Skip to main content

Multi-atlas Representations Based on Graph Convolutional Networks for Autism Spectrum Disorder Diagnosis

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14437))

Included in the following conference series:

  • 347 Accesses

Abstract

Constructing functional connectivity (FC) based on brain atlas is a common approach to autism spectrum disorder (ASD) diagnosis, which is a challenging task due to the heterogeneity of the data. Utilizing graph convolutional network (GCN) to capture the topology of FC is an effective method for ASD diagnosis. However, current GCN-based methods focus more on the relationships between brain regions and ignore the potential population relationships among subjects. Meanwhile, they limit the analysis to a single atlas, ignoring the more abundant information that multi-atlas can provide. Therefore, we propose a multi-atlas representation based ASD diagnosis. First, we propose a dense local triplet GCN considering the relationship between the regions of interests. Then, further considering the population relationship of subjects, a subject network global GCN is proposed. Finally, to utilize multi-atlas representations, we propose multi-atlas mutual learning for ASD diagnosis. Our proposed method is evaluated on 949 subjects from the Autism Brain Imaging Data Exchange. The experimental results show that the accuracy and an area under the receiver operating characteristic curve (AUC) of our method reach 78.78% and 0.7810, respectively. Compared with other methods, the proposed method is more advantages. In conclusion, our proposed method guides further research on the objective diagnosis of ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. Neuroimage 147, 736–745 (2017)

    Article  Google Scholar 

  2. Byeon, K., Kwon, J., Hong, J., Park, H.: Artificial neural network inspired by neuroimaging connectivity: application in autism spectrum disorder. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 575–578. IEEE (2020)

    Google Scholar 

  3. Craddock, C., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (c-pac). Front. Neuroinf. 42, 10–3389 (2013)

    Google Scholar 

  4. Craddock, R.C., James, G.A., Holtzheimer, P.E., III., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    Article  Google Scholar 

  5. Dosenbach, N.U., et al.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010)

    Article  Google Scholar 

  6. Edition, F., et al.: Diagnostic and statistical manual of mental disorders. Am. Psychiatric Assoc. 21(21), 591–643 (2013)

    Google Scholar 

  7. Huang, F., et al.: Self-weighted adaptive structure learning for ASD diagnosis via multi-template multi-center representation. Med. Image Anal. 63, 101662 (2020)

    Article  Google Scholar 

  8. Huang, Y., Chung, A.C.: Disease prediction with edge-variational graph convolutional networks. Med. Image Anal. 77, 102375 (2022)

    Article  Google Scholar 

  9. Jahedi, A., Nasamran, C.A., Faires, B., Fan, J., Müller, R.A.: Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort. Brain Connect. 7(8), 515–525 (2017)

    Article  Google Scholar 

  10. Kunda, M., Zhou, S., Gong, G., Lu, H.: Improving multi-site autism classification via site-dependence minimization and second-order functional connectivity. IEEE Trans. Med. Imaging 42(1), 55–65 (2022)

    Article  Google Scholar 

  11. Li, X., et al.: Braingnn: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  12. Rapin, I., Tuchman, R.F.: Autism: definition, neurobiology, screening, diagnosis. Pediatr. Clin. North Am. 55(5), 1129–1146 (2008)

    Article  Google Scholar 

  13. Sato, W., Uono, S.: The atypical social brain network in autism: advances in structural and functional MRI studies. Curr. Opin. Neurol. 32(4), 617–621 (2019)

    Article  Google Scholar 

  14. Sharma, S.R., Gonda, X., Tarazi, F.I.: Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol. Therapeut. 190, 91–104 (2018)

    Article  Google Scholar 

  15. Sun, J.W., Fan, R., Wang, Q., Wang, Q.Q., Jia, X.Z., Ma, H.B.: Identify abnormal functional connectivity of resting state networks in autism spectrum disorder and apply to machine learning-based classification. Brain Res. 1757, 147299 (2021)

    Article  Google Scholar 

  16. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  17. Varoquaux, G., Craddock, R.C.: Learning and comparing functional connectomes across subjects. Neuroimage 80, 405–415 (2013)

    Article  Google Scholar 

  18. Wang, M., Zhang, D., Huang, J., Liu, M., Liu, Q.: Consistent connectome landscape mining for cross-site brain disease identification using functional MRI. Med. Image Anal. 82, 102591 (2022)

    Article  Google Scholar 

  19. Wang, N., Yao, D., Ma, L., Liu, M.: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI. Med. Image Anal. 75, 102279 (2022)

    Article  Google Scholar 

  20. Wang, T., et al.: Mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 12(1), 3445 (2021)

    Article  Google Scholar 

  21. Wang, Y., Liu, J., Xiang, Y., Wang, J., Chen, Q., Chong, J.: Mage: automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning. Neurocomputing 469, 346–353 (2022)

    Article  Google Scholar 

  22. Wang, Y., Wang, J., Wu, F.X., Hayrat, R., Liu, J.: Aimafe: autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning. J. Neurosci. Methods 343, 108840 (2020)

    Article  Google Scholar 

  23. Yi, P., Jin, L., Xu, T., Wei, L., Rui, G.: Hippocampal segmentation in brain MRI images using machine learning methods: a survey. Chin. J. Electron. 30(5), 793–814 (2021)

    Article  Google Scholar 

  24. Yin, W., Mostafa, S., Wu, F.X.: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning. J. Comput. Biol. 28(2), 146–165 (2021)

    Article  Google Scholar 

  25. You, J., Gomes-Selman, J.M., Ying, R., Leskovec, J.: Identity-aware graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10737–10745 (2021)

    Google Scholar 

  26. Zhang, H., et al.: Classification of brain disorders in RS-fMRI via local-to-global graph neural networks. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of Hunan Province under Grant (No.2022JJ30753), in part by the Shenzhen Science and Technology Program (No.KQTD20200820113106007), in part by Shenzhen Key Laboratory of Intelligent Bioinformatics (ZDSYS20220422103800001), in part by the Central South University Innovation-Driven Research Programme under Grant 2023CXQD018, and in part by the High Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Zhu, J., Tian, X., Mao, J., Pan, Y. (2024). Multi-atlas Representations Based on Graph Convolutional Networks for Autism Spectrum Disorder Diagnosis. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics