of captopril on left ventricular mass and function in hypertensive patients and in the rat. Postgrad Med J 1986;62(Suppl. 1): 85–89.

    Google Scholar 

  79. Nakashina, Y, Fouad, FM, Tarazi, RC. Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J Cardiol 1984;53:1044–1049.

    Google Scholar 

  80. Weber, KT, Janicki, JS. Angiotensin and the remodelling of the myocardium. Br J Clin Pharmacol 1989;28(Suppl.): 141S-150S.

    Google Scholar 

  81. Linz, W, Scholkens, BA, Ganten, D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens 1989;11:1325–1350.

    Google Scholar 

  82. Clozel, JP, Herd, F. Gilazapril prevents the development of cardiac hypertrophy and the decrease of coronary vascular reserve in spontaneously hypertensive rats. J Cardiovasc Pharmacol 1988;11:568–572.

    Google Scholar 

  83. Kromer, EP, Riegger, GA. Effect of long-term angiotensin converting enzyme inhibition on myocardial hypertrophy in experimental aortic stenosis in the rat. Am J Cardiol 1988;62:161–163.

    Google Scholar 

  84. Lindpainter, K, Ganten, D. The cardiac renin-angiotensin system: A synopsis of current experimental and clinical data. Acta Cardiol 1991;46:385–397.

    Google Scholar 

  85. Gilendling, KK, Murphy, TJ, Alexander, RW. Molecular biology of the renin-angiotensin system. Circulation 1993; 87:1816–1828.

    Google Scholar 

  86. Drexler, H, Lindpainter, K, Lu, W, Schieffer, B, Ganteen, D. Transient increase in the expression of cardiac angioten-sinogen in a rat model of infarction and failure (abstr). Circulation 1989;80(Suppl. II):II459.

    Google Scholar 

  87. Bauwens, FR, Duprez, DA, DeBuyzere, ML, et al. Influence of the arterial blood pressure and nonhemodynamic factors on left ventricular hypertrophy in moderate essential hypertension. Am J Cardiol 1991;68:925–929.

    Google Scholar 

  88. Weber, KT, Brilla, CG. Pathological hypertrophy and cardiac interstitium: Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991;83:1849–1865.

    Google Scholar 

  89. Luscher, TF. Endothelial dysfunction in atherosclerosis. J Myocard Ischem 1995;7(Suppl. 1):15–20.

    Google Scholar 

  90. Luscher, TF. Angiotensin, ACE-inhibitors and endothelial control of vascomotor tone. In: Grobecker, H, Heusch, G, Strauer, BE, eds. Angiotensin and the Heart. Darmstadt: Steinkopff Verlag, 1993.

    Google Scholar 

  91. Scicli, AG, Carretero, OA. Bradykinin-dependent mechanisms contributing to the CV effects of ACE inhibitors. J Myocard Ischem 1995;7(Suppl. 1):21–33.

    Google Scholar 

  92. Chobanian, AV, Haudenschild, CC, Nickerson, C, Drago, R. Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension 1990;15:327–331.

    Google Scholar 

  93. Chobanian, AV. The effects of ACE inhibitors and other antihypertensive drugs on cardiovascular risk factors and atherogenesis. Clin Cardiol 1990;13:VII43-VII48.

    Google Scholar 

  94. Aberg, G, Ferrer, P. Effects of captopril on atherosclerosis in cynomolgus monkeys. J Cardiovasc Pharmacol 1990;15: S65-S72.

    Google Scholar 

  95. Rolland, PH, Charpiot, P, Friggi, A, et al. Effect of angiotensin-converting enzyme inhibition with perindolol on hemodynamics, arterial structure, and wall rheology in the hindquarters of atherosclerotic mini pigs. Am J Cardiol 1993;71:22E-27E.

    Google Scholar 

  96. Powell, JS, Clozel, JP, Muller, RKM, et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 1989;245:186–188.

    Google Scholar 

  97. Rakugi, H, Jacob, HJ, Krieger, JE, Ingelfinger, JR, Pratt, RE. Vascular injury induces angiotensinogen gene expression in the media and neointima. Circulation 1993;87: 283–290.

    Google Scholar 

  98. Michael, JB, Plissonier, D, Bruneval, P. Effect of perindopril on the immune arterial wall remodelling in the rat model of arterial graft rejection. Am J Med 1992;92(Suppl. 4B): 39S-46S.

    Google Scholar 

  99. Bilazarian, SD, Currier, JW, Haudenschild, C, et al. Angiotensin converting enzyme inhibition reduces restenosis in experimental angioplasty (abstr.). Circulation 1990; 82(Suppl. II):II297.

    Google Scholar 

  100. Rakugi, H, Wang, DS, Dzau, YJ. Potential importance of tissue angiotensin converting enzyme inhibition in preventing neointima formation. Circulation 1994;90: 449–455.

    Google Scholar 

  101. The Multicenter European Research Trial with Cilazapril. After angioplasty to prevent transluminal coronary obstruction and restenosis (MERCATOR) Study Group. Does the new angiotensin coverting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR randomized, double blind placebo-controlled trial. Circulation 1992;86:100–110.

    Google Scholar 

  102. Naftilan, AJ, Pratt, RE, Eldrige, CS, Lin, HL, Dzau, VJ. Angiotensin II induces c-fos expression in smooth muscle via transcriptional control. Hypertension 1989;13:706–711.

    Google Scholar 

  103. Taubman, MB, Bradford, CB, Isumo, S, Tsuda, T, Alexander, RW, Nedal-Ginard, S. Angiotensin II induces c-fos mRNA in aortic smooth muscle. J Biol Chem 1989;264:526–530.

    Google Scholar 

  104. Kawahara, Y, Sunako, M, Tsuda, T, Fukuzaki, H, Fukumoto, Y, Takai, Y. Angiotensin-II induces expression of c-fos gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 1988;130:52–59.

    Google Scholar 

  105. Naftilan, AJ, Pratt, RE, Dzau, VJ. Induction of platelet-derived growth-factor A chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 1989;83:1419–1424.

    Google Scholar 

  106. Paquet, JL, Baudouin-Legros, M, Brunelle, G, Meyer, P. Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens 1990;8: 565–572.

    Google Scholar 

  107. Naftilan, AJ, Gilliand, GK, Eldrige, CS, Kraft, AS. Induction of the proto-oncogene c-jun by angiotensin II. Mol Cell Biol 1990;10:5536–5540.

    Google Scholar 

  108. Lyall, F, Morton, JJ, Gillespie, D. Angiotensin II stimulates c-jun expression in cultured vascular smooth muscle cells: Superinduction by emetine. Eur J Intern Med 1992;2: 271–273.

    Google Scholar 

  109. Scott-Burden, T, Resink, TJ, Hahn, AWA, Buhler, FR. Induction of thrombospondin expression in vascular smooth muscle cells by angioten II. J Cardiovasc Pharmacol 1990; 16(Suppl. 7):17–20.

    Google Scholar 

  110. Powell, JS, Rouge, M, Muller, RKM, Baumgartner, HR. Cilazapril suppresses myointimal proliferation after vascular injury: Effects on growth factor induction and vascular smooth muscle cells. Basic Res Cardiol 1991;86(Suppl. I): 65–74.

    Google Scholar 

  111. Powell, JS, Muller, RKM, Rouge, M, Kuhn, H, Hefti, F, Baumgartner, HR. The proliferative response to vascular injury is suppressed by angiotensin-converting enzyme inhibition. J Cardiovasc Pharmacol 1990;16(Suppl. 4): S42-S49.

    Google Scholar 

  112. Farber, HW, Center, DM, Rounds, S, Danilov, SM. Components of the angiotensin system cause release of neutrophil chemoattractant from cultured bovine and human endothelial cells. Eur Heart J 1990;11(Suppl. B):100–107.

    Google Scholar 

  113. Shulz, PJ, Raij, L. Effects of antihypertensive agents on endothelium-dependent and endothelium-independent relaxations. Br J Clin Pharmacol 1989;28:S151-S157.

    Google Scholar 

  114. Dohi, Y, Hahn, AWA, Boulanger, CM, Buhler, FR, Luscher, TF. Endothelin stimulated by angiotensin-II augments contractility of spontaneously hypertensive rat resistance arteries. Hypertension 1992;19:131–137.

    Google Scholar 

  115. Taddei, S, Virdis, A, Mattei, P, Salvetti, A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993;21:929–933.

    Google Scholar 

  116. Luscher, TF, Boulanger, CM, Dohi, Y, Yang, Z. Endothelium-derived contracting factors. Hypertension 1992;19: 117–130.

    Google Scholar 

  117. Turlapaty, PDMV, Altura, BM. Magnesium deficiency produces spasms of the coronary arteries: Relationships to etiology of sudden ischemic heart disease. Science 1980; 208:198–200.

    Google Scholar 

  118. Vaughan, DE, Shen, C, Lazos, SA. Angiotensin-II induces secretion of plasminogen activator inhibitor (PAI-1) in vitro (abstr). Circulation 1992;86(Suppl. I):I557.

    Google Scholar 

  119. Olson, JAJr, Shiverick, KT, Ogilvie, S, Buhi, WC, Raizada, MK. Angiotensin-II induces secretion of plasminogen activator inhibitor I and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes. Neurobiology 1991;88:1928–1932.

    Google Scholar 

  120. Luskutoff, DJ, Sawdey, M, Mimuro, J. Type I plasminogen activator inhibitor. Prog Hemost Thromb 1989;9:87–115.

    Google Scholar 

  121. Ridker, PM. An epidemiologic assessment of thrombotic risk factors for cardiovascular disease. Curr Opin Lipidol 1992;3:285–290.

    Google Scholar 

  122. Ridker, PM, Gaboury, CL, Conlin, PR, Seely, EW, Williams, GH, Vaughan, DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin-II: Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 1993;87: 1969–1973.

    Google Scholar 

  123. Vaughan, DE, Roulleau, JL, Premer, MA. Role of the fibrinolytic system in preventing myocardial infarction. Eur Heart J 1995;16:31–36.

    Google Scholar 

  124. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993;342:821–828.

    Google Scholar 

  125. Swedberg, K, Held, P, Kjekshus, J, Rasmussen, K, Ryden, L, Wedel, H. Effects of early administration of enalapril on mortality in patients with acute myocardial infarction: Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992; 327:678–684.

    Google Scholar 

  126. GISSI Collaborative Group. Oral presentation at the 66th Scientific Sessions of the American Association, November 1993.

  127. ISIS Collaborative Group. ISIS-4: Randomised study of oral captopril in over 50,000 patients with suspected acute myocardial infarction. Circulation 1993;88:I394.

    Google Scholar 

  128. The Chinese Captopril Trial. Oral presentation at the 66th Scientific Sessions of the American Heart Association, November 1993.

  129. Ambrosioni, E, Borghi, C, Magnani, B, et al. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med 1995;332:80–85.

    Google Scholar 

  130. Texter, M, Lees, RS, Pitt, B, et al. The Quinapril Ischemic Event Trial (QUIET) design and methods: Evaluation of chronic ACE inhibitor therapy after coronary artery intervention. Cardiovasc Drugs Ther 1993;7:273–282.

    Google Scholar 

  131. Kinoshita, A, Urata, H, Bumpus, FM, et al. Measurement of angiotensin I convering enzyme inhibition in the heart. Circ Res 1993;73:51–60.

    Google Scholar 

  132. Pepine, CJ, Pitt, B, Bertrand, ME, Timmis, A. Emerging role of ACE inhibitors in vascular protection. J Myocard Ischemia 1995;7(Suppl. 1):50–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, R., Ceconi, C., Curello, S. et al. Cardioprotective effect of angiotensin-converting enzyme inhibitors in patients with coronary artery disease. Cardiovasc Drug Ther 10 (Suppl 2), 639–647 (1996). https://doi.org/10.1007/BF00052511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052511

Key Words

Navigation