Skip to main content

Metal-Dependent Base Pair Switching of N,N-Dicarboxymethyl-5-Aminouracil Nucleosides

  • Chapter
  • First Online:
Metal-Responsive Base Pair Switching of Ligand-type Uracil Nucleobases

Part of the book series: Springer Theses ((Springer Theses))

  • 13 Accesses

Abstract

The base pair switching of UOH has had limited application because it requires the consecutive introduction of multiple UOH bases into DNA strands. In this chapter, I aimed to develop metal-responsive base pair switching by a singly incorporated ligand-type nucleobase. To this end, I designed N,N-dicarboxymethyl-5-aminouracil (dcaU) containing an iminodiacetate ligand. The dcaU base was expected to show higher coordination ability than UOH due to its negative charges and chelate effects. After obtaining dcaU phosphoramidite, dcaU-containing DNA strands were synthesized by an automated DNA synthesizer. In the presence of GdIII ions, a DNA duplex with a dcaUdcaU pair was significantly stabilized due to the formation of dcaU–GdIIIdcaU pairs. As a result, the addition of GdIII ions reversed the relative stability of two duplexes containing dcaU–A or dcaUdcaU pairs, indicating base pair switching between dcaU–A and dcaU–GdIIIdcaU. The base pair switching of dcaU was further applicable for GdIII-responsive DNA strand exchange. These results showed that the efficiency of the base pair switching can be rationally controlled by careful design of ligand-type nucleobases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takezawa Y, Nishiyama K, Mashima T, Katahira M, Shionoya M (2015) Chem Eur J 21:14713–14716

    Article  CAS  PubMed  Google Scholar 

  2. Nishiyama K, Takezawa Y, Shionoya M (2016) Inorg Chim Acta 452:176–180

    Article  CAS  Google Scholar 

  3. Nishiyama K, Mori K, Takezawa Y, Shionoya M (2021) Chem Commun 57:2487–2490

    Article  CAS  Google Scholar 

  4. Takezawa Y, Suzuki A, Nakaya M, Nishiyama K, Shionoya M (2020) J Am Chem Soc 142:21640–21644

    Article  CAS  PubMed  Google Scholar 

  5. Corradi AB, Palmieri CG, Nardelli M, Pellinghelli MA, Tani MEV (1973) J Chem Soc Dalton Trans 655–658

    Google Scholar 

  6. Schmitt W, Jordan PA, Henderson RK, Moore GR, Anson CE, Powell AK (2002) Coord Chem Rev 228:115–126

    Article  CAS  Google Scholar 

  7. Walters MA, Vapnyar V, Bolour A, Incarvito C, Rheingold AL (2003) Polyhedron 22:941–946

    Article  CAS  Google Scholar 

  8. Tribet M, Covelo B, Choquesillo-Lazarte D, González-Pérez JM, Castiñeiras A, Niclos-Gutiérrez J (2003) Inorg Chem Commun 6:343–345

    Article  CAS  Google Scholar 

  9. Ren Y-P, Long L-S, Mao B-W, Yuan Y-Z, Huang R-B, Zheng L-S (2003) Angew Chem Int Ed 42:532–535

    Google Scholar 

  10. Zhang Q-Z, He X, Yu Y-Q, Chen S-M, Lu C-Z, Anorg Z (2005) Allg Chem 631:798–802

    Article  CAS  Google Scholar 

  11. Thompson LC (1962) Inorg Chem 1:490–493

    Article  CAS  Google Scholar 

  12. Tsien RY (1980) Biochemistry 19:2396–2404

    Article  CAS  PubMed  Google Scholar 

  13. Bünzli J-CG (2014) J Coord Chem 67:3706–3733

    Article  Google Scholar 

  14. Martinez-Gomez NC, Vu HN, Skovran E (2016) Inorg Chem 55:10083–10089

    Article  CAS  PubMed  Google Scholar 

  15. Gourdain S, Petermann C, Harakat D, Clivio P (2010) Nucleosides Nucleotides Nucleic Acids 29:542–546

    Article  CAS  PubMed  Google Scholar 

  16. Sandmann N, Defayay D, Hepp A, Müller J (2019) J Inorg Biochem 191:85–93

    Article  CAS  PubMed  Google Scholar 

  17. Hu L, Takezawa Y, Shionoya M (2022) Chem Sci 13:3977–3983

    Google Scholar 

  18. Jean JM, Hall KB (2001) Proc Natl Acad Sci USA 98:37–41

    Article  CAS  PubMed  Google Scholar 

  19. Takezawa Y, Shionoya M (2012) Acc Chem Res 45:2066–2076

    Article  CAS  PubMed  Google Scholar 

  20. Takezawa Y, Müller J, Shionoya M (2017) Chem Lett 46:622–633

    Article  CAS  Google Scholar 

  21. Naskar S, Guha R, Müller J (2020) Angew Chem Int Ed 59:1397–1406

    Google Scholar 

  22. Duffy K, Arangundy-Franklin S, Holliger P (2020) BMC Biol 18:112

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanaka K, Tengeiji A, Kato T, Toyama N, Shiro M, Shionoya M (2002) J Am Chem Soc 124:12494–12498

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M (2003) Science 299:1212–1213

    Article  CAS  PubMed  Google Scholar 

  25. Takezawa Y, Nakama T, Shionoya M (2019) J Am Chem Soc 141:19342–19350

    Article  CAS  PubMed  Google Scholar 

  26. Nakama T, Takezawa Y, Sasaki D, Shionoya M (2020) J Am Chem Soc 142:10153–10162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Mori .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mori, K. (2024). Metal-Dependent Base Pair Switching of N,N-Dicarboxymethyl-5-Aminouracil Nucleosides. In: Metal-Responsive Base Pair Switching of Ligand-type Uracil Nucleobases. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-99-9400-7_3

Download citation

Publish with us

Policies and ethics