Skip to main content

Molecular Dynamics Simulation of the Effect of Water Intrusion on the Epoxy Resin/glass Fiber Interface of Composite Insulator Core

  • Chapter
  • First Online:
Electrical Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 94 Accesses

Abstract

Due to moisture intrusion and other reasons, core rod string breakage accidents are common, which brings serious harm to the safety and stability of the power system. The epoxy resin/glass fiber interface is a microscopic interface inside the core rod. The bonding strength of this interface affects the overall mechanical properties of the core rod. It has an important impact on performance. At present, it is difficult to clarify the deterioration mechanism of this interface under moisture intrusion through mechanical testing and physical and chemical morphology analysis. This paper establishes a molecular simulation model of the epoxy resin/glass fiber interface in a water molecule environment to analyze and study the degradation behavior of the interface under water intrusion and the effects of temperature and electric field on the degradation process. The work shows that: when the temperature is low (213K-293K), although increasing the electric field value can cause the water molecules to move directionally, the interface does not change significantly because it has not reached the hydrolysis temperature; when the temperature is higher (373K-613K), the water molecules Molecules easily migrate to the interface through the internal holes of the epoxy resin. Increasing the electric field value can accelerate the migration of water to the interface and the hydrolysis process of the epoxy resin; when the temperature further increases (613K-853K), the thermal motion of water molecules is violent and the epoxy resin Hydrolysis is serious, and increasing the electric field value and temperature value has no significant effect on the interface degradation under moisture intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, J., Chen, K., Yan, M., et al.: Effect of temperature and water penetration on the interfacial bond between epoxy resin and glass fiber: a molecular dynamics study. J. Mol. Liq. 350, 118424 (2022)

    Google Scholar 

  2. Yang, C., Xu, C., Yan, N., et al.: The impact of water intrusion into the crimping interface on composite insulators. Power Grid Technol. 43(5), 1841–1848 (2019)

    Google Scholar 

  3. Wang, Y., Liu, Y., Fan, H., et al.: Water boiling aging characteristics of the interface between silicone rubber and alicyclic epoxy resin composite insulators. High Volt. Technol. 1–8

    Google Scholar 

  4. Fan, H., Liu, Y., Wang, L., et al.: The effect of epoxy resin insulator mold joint on water diffusion test. Power Grid Technol. 1–8

    Google Scholar 

  5. Rain, P., Brun, E., Guillermin, C., et al.: Experimental model of a quartz/epoxy interface submitted to a hygrothermal ageing: a dielectric characterization. IEEE Trans. Dielectr. Electr. Insul. 19(1), 343–351 (2012)

    Article  Google Scholar 

  6. Li, Y., Li, R., Huang, L., et al.: Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 99, 477–489 (2016)

    Article  Google Scholar 

  7. Deng, S.: Study on the Assembly Behavior and Interfacial Properties of Grafted Polymer Chains at the Fiber/Resin Interface. East China University of Science and Technology, Shanghai (2013)

    Google Scholar 

  8. Patel, S.R., Case, S.W.: Durability of hygrothermally aged graphite/epoxy woven composite under combined hygrothermal conditions. Int. J. Fatigue 24(12), 1295–1301 (2002)

    Article  Google Scholar 

  9. Xu, R., Cui, C., Wang, J., et al.: The effect of high-temperature and high-pressure humid heat treatment on the electrical properties of epoxy resin composite materials. Fiber Compos. Mater. 25(1), 32–34 (2008)

    Google Scholar 

  10. Huang, Y., Yi, L.: Effect of thermal aging on the dielectric properties of epoxy resin in dry-type transformers. Insul. Mater. 60(009), 53–56 (2016)

    Google Scholar 

  11. Yin, Q., Gao, W., Ye, K., et al.: The influence of different effects on the development of electrical tree branches in insulating materials. High Volt. Technol. (4), 766–771 (2009)

    Google Scholar 

  12. Bao, L.R., Yee, A.F.: Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites-Part I: uni-weave composites. Compos. Sci. Technol. 62(16), 2099–2110 (2002)

    Article  Google Scholar 

  13. Bao, L.R., Yee, A.F.: Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer 43(14), 3987–3997 (2002)

    Article  Google Scholar 

  14. Haghighi-Yazdi, M., Lee-Sullivan, P.: FTIR analysis of a polycarbonate blend after hygrothermal aging. J. Appl. Polym. Sci. 132(3) (2015)

    Google Scholar 

  15. Xiao, G.Z., Delamar, M., Shanahan, M.E.R.: Irreversible interactions between water and DGEBA/DDA epoxy resin during hygrothermal aging. J. Appl. Polym. Sci. 65(3), 449–458 (2015)

    Article  Google Scholar 

  16. Sun, B., Li, Y.: Study on the damp heat aging behavior and durability prediction of composite materials. Fiberglass/Compos. Mater. (4), 28–34 (2013)

    Google Scholar 

  17. Wang, X., Liang, G., Zhang, W., et al.: The effect of damp heat aging on the properties of high performance composite materials. Solid Rocket Technol. 29(4), 301–304 (2006)

    Google Scholar 

  18. Soles, C.L., Yee, A.F.: A discussion of the molecular mechanisms of moisture transport in epoxy resins. J. Polym. Sci. Part B: Polym. Phys. 38(5), 792–802 (2015)

    Article  ADS  Google Scholar 

  19. Zhou, A., Tam, L.H., Yu, Z., Lau, D.: Effect of moisture on the mechanical properties of CFRP-wood composite: an experimental and atomistic investigation. Compos. Part B: Eng. 71, 63–73 (2015)

    Article  Google Scholar 

  20. Tam, L.H., Wu, C.: Molecular mechanics of the moisture effect on epoxy/carbon nanotube nanocomposites. Nanomaterials 7(10), 324–343 (2017)

    Article  Google Scholar 

  21. Tam, L.H., Lau, D.: Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system: an atomistic and experimental investigation. Polymer 57, 132–142 (2015)

    Article  Google Scholar 

  22. Pandiyan, S., Krajniak, J., Samaey, G., et al.: A molecular dynamics study of water transport inside an epoxy polymer matrix. Comput. Mater. Sci. 106, 29–37 (2015)

    Article  Google Scholar 

  23. Lee, S.G., Ji, I.C., Koh, W., et al.: Effect of temperature on water molecules in a model epoxy molding compound: molecular dynamics simulation approach. IEEE Trans. Compon. Packag. Manuf. Technol. 1(10), 1533–1542 (2011)

    Article  Google Scholar 

  24. Xiao, Y., Xian, G.: Effects of moisture ingress on the bond between carbon fiber and epoxy resin investigated with molecular dynamics simulation. Polym. Compos. 1, 1–10 (2017)

    Google Scholar 

  25. Lee, S.G., Jang, S.S., Kim, J., et al.: Distribution and diffusion of water in model epoxy molding compound: molecular dynamics simulation approach. IEEE Trans. Adv. Packag. 33(2), 333–339 (2010)

    Article  ADS  Google Scholar 

  26. Li, H., Fan, X., Yue, S., et al.: Molecular dynamics simulation of water diffusion in epoxy resin. Comput. Appl. Chem. 31(06), 696–700 (2014)

    Google Scholar 

  27. Xiao, Y.: Molecular Dynamics Simulation of the Interfacial Bonding Effect of Water on Carbon Fiber/Epoxy Resin. Harbin Institute of Technology, Harbin (2017)

    Google Scholar 

  28. Zhang, W., Li, Z., Wu, T., et al.: Molecular simulation research and progress on the crosslinking structure and macroscopic properties of epoxy resin and its composite materials. J. Compos. Mater. 36(02), 269–276 (2019)

    Google Scholar 

  29. Wang, Z., Lv, Q., Chen, S., et al.: Glass transition investigations on highly crosslinked epoxy resins by molecular dynamics simulations. Mol. Simul. 41(18), 1515–1527 (2015)

    Article  Google Scholar 

  30. Zhang, M., Wang, R., Lin, Y., et al.: Molecular dynamics simulation of glass transition temperature and mechanical properties of crosslinked fluorosilicone rubber. Polym. Mater. Sci. Eng. 31(04), 68–72 (2015)

    Google Scholar 

  31. Yang, Q., Sui, G., Xu, D., et al.: Molecular simulation research on the structure and properties of epoxy resins. In: Proceedings of the 17th National Composite Materials Academic Conference (Composite Materials and Raw Materials Sub Forum), Chinese Aerospace Society: Beijing AVIC Era Culture Communication Co., Ltd., p. 4 (2012)

    Google Scholar 

  32. Sul, J.H., Prusty, B.G., Kelly, D.W.: Molecular dynamics study on effects of aspect ratio of carbon nanotubes in thermosetting epoxy based nanocomposites including modeling of crosslinking process. Adv. Manuf. Polym. Compos. Sci. 9(2), 94–104 (2015)

    Google Scholar 

  33. Chen, S., Sun, S., Gwaltney, S.R., et al.: Molecular dynamics simulation of the interaction between carbon nanofibers and epoxy resin monomers. J. Polym. Sci (10), 1158–1164 (2015)

    Google Scholar 

  34. Han, Q.: A molecular dynamics investigation on the compression of cross-linked epoxy resins. Mol. Simul. 41(18), 1509–1514 (2015)

    Article  Google Scholar 

  35. Chen, X.: Experimental and Molecular Dynamics Simulation of Thermodynamic Properties of Epoxy/SiO2. Wuhan University, Wuhan (2017)

    Google Scholar 

  36. Lin, Y.C., Chen, X.: Moisture sorption-desorption-resorption characteristics and its effect on the mechanical behavior of the epoxy system. Polymer 46(25), 11994–12003 (2005)

    Article  Google Scholar 

  37. Li, D.: Performance Evolution and Molecular Dynamics Simulation of Epoxy Resin Under Water Alkali Immersion Conditions. Harbin Institute of Technology, Harbin (2015)

    Google Scholar 

  38. Lin, J.: Simulation of Mechanical Properties of Polymer Based Nanocomposites Based on Materials Studio. Jinan University, Guangzhou (2013)

    Google Scholar 

  39. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959)

    Google Scholar 

  40. Parrinello, M., Rahman, A.: Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196 (1980)

    Google Scholar 

  41. Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  42. Liu, Y.: Study on the Aging Characteristics of Epoxy Resin in Humid and Hot Environments. Chongqing University, Chongqing (2018)

    Google Scholar 

  43. Liang, X., Gao, Y.: Research on composite insulator crumb fracture (1): main characteristics, definition, and criteria of crumb fracture. Chin. J. Electr. Eng. 36(17), 4778–4786 (2016)

    Google Scholar 

  44. Xie, C., Liu, S., Liu, Q., et al.: The influence of internal defects in AC 500 kV composite insulators on axial electric field distribution. High Volt. Technol. 38(04), 922–928 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, J., Chen, K., Xie, Q., Lü, F. (2024). Molecular Dynamics Simulation of the Effect of Water Intrusion on the Epoxy Resin/glass Fiber Interface of Composite Insulator Core. In: Xie, Q. (eds) Electrical Materials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9050-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9050-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9049-8

  • Online ISBN: 978-981-99-9050-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics