Skip to main content

Research Progress of 3D Printing Silicone Rubber Materials

  • Conference paper
  • First Online:
Innovative Technologies for Printing, Packaging and Digital Media (CACPP 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1144))

Included in the following conference series:

  • 215 Accesses

Abstract

The rapid development of 3D printing technology and a series of polymer materials has made people’s daily life more convenient. 3D printing technology uses computer control to achieve fine, customized on-demand printing, which is not only resource-saving but also flexible and efficient. Silicone rubber is a polymeric silicone elastomer with a Si-O-Si bond in the main chain and an organic group in the side chain, which has high elasticity, high and low temperature resistance, aging resistance and excellent biocompatibility, and has been widely used in various fields such as biomedical, aerospace, mechanical engineering, and optoelectronic materials. Combining 3D printing technology with silicone rubber materials can not only broaden the scope of 3D printing technology, but also make better use of silicone rubber materials to provide convenience in daily life. This study mainly discusses the current development status of 3D printing silicone rubber materials and the future development direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zaili, Z., Zimin, Z., Jia, L.: The current situation and problems of silicone rubber development in China. Rubber Sci. Technol. Mark. 04, 14–16 (2006)

    Google Scholar 

  2. Juan, H., Wenqiang, L., Aixia, Z., Li, C., Xianghong, Z.: Advances in domestic organosilicon in 2021. Organic Silicon Mater. 36(03), 74–99 (2022)

    Google Scholar 

  3. Holzmann, P., Breitenecker, R.J., Soomro, A.A., et al.: User entrepreneur business models in 3D printing. J. Manuf. Technol. Manag. 28(1), 75–94 (2017)

    Article  Google Scholar 

  4. Tofail, S.A.M., Koµmoulos, E.P., Bandyopadhyay, A., et al.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21(1), 22–37 (2018)

    Article  Google Scholar 

  5. Shahrubudin, N., Lee, T.C., Ramlan, R.: An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 35, 1286–1296 (2019)

    Article  Google Scholar 

  6. Martínez-García, A., Monzón, M., Paz, R.: Standards for additive manufacturing technologies: structure and impact. In: Additive Manufacturing, pp. 395–408. Elsevier (2021)

    Google Scholar 

  7. Tiwari, S.K., Pande, S., Agrawal, S., et al.: Selection of selective laser sintering materials for different applications. Rapid Prototyping J. 21(6), 630–648 (2015)

    Article  Google Scholar 

  8. Ventola, C.L.: Medical applications for 3D printing: current and projected uses. Pharmacy Therapeutics 39(10), 704 (2014)

    Google Scholar 

  9. Laser additive manufacturing: materials, design, technologies, and applications (2016)

    Google Scholar 

  10. Bhole, K.S., Kale, B.: Techniques to minimise stair-stepping effect in micro-stereolithography process: a review. Adv. Mater. Process. Technol. 8(4), 3615–3634 (2022)

    Google Scholar 

  11. Kelly, B.E., Bhattacharya, I., Heidari, H., et al.: Volµmetric additive manufacturing via tomographic reconstruction. Science 363(6431), 1075–1079 (2019)

    Article  Google Scholar 

  12. Bernal, P.N., Delrot, P., Loterie, D., et al.: Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31(42), 1904209 (2019)

    Article  Google Scholar 

  13. Sun, C., Fang, N., Wu, D.M., et al.: Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators, A 121(1), 113–120 (2005)

    Article  Google Scholar 

  14. Zhang, F., , C., Hague, R., et al.: Inkjet printing of polyimide insulators for the 3 D printing of dielectric materials for microelectronic applications. J. Appl. Polymer Sci. 133(18) (2016)

    Google Scholar 

  15. Rosello, M., Maîtrejean, G., Roux, D.C.D., et al.: Influence of the nozzle shape on the breakup behavior of continuous ink jets. J. Fluids Eng. 140(3) (2018)

    Google Scholar 

  16. Lewis, J.A.: Direct ink writing of 3D functional materials. Adv. Func. Mater. 16(17), 2193–2204 (2006)

    Article  Google Scholar 

  17. Dilberoglu, U.M., Gharehpapagh, B., Yaman, U., et al.: The role of additive manufacturing in the era of industry 4.0. Procedia Manuf. 11, 545–554 (2017)

    Google Scholar 

  18. Low, Z.X., Chua, Y.T., Ray, B.M., et al.: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 523, 596–613 (2017)

    Article  Google Scholar 

  19. Silbernagel, C.: Additive manufacturing 101-4: what is material jetting. Canada Makers (2018)

    Google Scholar 

  20. Vijayavenkataraman, S., Fuh, J.Y.H., Lu, W.F.: 3D printing and 3D bioprinting in pediatrics. Bioengineering 4(3), 63 (2017)

    Article  Google Scholar 

  21. Shan, S.: Preparation and performance study of two-component room temperature vulcanized foamed silicone rubber. Beijing University of Chemical Technology (2020)

    Google Scholar 

  22. Smith, R.A., Paulus, M.J., Branning, J.M., et al.: X-ray computed tomography on a cellular polysiloxane under compression. J. Cell. Plast. 37(3), 231–248 (2001)

    Article  Google Scholar 

  23. Gottenbos, B., van der Mei, H.C., Klatter, F., et al.: In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammoniµm silane coatings on silicone rubber. Biomaterials 23(6), 1417–1423 (2002)

    Article  Google Scholar 

  24. Xinran, L., Xinlong, W.: Research on flame retardant sealing silicone rubber for ship cable penetration. Fire Sci. Technol. 32(06), 658–661 (2013)

    Google Scholar 

  25. Yeh, L.-M., Yu, L.-J., Zhang, G.-Y., Huang, G.-S.: Microscopic mechanism of viscoelastic behavior of silicone rubber. Polymer Mater. Sci. Eng. 26(09), 89–91+95 (2010)

    Google Scholar 

  26. Zhao, Y.: Preparation and properties of low temperature resistant deketoxime type room temperature vulcanized silicone rubber. Shandong University (2015)

    Google Scholar 

  27. Qin, Y., et al.: Microscopic physical properties and water repellency of high-temperature vulcanized silicone rubber under long-wave UV irradiation. J. Electrotechnol. 29(12), 242–250 (2014)

    Google Scholar 

  28. Aziz, T., Waters, M., Jagger, R.: Surface modification of an experimental silicone rubber maxillofacial material to improve wettability. J. Dent. 31(3), 213–216 (2003)

    Article  Google Scholar 

  29. Mou Shansong, T.M., Qin, B., Tang, S.: Hydroxyapatite reinforced silicone rubber and improvement of its anticoagulant properties. Synth. Rubber Ind. (06), 383 (2002). (in English)

    Google Scholar 

  30. Huang, K.: Preparation of a sprayable superhydrophobic/superdual hydrophobic coating based on silicone rubber. University of Electronic Science and Technology (2019)

    Google Scholar 

  31. Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)

    Article  Google Scholar 

  32. Wolfe, D.B., Qin, D., Whitesides, G.M.: Rapid prototyping of microstructures by soft lithography for biotechnology. Microengineering Biotechnol. 81–107 (2009)

    Google Scholar 

  33. Waldbaur, A., Rapp, H., Länge, K., et al.: Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods 3(12), 2681–2716 (2011)

    Article  Google Scholar 

  34. Femmer, T., Kuehne, A.J.C., Wessling, M.: Print your own membrane: direct rapid prototyping of polydimethylsiloxane. Lab Chip 14(15), 2610–2613 (2014)

    Article  Google Scholar 

  35. Valino, A.D., Dizon, J.R.C., Espera, A.H., Jr., et al.: Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 98, 101162 (2019)

    Article  Google Scholar 

  36. Espera, A.H., Dizon, J.R.C., Chen, Q., et al.: 3D-printing and advanced manufacturing for electronics. Progr. Additive Manuf. 4, 245–267 (2019)

    Article  Google Scholar 

  37. Chen, Q., Zhao, J., Ren, J., et al.: 3D printed multifunctional, hyperelastic silicone rubber foam. Adv. Func. Mater. 29(23), 1900469 (2019)

    Article  Google Scholar 

  38. Hinton, T.J., Hudson, A., Pusch, K., et al.: 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater. Sci. Eng. 2(10), 1781–1786 (2016)

    Article  Google Scholar 

  39. University of Florida develops new technology for 3D printing of silicone rubber. Organosilicon Mater. 31(03), 169 (2017)

    Google Scholar 

  40. Esposito Corcione, C., Gervaso, F., Scalera, F., et al.: The feasibility of printing polylactic acid-nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J. Appl. Polymer Sci. 134(13) (2017)

    Google Scholar 

  41. Calcagnile, P., Cacciatore, G., Demitri, C., et al.: A feasibility study of processing polydimethylsiloxane-sodiµm carboxymethylcellulose composites by a low-cost fused deposition modeling 3D printer. Materials 11(9), 1578 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Beijing Institute of Graphic Communication R&D Project-Research on Pressure Sensing Antibacterial Polyester Urethral Stent (Ee202207), Innovation projects in incubating technology enterprises-Study on the cell compatibility of new cerebrovascular drug-eluting stent (2021-F-057), Education Reform Project of Beijing Higher Education Association: An Exploration of Teaching Reform centered on the cultivation of Students’ Creative ability under the concept of Universal Printing (MS2022178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Hu or Yongxiang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2024). Research Progress of 3D Printing Silicone Rubber Materials. In: Song, H., Xu, M., Yang, L., Zhang, L., Yan, S. (eds) Innovative Technologies for Printing, Packaging and Digital Media. CACPP 2023. Lecture Notes in Electrical Engineering, vol 1144. Springer, Singapore. https://doi.org/10.1007/978-981-99-9955-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9955-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9954-5

  • Online ISBN: 978-981-99-9955-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics