Skip to main content

Photo-Thermo Catalytic Conversion of CO2: What, Why, How and Future Perspectives

  • Chapter
  • First Online:
Advances in CO2 Utilization

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 247 Accesses

Abstract

Photo-thermo catalysis serves as a novel strategy for CO2 conversion, wherein enhanced activity, manipulated selectivity and/or improved stability can be achieved with synergisms between photocatalysis and thermocatalysis. To clarify fundamental issues and promote innovative development in this new field, comprehensive summarization and up-to-date perspective have been presented herein. Specifically, the conception, principles and operating mechanisms of photo-thermo catalysis have been systematically discussed, which has been followed by thorough analysis of representative examples in photo-thermo CO2 conversion. Moreover, challenges and perspectives have been proposed as implications for future development. Overall, this book chapter is expected to clear up theoretical basis and set up practical guidelines for photo-thermo catalytic conversion of CO2.

Contributions

All authors contributed to this book chapter. Z. W. drafted the manuscript. H. S., G. X. and X. W. revised the content. Z. W. and J. Y. conceived the content and finalized the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Z-J, Song H, Liu H, Ye J (2020) Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew Chem Int Ed 59:8016–8035

    Article  CAS  Google Scholar 

  2. Guterres A (2050) Carbon neutrality by 2050: the world’s most urgent mission. https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-the-world%E2%80%99s-most-urgent-mission. Accessed 28 July 2023

  3. Lin H, Luo S, Zhang H, Ye J (2022) Toward solar-driven carbon recycling. Joule 6:294–314

    Article  CAS  Google Scholar 

  4. Gao W et al (2020) Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 49:8584–8686

    Article  CAS  PubMed  Google Scholar 

  5. Li K, Peng B, Peng T (2016) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal 6:7485–7527

    Google Scholar 

  6. Das S et al (2020) Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 49:2937–3004

    Article  CAS  PubMed  Google Scholar 

  7. Tackett BM, Gomez E, Chen JG (2019) Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat Catal 2:381–386

    Google Scholar 

  8. Wang Z-J et al (2019) Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl Catal B Environ 250:10–16

    Article  CAS  Google Scholar 

  9. Zhang X et al (2017) Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat Commun 8:14542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu H et al (2016) Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy 26:398–404

    Article  CAS  Google Scholar 

  11. Ghoussoub M, Xia M, Duchesne PN, Segal D, Ozin G (2019) Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ Sci 12:1122–1142

    Article  CAS  Google Scholar 

  12. Mateo D, Cerrillo JL, Durini S, Gascon J (2021) Fundamentals and applications of photo-thermal catalysis. Chem Soc Rev 50:2173–2210

    Article  CAS  PubMed  Google Scholar 

  13. Keller N, Ivanez J, Highfield J, Ruppert AM (2021) Photo-/thermal synergies in heterogeneous catalysis: towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl Catal B Environ 296:120320

    Article  CAS  Google Scholar 

  14. Meng X et al (2014) Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem Int Ed 53:11478–11482

    Article  CAS  Google Scholar 

  15. Luo S, Ren X, Lin H, Song H, Ye J (2021) Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem Sci 12:5701–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christopher P, Xin H, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3:467–472

    Article  CAS  PubMed  Google Scholar 

  17. Fang S, Hu YH (2022) Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 51:3609–3647

    Article  CAS  PubMed  Google Scholar 

  18. Luo S et al (2021) Triggering water and methanol activation for solar-driven H2 production: interplay of dual active sites over plasmonic ZnCu alloy. J Am Chem Soc 143:12145–12153

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y et al (2021) Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 5:3235–3251

    Article  CAS  Google Scholar 

  20. Song H, Meng X, Wang Z-J, Liu H, Ye J (2019) Solar-energy-mediated methane conversion. Joule 3:1606–1636

    Article  CAS  Google Scholar 

  21. Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    Article  CAS  PubMed  Google Scholar 

  22. Schneider J, Bahnemann D, Ye J, Li Puma G, Dionysiou DD (eds) (2016) Photocatalysis: fundamentals and perspectives. Royal Society of Chemistry

    Google Scholar 

  23. Yang F, Deng D, Pan X, Fu Q, Bao X (2015) Understanding nano effects in catalysis. Nat Sci Rev 2:183–201

    Article  CAS  Google Scholar 

  24. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4982–5079

    Article  Google Scholar 

  25. Hagen J (eds) (2020) Industrial catalysis: a practical approach, 3rd edn. Wiley-VCH

    Google Scholar 

  26. Hong J et al (2022) Photothermal chemistry based on solar energy: from synergistic effects to practical applications. Adv Sci 9:2103926

    Article  CAS  Google Scholar 

  27. Hattori Y et al (2021) Phonon-assisted hot carrier generation in plasmonic semiconductor systems. Nano Lett 21:1083–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu F et al (2020) Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv Sci 7:2000204

    Article  CAS  Google Scholar 

  29. Xu M, Hu X, Wang S, Yu J, Zhu D, Wang J (2019) Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content. J Catal 377:652–661

    Article  CAS  Google Scholar 

  30. Han B, Wei W, Chang L, Cheng P, Hu YH (2016) Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catal 6:494–497

    Article  CAS  Google Scholar 

  31. Marimuthu A, Zhang J, Linic S (2013) Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339:1590–1593

    Article  CAS  PubMed  Google Scholar 

  32. Aslam U, Rao VG, Chavez S, Linic S (2018) Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal 1:656–665

    Article  Google Scholar 

  33. Dong Y, Hu C, Xiong H, Long R, Xiong Y (2023) Plasmonic catalysis: new opportunity for selective chemical bond evolution. ACS Catal 13:6730–6743

    Article  CAS  Google Scholar 

  34. Barba-Nieto I, Gómez-Cerezo N, Kubacka A, Fernández-García M (2021) Oxide-based composites: applications in thermophotocatalysis. Catal Sci Technol 11:6904–6930

    Article  CAS  Google Scholar 

  35. Song C, Wang Z, Yin Z, Xiao D, Ma D (2022) Principles and applications of photothermal catalysis. Chem Catal 2:52–83

    Article  CAS  Google Scholar 

  36. Liu L, Zhang X, Yang L, Ren L, Wang D, Ye J (2017) Metal nanoparticles induced photocatalysis. Nat Sci Rev 4:761–780

    Article  CAS  Google Scholar 

  37. Lee H, Park Y, Song K, Park JY (2022) Surface plasmon-induced hot carriers: generation, detection, and applications. Acc Chem Res 55:3727–3737

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y et al (2018) Surface-plasmon-driven hot electron photochemistry. Chem Rev 118:2927–2954

    Article  CAS  PubMed  Google Scholar 

  39. Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A (2020) Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem Rev 120:986–1041

    Article  PubMed  Google Scholar 

  40. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14:567–576

    Article  CAS  PubMed  Google Scholar 

  41. Sarina S et al (2014) Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew Chem Int Ed 53:2935–2940

    Article  CAS  Google Scholar 

  42. Mateo D, Albero J, García H (2017) Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy Environ Sci 10:2392–2400

    Article  CAS  Google Scholar 

  43. Dong Y et al (2020) Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem Soc Rev 49:5648–5663

    Article  CAS  PubMed  Google Scholar 

  44. Martin AJ, Larrazábal GO, Pérez-Ramirez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem 17:5114–5130

    Article  CAS  Google Scholar 

  45. Gao P, Zhong L, Han B, He M, Sun Y (2022) Green carbon science: keeping the pace in practice. Angew Chem Int Ed 61:e202210095

    Article  CAS  Google Scholar 

  46. Wang K, Jiang R, Peng T, Chen X, Dai W, Fu X (2019) Modeling the effect of Cu doped TiO2 with carbon dots on CO2 methanation by H2O in a photo-thermal system. Appl Catal B Environ 256:117780

    Article  CAS  Google Scholar 

  47. Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B Environ 224:563–571

    Article  CAS  Google Scholar 

  48. Deng B, Song H, Peng K, Li Q, Ye J (2021) Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Appl Catal B Environ 298:120519

    Article  CAS  Google Scholar 

  49. Hoch LB et al (2014) The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci 1:140013

    Article  Google Scholar 

  50. Liu L (2018) Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Appl Catal B Environ 235:186–196

    Article  CAS  Google Scholar 

  51. Liu H et al (2015) Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angew Chem Int Ed 54:11545–11549

    Article  CAS  Google Scholar 

  52. Pan F, Xiang X, Du Z, Sarnello E, Li T, Li Y (2020) Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl Catal B Environ 260:118189

    Article  CAS  Google Scholar 

  53. Wang L et al (2016) Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. J Mater Chem A 4:5314–5322

    Article  CAS  Google Scholar 

  54. Ha MN, Lu G, Liu Z, Wang L, Zhao Z (2016) 3DOM-LaSrCoFeO6-δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J Mater Chem A 4:13155–13165

    Article  CAS  Google Scholar 

  55. Lv C et al (2023) Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance. ACS Nano 17:1725–1738

    Article  CAS  PubMed  Google Scholar 

  56. Wang X, Jin R, Yan W, Li H, Wang Z-J (2022) An Al2O3-supported NiFe bimetallic catalyst derived from hydrotalcite precursors for efficient CO2 methanation. Catal Today 402:38–44

    Article  CAS  Google Scholar 

  57. Pahija E et al (2022) Experimental and computational synergistic design of Cu and Fe catalysts for the reverse water−gas shift: a review. ACS Catal 12:6887–6905

    Article  CAS  Google Scholar 

  58. Xie G, Jin R, Ren P, Fang Y, Zhang R, Wang Z-J (2023) Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts. Appl Catal B Environ 324:122233

    Article  CAS  Google Scholar 

  59. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Article  CAS  PubMed  Google Scholar 

  60. Qi R, An L, Guo Y, Zhang R, Wang Z-J (2022) In-situ fabrication of ultrasmall Ni nanoparticles from Ni(OH)2 precursors for efficient CO2 reforming of methane. Ind Eng Chem Res 61:198–206

    Article  CAS  Google Scholar 

  61. Du X, Liu L, Ye J (2021) Plasmonic metal nanoparticles for artificial photosynthesis: advancements, mechanisms, and perspectives. Solar RRL 5:2100611

    Article  CAS  Google Scholar 

  62. Song H et al (2018) Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl Mater Interfaces 10:408–416

    Article  CAS  PubMed  Google Scholar 

  63. Zhang H et al (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710

    Article  CAS  PubMed  Google Scholar 

  64. Liu H et al (2017) Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. J Mater Chem A 5:10567–10573

    Article  CAS  Google Scholar 

  65. Liu H, Dao TD, Liu L, Meng X, Nagao T, Ye J (2017) Light assisted CO2 reduction with methane over group VIII metals: universality of metal localized surface plasmon resonance in reactant activation. Appl Catal B Environ 209:183–189

    Article  CAS  Google Scholar 

  66. Ghuman KK, Wood TE, Hoch LB, Mims CA, Ozin GA, Singh CV (2015) Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3-x(OH)y. Phys Chem Chem Phys 17:14623–14635

    Article  CAS  PubMed  Google Scholar 

  67. Ghuman KK et al (2016) Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J Am Chem Soc 138:1206–1214

    Article  CAS  PubMed  Google Scholar 

  68. Wang L et al (2018) Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2:1369–1381

    Article  CAS  Google Scholar 

  69. Robatjazi H et al (2017) Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat Commun 8:27

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lorber K, Djinovic P (2022) Accelerating photo-thermal CO2 reduction to CO, CH4 or methanol over metal/oxide semiconductor catalysts. iScience 25:104107

    Google Scholar 

  71. Bian X, Zhao Y, Zhou C, Zhang T (2023) Minimizing temperature bias through reliable temperature determination in gas-solid photothermal catalytic reactions. Angew Chem Int Ed 62:e2022193402023

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from National Natural Science Foundation of China (22378017, 22372118) and National Key Research and Development Project (2018YFB1501405, 2022YFC2105604) are acknowledged.

Competing Interests

The authors declare no competing interests.

Additional Information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou-jun Wang or Jinhua Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Zj., Song, H., Xie, G., Wang, X., Ye, J. (2024). Photo-Thermo Catalytic Conversion of CO2: What, Why, How and Future Perspectives. In: Zhang, G., Bogaerts, A., Ye, J., Liu, Cj. (eds) Advances in CO2 Utilization. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-8822-8_2

Download citation

Publish with us

Policies and ethics