Skip to main content

Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment

  • Chapter
  • First Online:
Basic Immunology and Its Clinical Application

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1444))

  • 473 Accesses

Abstract

Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired immunity. Nat Immunol. 2003;4(12):1164–5.

    Article  CAS  PubMed  Google Scholar 

  2. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13(2):101–17.

    Article  CAS  PubMed  Google Scholar 

  3. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    Article  CAS  PubMed  Google Scholar 

  4. Gapin L, Matsuda JL, Surh CD, Kronenberg M. NKT cells derive from double-positive thymocytes that are positively selected by CDId. Nat Immunol. 2001;2(10):971–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol. 2002;3(9):867–74.

    Article  CAS  PubMed  Google Scholar 

  6. Lee YJ, Holzapfel KL, Zhu JF, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol. 2013;14(11):1146–54.

    Article  CAS  PubMed  Google Scholar 

  7. Diaz-Basabe A, Strati F, Facciotti F. License to kill: when iNKT cells are granted the use of lethal cytotoxicity. Int J Mol Sci. 2020;21(11):3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A. A thymic precursor to the NK T cell lineage. Science. 2002;296(5567):553–5.

    Article  CAS  PubMed  Google Scholar 

  9. Egawa T, Eberl G, Taniuchi I, Benlagha K, Geissmann F, Hennighausen L, et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity. 2005;22(6):705–16.

    Article  CAS  PubMed  Google Scholar 

  10. Bezbradica JS, Hill T, Stanic AK, Van Kaer L, Joyce S. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc Natl Acad Sci U S A. 2005;102(14):5114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lucas B, White AJ, Cosway EJ, Parnell SM, James KD, Jones ND, et al. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat Commun. 2020;11(1):2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity. 2015;43(3):566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YJ, Starrett GJ, Lee ST, Yang R, Henzler CM, Jameson SC, et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and Th cells. J Immunol. 2016;197(4):1460–70.

    Article  CAS  PubMed  Google Scholar 

  14. Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B, Chawla A, et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol. 2016;17(6):728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4NK1.1 NKT cell population. Proc Natl Acad Sci U S A. 2008;105(32):11287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest. 2014;124(9):3725–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li BF, et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity. 2008;29(3):391–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Hogquist KA. CCR7 defines a precursor for murine iNKT cells in thymus and periphery. Elife. 2018;7:e34793.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crosby CM, Kronenberg M. Tissue-specific functions of invariant natural killer T cells. Nat Rev Immunol. 2018;18(9):559–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan X, Rudensky AY. Hallmarks of tissue-resident lymphocytes. Cell. 2016;164(6):1198–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murray MP, Engel I, Seumois G, Herrera-De la Mata S, Rosales SL, Sethi A, et al. Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nat Commun. 2021;12(1):1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shissler SC, Singh NJ, Webb TJ. Thymic resident NKT cell subsets show differential requirements for CD28 co-stimulation during antigenic activation. Sci Rep. 2020;10(1):8218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu QY, Kim CH. Control of tissue-resident invariant NKT cells by vitamin A metabolites and P2X7-mediated cell death. J Immunol. 2019;203(5):1189–97.

    Article  CAS  PubMed  Google Scholar 

  24. Bovens AA, Wesselink TH, Behr FM, Kragten NAM, van Lier RAW, van Gisbergen K, et al. Murine iNKT cells are depleted by liver damage via activation of P2RX7. Eur J Immunol. 2020;50(10):1515–24.

    Article  CAS  PubMed  Google Scholar 

  25. An DD, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156(1–2):123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeissig S, Peuker K, Iyer S, Gensollen T, Dougan SK, Olszak T, et al. CD1d-Restricted pathways in hepatocytes control local natural killer T cell homeostasis and hepatic inflammation. Proc Natl Acad Sci U S A. 2017;114(39):10449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thanabalasuriar A, Neupane AS, Wang J, Krummel MF, Kubes P. iNKT cell emigration out of the lung vasculature requires neutrophils and monocyte-derived dendritic cells in inflammation. Cell Rep. 2016;16(12):3260–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A, Lester C, et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue. Nat Immunol. 2015;16(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  29. Aguiar CF, Correa-da-Silva F, Gonzatti MB, Angelim MK, Pretti MA, Davanzo GG, et al. Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Rep. 2023;42(1):112035.

    Article  CAS  PubMed  Google Scholar 

  30. Jimeno R, Lebrusant-Fernandez M, Margreitter C, Lucas B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. Elife. 2019;8:e51663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kragten NA, Taggenbrock RL, Parga Vidal L, van Lier RA, Stark R, van Gisbergen KP. Hobit and Blimp-1 instruct the differentiation of iNKT cells into resident-phenotype lymphocytes after lineage commitment. Eur J Immunol. 2022;52(3):389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salou M, Legoux F, Gilet J, Darbois A, du Halgouet A, Alonso R, et al. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J Exp Med. 2019;216(1):133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans. Sci Immunol. 2019;4(34):eaas9673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol. 2006;24:657–79.

    Article  CAS  PubMed  Google Scholar 

  35. Cui GW, Shimba A, Ma GY, Takahara K, Tani-ichi S, Zhu YB, et al. IL-7R-dependent phosphatidylinositol 3-kinase competes with the STAT5 signal to modulate T cell development and homeostasis. J Immunol. 2020;204(4):844–57.

    Article  CAS  PubMed  Google Scholar 

  36. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191(5):771–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gordy LE, Bezbradica JS, Flyak AI, Spencer CT, Dunkle A, Sun JC, et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J Immunol. 2011;187(12):6335–45.

    Article  CAS  PubMed  Google Scholar 

  38. Cui GW, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci U S A. 2014;111(5):1915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cui G, Shimba A, Jin J, Ogawa T, Muramoto Y, Miyachi H, et al. A circulating subset of iNKT cells mediates antitumor and antiviral immunity. Sci Immunol. 2022;7(76):eabj8760.

    Article  CAS  PubMed  Google Scholar 

  40. Tao HS, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, et al. Thymic epithelial cell-derived IL-15 and IL-15 receptor α chain foster local environment for type 1 innate like T cell development. Front Immunol. 2021;12:623280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee PT, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med. 2002;195(5):637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gumperz JE, Miyake S, Yamamura T, Brenner MB. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002;195(5):625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–66.

    Article  CAS  PubMed  Google Scholar 

  44. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517(7534):293–301.

    Article  CAS  PubMed  Google Scholar 

  45. Kotas ME, Locksley RM. Why innate lymphoid cells? Immunity. 2018;48(6):1081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med. 2014;211(3):563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–56.

    Article  CAS  PubMed  Google Scholar 

  48. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 2013;38(4):769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nabekura T, Shibuya A. Type 1 innate lymphoid cells: soldiers at the front line of immunity. Biom J. 2021;44(2):115–22.

    CAS  Google Scholar 

  51. Crinier A, Kerdiles Y, Vienne M, Cozar B, Vivier E, Berruyer C. Multidimensional molecular controls defining NK/ILC1 identity in cancers. Semin Immunol. 2021;52:101424.

    Article  CAS  PubMed  Google Scholar 

  52. Krabbendam L, Bernink JH, Spits H. Innate lymphoid cells: from helper to killer. Curr Opin Immunol. 2021;68:28–33.

    Article  CAS  PubMed  Google Scholar 

  53. Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest. 2013;123(4):1444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife. 2014;3:e01659.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B, Seillet C, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science. 2016;352(6284):459–63.

    Article  CAS  PubMed  Google Scholar 

  56. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508(7496):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Constantinides MG, Gudjonson H, McDonald BD, Ishizuka IE, Verhoef PA, Dinner AR, et al. PLZF expression maps the early stages of ILC1 lineage development. Proc Natl Acad Sci U S A. 2015;112(16):5123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu Y, Tsang JC, Wang C, Clare S, Wang J, Chen X, et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature. 2016;539(7627):102–6.

    Article  CAS  PubMed  Google Scholar 

  59. Bai L, Vienne M, Tang L, Kerdiles Y, Etiennot M, Escaliere B, et al. Liver type 1 innate lymphoid cells develop locally via an interferon-gamma-dependent loop. Science. 2021;371(6536):eaba4177.

    Article  CAS  PubMed  Google Scholar 

  60. Xu W, Cherrier DE, Chea S, Vosshenrich C, Serafini N, Petit M, et al. An Id2(RFP)-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity. 2019;50(4):1054–68.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walker JA, Clark PA, Crisp A, Barlow JL, Szeto A, Ferreira ACF, et al. Polychromic reportermice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity. 2019;51(1):104–18.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bjorklund AK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol. 2016;17(4):451–60.

    Article  PubMed  Google Scholar 

  63. Harmon C, Robinson MW, Fahey R, Whelan S, Houlihan DD, Geoghegan J, et al. Tissue-resident Eomeshi T-betlo CD56bright NK cells with reduced proinflammatory potential are enriched in the adult human liver. Eur J Immunol. 2016;46(9):2111–20.

    Article  CAS  PubMed  Google Scholar 

  64. Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, Hong HS, et al. Gene regulatory programs conferring phenotypic identities to human NK cells. Cell. 2019;176(1–2):348–60.e12.

    Article  CAS  PubMed  Google Scholar 

  65. Marquardt N, Beziat V, Nystrom S, Hengst J, Ivarsson MA, Kekalainen E, et al. Identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194(6):2467–71.

    Article  CAS  PubMed  Google Scholar 

  66. Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell. 2017;168(6):1086–100.e10.

    Article  CAS  PubMed  Google Scholar 

  67. Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al. ILC1 confer early host protection at initial sites of viral infection. Cell. 2017;171(4):795–808.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nabekura T, Riggan L, Hildreth AD, O’Sullivan TE, Shibuya A. Type 1 innatel lymphoid cells protect mice from acute liver injury via interferon-γ secretion for upregulating Bcl-xL expression in hepatocytes. Immunity. 2020;52(1):96–108.e9.

    Article  CAS  PubMed  Google Scholar 

  69. McFarland AP, Yalin A, Wang SY, Cortez VS, Landsberger T, Sudan R, et al. Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity. 2021;54(6):1320–37.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cortez VS, Fuchs A, Cella M, Gilfillan S, Colonna M. Salivary gland NK cells develop independently of Nfil3 in steady-state. J Immunol. 2014;192(10):4487–91.

    Article  CAS  PubMed  Google Scholar 

  71. Cortez VS, Cervantes-Barragan L, Robinette ML, Bando JK, Wang Y, Geiger TL, et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity. 2016;44(5):1127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Friedrich C, Taggenbrock R, Doucet-Ladeveze R, Golda G, Moenius R, Arampatzi P, et al. Effector differentiation downstream of lineage commitment in ILC1s is driven by Hobit across tissues. Nat Immunol. 2021;22(10):1256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sparano C, Solis-Sayago D, Vijaykumar A, Rickenbach C, Vermeer M, Ingelfinger F, et al. Embryonic and neonatal waves generate distinct populations of hepatic ILC1s. Sci Immunol. 2022;7(75):eabo6641.

    Article  CAS  PubMed  Google Scholar 

  74. Yomogida K, Bigley TM, Trsan T, Gilfillan S, Cella M, Yokoyama WM, et al. Hobit confers tissue-dependent programs to type 1 innate lymphoid cells. Proc Natl Acad Sci U S A. 2021;118(50):e2117965118.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Asahi T, Abe S, Cui G, Shimba A, Nabekura T, Miyachi H, et al. Liver type 1 innate lymphoid cells lacking IL-7 receptor are a native killer cell subset fostered by parenchymal niches. Elife. 2023;12:e84209.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen Y, Wang X, Hao X, Li B, Tao W, Zhu S, et al. Ly49E separates liver ILC1s into embryo-derived and postnatal subsets with different functions. J Exp Med. 2022;219(5):e20211805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ali AK, Nandagopal N, Lee SH. IL-15-PI3K-AKT-mTOR: a critical pathway in the life journey of natural killer cells. Front Immunol. 2015;6:355.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ikuta K, Hara T, Abe S, Asahi T, Takami D, Cui G. The roles of IL-7 and IL-15 in niches for lymphocyte progenitors and immune cells in lymphoid organs. Curr Top Microbiol Immunol. 2021;434:83–101.

    CAS  PubMed  Google Scholar 

  79. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998;9(5):669–76.

    Article  CAS  PubMed  Google Scholar 

  80. Mortier E, Advincula R, Kim L, Chmura S, Barrera J, Reizis B, et al. Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T cell subsets. Immunity. 2009;31(5):811–22.

    Article  CAS  PubMed  Google Scholar 

  81. Liou YH, Wang SW, Chang CL, Huang PL, Hou MS, Lai YG, et al. Adipocyte IL-15 regulates local and systemic NK cell development. J Immunol. 2014;193(4):1747–58.

    Article  CAS  PubMed  Google Scholar 

  82. Gil-Cruz C, Perez-Shibayama C, Onder L, Chai Q, Cupovic J, Cheng HW, et al. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nat Immunol. 2016;17(12):1388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cepero-Donates Y, Rakotoarivelo V, Mayhue M, Ma A, Chen YG, Ramanathan S. Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine. 2016;82:95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coman D, Coales I, Roberts LB, Neves JF. Helper-like type-1 innate lymphoid cells in inflammatory bowel disease. Front Immunol. 2022;13:903688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-dependent adaptations and functions of innate lymphoid cells. Front Immunol. 2022;13:836999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kansler ER, Dadi S, Krishna C, Nixon BG, Stamatiades EG, Liu M, et al. Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat Immunol. 2022;23(6):904–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dadi S, Chhangawala S, Whitlock BM, Franklin RA, Luo CT, Oh SA, et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell. 2016;164(3):365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Regis S, Dondero A, Caliendo F, Bottino C, Castriconi R. NK cell function regulation by TGF-β-induced epigenetic mechanisms. Front Immunol. 2020;11:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol. 2017;18(9):995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol. 2017;18(9):1004–15.

    Article  CAS  PubMed  Google Scholar 

  91. Hawke LG, Mitchell BZ, Ormiston ML. TGF-β and IL-15 synergize through MAPK pathways to drive the conversion of human NK cells to an innate lymphoid cell 1-like phenotype. J Immunol. 2020;204(12):3171–81.

    Article  CAS  PubMed  Google Scholar 

  92. Jacquelot N, Seillet C, Vivier E, Belz GT. Innate lymphoid cells and cancer. Nat Immunol. 2022;23(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  93. Filipovic I, Chiossone L, Vacca P, Hamilton RS, Ingegnere T, Doisne JM, et al. Molecular definition of group 1 innate lymphoid cells in the mouse uterus. Nat Commun. 2018;9(1):4492.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat Commun. 2019;10(1):3254.

    Article  PubMed  PubMed Central  Google Scholar 

  95. O’Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity. 2016;45(2):428–41.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kim CH. Control of innate and adaptive lymphocytes by the RAR-retinoic acid axis. Immune Netw. 2018;18(1):e1.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Erkelens MN, Mebius RE. Retinoic acid and immune homeostasis: a balancing act. Trends Immunol. 2017;38(3):168–80.

    Article  CAS  PubMed  Google Scholar 

  98. Semba RD. Vitamin A, immunity, and infection. Clin Infect Dis. 1994;19(3):489–99.

    Article  CAS  PubMed  Google Scholar 

  99. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res. 2002;43(11):1773–808.

    Article  CAS  PubMed  Google Scholar 

  100. Kim MH, Taparowsky EJ, Kim CH. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity. 2015;43(1):107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature. 2014;508(7494):123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Asahi T, Abe S, Tajika Y, Rodewald HR, Sexl V, Takeshima H, et al. Retinoic acid receptor activity is required for the maintenance of type 1 innate lymphoid cells. Int Immunol. 2023;35(3):147–55.

    Article  CAS  PubMed  Google Scholar 

  103. Wang X, Peng H, Cong J, Wang X, Lian Z, Wei H, et al. Memory formation and long-term maintenance of IL-7Rα+ ILC1s via a lymph node-liver axis. Nat Commun. 2018;9(1):4854.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Weizman OE, Song E, Adams NM, Hildreth AD, Riggan L, Krishna C, et al. Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12. Nat Immunol. 2019;20(8):1004–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhu Y, Cui G, Miyauchi E, Nakanishi Y, Mukohira H, Shimba A, et al. Intestinal epithelial cell-derived IL-15 determines local maintenance and maturation of intra-epithelial lymphocytes in the intestine. Int Immunol. 2020;32(5):307–19.

    Article  CAS  PubMed  Google Scholar 

  106. Sugiyama T, Omatsu Y, Nagasawa T. Niches for hematopoietic stem cells and immune cell progenitors. Int Immunol. 2019;31(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  107. Cordeiro Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity. 2016;45(6):1219–31.

    Article  CAS  PubMed  Google Scholar 

  108. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hara T, Shitara S, Imai K, Miyachi H, Kitano S, Yao H, et al. Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol. 2012;189(4):1577–84.

    Article  CAS  PubMed  Google Scholar 

  110. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell. 2019;24(3):477–86.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Emoto T, Lu J, Sivasubramaniyam T, Maan H, Khan AB, Abow AA, et al. Colony stimulating factor-1 producing endothelial cells and mesenchymal stromal cells maintain monocytes within a perivascular bone marrow niche. Immunity. 2022;55(5):862–78 e8.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang J, Wu Q, Johnson CB, Pham G, Kinder JM, Olsson A, et al. In situ mapping identifies distinct vascular niches for myelopoiesis. Nature. 2021;590(7846):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Noda M, Omatsu Y, Sugiyama T, Oishi S, Fujii N, Nagasawa T. CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood. 2011;117(2):451–8.

    Article  CAS  PubMed  Google Scholar 

  115. Abe A, Asahi T, Hara T, Cui G, Shimba A, Tani-ichi S, et al. Hematopoietic cell-derived IL-15 supports NK cell development in scattered and clustered localization within the bone marrow. Cell Rep. 2023;42(9):113127. https://doi.org/10.1016/j.celrep.2023.113127.

    Article  CAS  PubMed  Google Scholar 

  116. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526(7571):126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shimoto M, Sugiyama T, Nagasawa T. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood. 2017;129(15):2124–31.

    Article  CAS  PubMed  Google Scholar 

  118. Fistonich C, Zehentmeier S, Bednarski JJ, Miao R, Schjerven H, Sleckman BP, et al. Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. J Exp Med. 2018;215(10):2586–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Milo I, Blecher-Gonen R, Barnett-Itzhaki Z, Bar-Ziv R, Tal O, Gurevich I, et al. The bone marrow is patrolled by NK cells that are primed and expand in response to systemic viral activation. Eur J Immunol. 2018;48(7):1137–52.

    Article  CAS  PubMed  Google Scholar 

  120. Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol. 2007;8(12):1337–44.

    Article  CAS  PubMed  Google Scholar 

  121. Ponzetta A, Sciume G, Benigni G, Antonangeli F, Morrone S, Santoni A, et al. CX3CR1 regulates the maintenance of KLRG1+ NK cells into the bone marrow by promoting their entry into circulation. J Immunol. 2013;191(11):5684–94.

    Article  CAS  PubMed  Google Scholar 

  122. Mayol K, Biajoux V, Marvel J, Balabanian K, Walzer T. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood. 2011;118(18):4863–71.

    Article  CAS  PubMed  Google Scholar 

  123. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–74.

    Article  CAS  PubMed  Google Scholar 

  124. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature. 2010;463(7280):540–4.

    Article  CAS  PubMed  Google Scholar 

  125. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol. 2012;188(2):703–13.

    Article  CAS  PubMed  Google Scholar 

  127. Kabata H, Moro K, Koyasu S, Asano K. Group 2 innate lymphoid cells and asthma. Allergol Int. 2015;64(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  128. Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol Rev. 2018;286(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  129. Barlow JL, Peel S, Fox J, Panova V, Hardman CS, Camelo A, et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J Allergy Clin Immunol. 2013;132(4):933–41.

    Article  CAS  PubMed  Google Scholar 

  130. Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF, Farhat S, et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity. 2019;50(3):707–22.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360(6393):eaan8546.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Puttur F, Denney L, Gregory LG, Vuononvirta J, Oliver R, Entwistle LJ, et al. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Sci Immunol. 2019;4(36):eaav7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Takami D, Abe S, Shimba A, Asahi T, Cui G, Tani-ichi S, et al. Lung group 2 innate lymphoid cells differentially depend on local IL-7 for their distribution, activation, and maintenance in innate and adaptive immunity-mediated airway inflammation. Int Immunol. 2023;35(11):513–30. https://doi.org/10.1093/intimm/dxad029.

    Article  CAS  PubMed  Google Scholar 

  134. Matha L, Takei F, Martinez-Gonzalez I. Tissue resident and migratory group 2 innate lymphoid cells. Front Immunol. 2022;13:877005.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science. 2015;350(6263):981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Huang Y, Mao K, Chen X, Sun MA, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359(6371):114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Karta MR, Rosenthal PS, Beppu A, Vuong CY, Miller M, Das S, et al. β2 integrins rather than β1 integrins mediate Alternaria-induced group 2 innate lymphoid cell trafficking to the lung. J Allergy Clin Immunol. 2018;141(1):329–38.e12.

    Article  CAS  PubMed  Google Scholar 

  138. Liu H, Li L, Hao Y, Li J, Liu Z, Qi J, et al. Identification of two migratory colon ILC2 populations differentially expressing IL-17A and IL-5/IL-13. Sci China Life Sci. 2023;66(1):67–80.

    Article  CAS  PubMed  Google Scholar 

  139. Li BWS, Stadhouders R, de Bruijn MJW, Lukkes M, Beerens D, Brem MD, et al. Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation. Front Immunol. 2017;8:1684.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang HE, Locksley RM. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. J Exp Med. 2020;217(4):e20191172.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants 20H03501 and 23H02735 (K.I.), and 19K16687 and 17K15721 (G.C.); a grant from the Takeda Science Foundation (G.C.); and the Shimizu Foundation for Immunology and Neuroscience grant for 2016 (G.C.). It was also supported by the Joint Usage Research Center program of the Institute for Life and Medical Sciences, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Ikuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikuta, K., Asahi, T., Cui, G., Abe, S., Takami, D. (2024). Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. In: Matsumoto, M. (eds) Basic Immunology and Its Clinical Application. Advances in Experimental Medicine and Biology, vol 1444. Springer, Singapore. https://doi.org/10.1007/978-981-99-9781-7_8

Download citation

Publish with us

Policies and ethics