Skip to main content

Adversarial Robustness via Multi-experts Framework for SAR Recognition with Class Imbalanced

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

With the rapid development of deep learning technology, significant progress has been made in the field of synthetic aperture radar (SAR) target recognition algorithms. However, deep neural networks are vulnerable to adversarial attacks in practical applications, inducing learning models to make wrong predictions. Existing works on adversarial robustness always assumed that the datasets are balanced. While in real-world applications, SAR datasets always suffer serious imbalanced distributions, which brings challenges to target recognition tasks and also affects the adversarial defense of models. So far few works have been reported on adversarial robustness for imbalanced SAR target recognition. Besides, single model is easily limited to a specific adversarial sample distribution. Motivated by this, a multi-expert collaborative diagnosis framework based on Contrastive Self-Supervised Aggregation (CS2AME) is proposed. The framework trains multiple personalized expert models precisely for dealing with specific SAR targets by formulating three expert guidance schemes, to better deal with different adversarial samples. In addition, a contrastive self-supervised aggregation strategy is designed to adaptively aggregate the professional expertise of each expert model. Extensive adversarial robustness recognition experiments on three publicly available imbalanced SAR datasets have demonstrated that the proposed CS2AME outperforms existing works in terms of standard performance and robust performance.

The work was supported in part by the National Natural Science Foundation of China under Grant 82172033, U19B2031, 61971369, 52105126, 82272071, 62271430, and the Fundamental Research Funds for the Central Universities 20720230104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, J., Wang, Y., Hwang, J.N.: ACE: ally complementary experts for solving long-tailed recognition in one-shot. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 112–121 (2021)

    Google Scholar 

  2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  4. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: International Conference on Machine Learning, pp. 2206–2216. PMLR (2020)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hou, X., Ao, W., Song, Q., Lai, J., Wang, H., Xu, F.: FUSAR-ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. SCIENCE CHINA Inf. Sci. 63, 1–19 (2020)

    Article  Google Scholar 

  7. Jahan, C.S., Savakis, A., Blasch, E.: SAR image classification with knowledge distillation and class balancing for long-tailed distributions. In: 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5. IEEE (2022)

    Google Scholar 

  8. Jing, C., et al.: Interclass similarity transfer for imbalanced aerial scene classification. IEEE Geosci. Remote Sens. Lett. 20, 1–5 (2023)

    Article  Google Scholar 

  9. Kabilan, V.M., Morris, B., Nguyen, H.P., Nguyen, A.: Vectordefense: vectorization as a defense to adversarial examples. In: Soft Computing for Biomedical Applications and Related Topics, pp. 19–35 (2021)

    Google Scholar 

  10. Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  11. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  12. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  13. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)

  14. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P.: A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013)

    Article  Google Scholar 

  15. Pang, T., Yang, X., Dong, Y., Xu, K., Zhu, J., Su, H.: Boosting adversarial training with hypersphere embedding. Adv. Neural. Inf. Process. Syst. 33, 7779–7792 (2020)

    Google Scholar 

  16. Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al.: Balanced meta-softmax for long-tailed visual recognition. Adv. Neural. Inf. Process. Syst. 33, 4175–4186 (2020)

    Google Scholar 

  17. Ross, A., Doshi-Velez, F.: Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Ross, T.D., Worrell, S.W., Velten, V.J., Mossing, J.C., Bryant, M.L.: Standard SAR ATR evaluation experiments using the MSTAR public release data set. In: Algorithms for Synthetic Aperture Radar Imagery V, vol. 3370, pp. 566–573. SPIE (1998)

    Google Scholar 

  19. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  20. Wang, J., Virtue, P., Yu, S.X.: Successive embedding and classification loss for aerial image classification. arXiv preprint arXiv:1712.01511 (2017)

  21. Wu, T., Liu, Z., Huang, Q., Wang, Y., Lin, D.: Adversarial robustness under long-tailed distribution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8659–8668 (2021)

    Google Scholar 

  22. Xia, W., Liu, Z., Li, Y.: SAR-PeGA: a generation method of adversarial examples for SAR image target recognition network. IEEE Trans. Aerosp. Electron. Syst. 59(2), 1910–1920 (2022)

    Google Scholar 

  23. Xu, Y., Sun, H., Chen, J., Lei, L., Ji, K., Kuang, G.: Adversarial self-supervised learning for robust SAR target recognition. Remote Sens. 13(20), 4158 (2021)

    Article  Google Scholar 

  24. Yang, C.Y., Hsu, H.M., Cai, J., Hwang, J.N.: Long-tailed recognition of SAR aerial view objects by cascading and paralleling experts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 142–148 (2021)

    Google Scholar 

  25. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  26. Zang, Y., Huang, C., Loy, C.C.: FASA: feature augmentation and sampling adaptation for long-tailed instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3457–3466 (2021)

    Google Scholar 

  27. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482. PMLR (2019)

    Google Scholar 

  28. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, C., Cai, S., Huang, H., Ding, X., Huang, Y. (2024). Adversarial Robustness via Multi-experts Framework for SAR Recognition with Class Imbalanced. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14428. Springer, Singapore. https://doi.org/10.1007/978-981-99-8462-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8462-6_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8461-9

  • Online ISBN: 978-981-99-8462-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics