Skip to main content

Parallel Attention Mechanism Based Multi-feature Fusion for Underwater Object Tracking

  • Conference paper
  • First Online:
Artificial Intelligence and Robotics (ISAIR 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1998))

Included in the following conference series:

  • 257 Accesses

Abstract

Recently, siamese network-based trackers have achieved great success, however underwater object tracking has been rarely studied. In underwater environments, the severe deformation, rapid movement, and complex background interference of objects often lead to low accuracy in underwater object tracking. To address the above challenges, we propose an underwater object tracking method based on siamese networks. The proposed parallel attention module facilitates the aggregation of similar semantic features from different positions and promotes information exchange between the two branches, enhancing the feature expression capability between channels in each branch. Moreover, the multi-scale feature fusion module effectively integrates features from various levels to adapt to changes in the target’s appearance. Finally, comprehensive experiments were conducted on the OTB100, VOT2018, and underwater dataset UT40, demonstrating the method has good performance in underwater object tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)

    Google Scholar 

  3. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

  4. Guo,Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: Proceedings of IEEE Conference on Computer Vision, pp. 1763–1771 (2017)

    Google Scholar 

  5. Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4591–4600 (2019)

    Google Scholar 

  6. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: Towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the Association for the Advancement of Artificial Intelligence, vol. 34, no. 07, pp. 12549–12556 (2020)

    Google Scholar 

  7. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SiamCAR: siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6268–6276 (2020)

    Google Scholar 

  8. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6667–6676 (2020)

    Google Scholar 

  9. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.H.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  10. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  11. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  12. Wang, Q., Teng, Z., Xing, J., Gao, J., Hu, W., Maybank, S.: Learning attentions: Residual attentional siamese network for high performance online visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4854–4863 (2018)

    Google Scholar 

  13. Yu, Y., Xiong, Y., Huang, W., Scott, M.R.: Deformable siamese attention networks for visual object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6728–6737 (2020)

    Google Scholar 

  14. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  15. Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: YouTube-bounding boxes: a large high-precision human-annotated data set for object detection in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5296–5305 (2017)

    Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  18. Kristan, M., et al.: The sixth visual object tracking VOT2018 challenge results. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 3–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_1

    Chapter  Google Scholar 

  19. Danelljan, M., Bhat, G., Khan, F.S., et al.: Atom: accurate tracking by overlap maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4660–4669 (2019)

    Google Scholar 

  20. Li, P., Chen, B., Ouyang, W., et al.: GradNet: gradient-guided network for visual object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6162–6171 (2019)

    Google Scholar 

  21. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

    Chapter  Google Scholar 

  22. Xu, T., Feng, Z.H., Wu, X.J., et al.: Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking. IEEE Trans. Image Process. 28(11), 5596–5609 (2019)

    Article  MathSciNet  Google Scholar 

  23. Bhat, G., Danelljan, M., Gool, L.V., et al.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019)

    Google Scholar 

  24. Wang, Q., Zhang, L., Bertinetto, L., et al.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

    Google Scholar 

  25. Wang, P., et al.: Numerical and experimental study on the maneuverability of an active propeller control based wave glider. Appl. Ocean Res. (2020). https://doi.org/10.1016/j.apor.2020.102369,vol104,102369

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant 62073120, and Natural Science Foundation of Jiangsu Province under Grant BK20201311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Wang, H., Chen, Z., Zhang, L. (2024). Parallel Attention Mechanism Based Multi-feature Fusion for Underwater Object Tracking. In: Lu, H., Cai, J. (eds) Artificial Intelligence and Robotics. ISAIR 2023. Communications in Computer and Information Science, vol 1998. Springer, Singapore. https://doi.org/10.1007/978-981-99-9109-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9109-9_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9108-2

  • Online ISBN: 978-981-99-9109-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics