Errata

Standardized complex and logarithmic eigensolutions for *n*-material wedges and junctions

STEPHANE S. PAGEAU¹, KESAVARAM S. GADI², SHERRILL B. BIGGERS, Jr.² and PAUL F. JOSEPH²

¹Currently Hibbitt, Karlsson and Sorensen, Inc. Pawtucket, Rhode Island 02860, USA ²Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA

International Journal of Fracture 77 (1996) 51-76

For an unknown reason the authors did not have an opportunity to review Galley Proofs for this paper. The following necessary corrections should be made:

- 1. The sentence leading to (2a) should start: The constants A_k , B_k , C_k and D_k are normalized with respect to
- 2. In (11) G_{ik} should be changed to G_{ik} .
- 3. Equation (38) should be

$$\sigma_{ijk}(r,\theta) = \frac{1}{(2\pi r)^{1-\beta}} \left[K_I \left\{ E'_{ijk}(\theta) \cos(\epsilon \ln(r)) - F'_{ijk}(\theta) \sin(\epsilon \ln(r)) \right\} - K_{II} \left\{ E'_{ijk}(\theta) \sin(\epsilon \ln(r)) + F'_{ijk}(\theta) \cos(\epsilon \ln(r)) \right\} \right].$$
(38)

- 4. In (54b), (54c), and (54d) the term $+2\delta_k \sin(\theta) \dots$ should be $-2\delta_k \sin(\theta) \dots$
- 5. On page 68 in the second paragraph, b = +0.5 should be $\beta = +0.5$.
- 6. The constant B_2 in Table 1 should equal $-iQ_1$.
- 7. On page 70 between (63) and (64), \ldots for all $q \ldots$ should be \ldots for all $\theta \ldots$
- 8. The second line of (66) should be preceded by a negative sign as in the corrected version of (38) above.
- 9. On page 74 near the end of the second paragraph, $t_{r\theta}(r,0)$ should be $\tau_{r\theta}(r,0)$ and $\theta = 0.0125$ should be $\omega = 0.0125$.
- Reference [19] should read: K.S. Gadi, P.F. Joseph, N. Zhang and A.C. Kaya, 'Nonseparable Logarithmic Eigensolutions for N-material Wedges and Junctions', submitted for publication, January 1996.
- 11. With regard to the general development on pages 70 and 71, the authors should have made reference to: T.C.T. Ting, 'The Wedge Subjected to Tractions: A Paradox Re-examined', *Journal of Elasticity* 14 (1984) 235–247. In this paper Professor Ting examines the special case of $\omega = 0$ and provides a solution near the critical point. Other important references are given in this paper for the $\omega = 2$ case. The authors were not aware of this work when the final version of the paper was submitted.