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Abstract. The intersection of technology and culture has become a topic of great
interest worldwide, with China’s development embracing this integration as an
essential direction. One critical area where these two fields converge is in the
inheritance, translation, and creative design of cultural heritage. In line with this
trend, our study explores the potential of stable diffusion to produce highly detailed
and visually stunning building façades.We start by providing an overall survey and
algorithm fundamentals of the generative deep learningmodels used so far, namely,
GANandDiffusionmodels. Then,wepresent ourmethodology for usingDiffusion
Model to generate architecture façades.We then demonstrate how thefine-tuning is
done for Stable Diffusion is done to yield optimal performance and then evaluate
four different training methods of SD. We also compare existing GAN based
façade generation method with our Diffusion based method. Our results show that
our Diffusion-based approach outperforms existing methods in terms of detail
and quality, highlighting the potential of stable diffusion in generating visually
appealing building façades. This research contributes to the growing body of work
on the integration of technology and culture in architecture and offers insights into
the potential of stable diffusion for creative design applications.

Keywords: Façade · Diffusion · GAN · Image-to-image · Image generation ·
Fine-tuning

1 Introduction

Rapid urbanization in China has incited a conundrum of architectural style disarray,
necessitating urgent preservation of vanishing features. Façade enhancement, a vital
aspect of architectural style, demands collecting, organizing, analyzing, evaluating, and
redesigning extant styles. Traditionally, this labor-intensive process yielded subjective
outcomes. This study focuses on generating building façades via stable diffusion, initially
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establishing a dataset of neo-Chinese architectural façades based on component types
and distribution patterns. Subsequently, this dataset evaluates the performance of four
stable diffusion methods for façade images and tests existing labeled façade datasets.

Related work. Over the past decade, generative image synthesis has been extensively
researched and applied, particularly in architectural design. GANs [1], which have dom-
inated the field, consist of a generator producing data samples and a discriminator iden-
tifying samples as real or generated. Both components, typically U-Nets, iteratively
improve until the generator successfully deceives the discriminator. The generator initi-
ates with random noise sampled from a distribution (e.g., Gaussian), while the discrimi-
nator, trained on ground truth datasets, outputs the probability of a sample’s authenticity.
The process minimizes the loss function:

min maxV (D,G) = Ex∼ρdata(x)
[
logD(x)

] + Ez∼ρz(z)[log(1 − D(G(z)))]
Original GAN has limited performance on conditional outputs, so Conditional GAN

[2] was proposed by computing the D(x|y) and G(z|y). Pix2Pix [5] further improved
CGAN by improving generator and discriminator with U-Net and PatchGAN as well as
optimizing loss-function using L1 loss as below.

G∗ = arg min maxLcGAN (G,D) + LL1(G)ג

Further work on Pix2Pix by Yu et al. [7] in their paper on architectural façade
generation suggest that Pix2Pix perform well in façade generation and façade style
conversion after 100 epochs of training (Fig. 1).

Fig. 1. The diffusion process for an input image. Going from left to right is the forward process
where Gaussian noises are added step by step until the image is completely Gaussian. The goal
of the model is to learn the function that best approximates the reverse process, going from step t
to step 0.

Diffusion model [8] is another family of latent variable model that had been re-
searched extensively for image synthesis purposes. The main idea behind DMs is to
construct a Markov Chain that adds random Gaussian noise to sample image gradually
until it is no longer visually meaningful and that learns how to reverse this process. The
forward process is defined as below:

q(xt |xt−1) = ℵ
(
xt;

√
1 − βtxt−1, βtI

)
q(x1:T |x0) =

T∏

t=1

q(xt |xt−1)

where t denotes the timestep of each operation and beta denotes the variance sched-ule
or noise schedule such that (variance schedule).

{βt ∈ (0, 1)}Tt=1
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This is done by finding the estimating q(xt−1) conditioned on original data, that is,
q(xt−1|xt, x0). Hence rewriting the conditional probability using Bayes rule gives:

Q(xt |xt, x0) ∼ G(μ, β)

∼
βt= 1 − αt−1

1 − αt
· βt

∼
μt(xt, x0) =

√
αt(1 − αt−1)

1 − αt
xt +

√
αt−1βt

1 − αt
x0

where α = 1 − β, a simplification trick used in forward diffusion process that makes
q(xt−1) can be conditioned on x0 alone. This way with the reverse process defined, the
loss function could be modeled as following:

E
[− log ρθ (x0)

] ≤ Eq

[
− log

ρθ (x0:T )

q(x1:T |x0)
]

= Eq

⎡

⎣− log ρ(xT ) −
∑

t≥1

log
ρθ (xt−1|xt)
q(xt |xt−1)

⎤

⎦

By optimizing ρθ , the reverse process, the model’s loss function can be modeled
by taking the negative log-likelihood function to get to the variational lower bound of
the loss. Ho et al. in his paper on DDPM [3] further simplified the loss function and
improved the training efficiency by ignoring the weights in the original function and
keeping the variance fixed while train only the mean of the normal distribution.

Rombach et al. in the paper Latent Diffusion Model [4], which is the model we
will be using for this paper, further improved the training efficiency for generating
high resolution images by first encoding the input into latent variable using an encoder
network and then feed the lower dimension latent variables into a DDPM-like U-Net
architecture for image generation.

2 Methodology

We propose in this paper to use fine-tuned Stable Diffusion, an implementation of Latent
DiffusionModel to conduct façade generation and compare the effect of various diffusion
model training methods and parameter sets have on the final generated façades. We also
compare the quality of generated façades with previous work on generative architectural
façade using earlier methods such as cGAN (Figs. 2 and 3).

2.1 Introduction to Diffusion Training Methods

2.1.1 Textual Inversion

Textual Inversion is a feature in the Stable Diffusion model, which allows for person-
alizing the model by training a small part of the neural network with custom images.
This way, the model can be guided to generate new images based on the concepts taught
throughTextual Inversion. TheTextual Inversion process involves feeding a set of images
into themodel, which then outputs a vector that represents a specific concept. This vector
can then be used in the text-to-image generation process to generate new images based
on the taught concepts.
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Fig. 2. An illustration of img-to-img generation. To the left is the original architecture image1

taken at Song Yang country, Zhejiang Province of China, and to the right are four img-to-img
images generated with respect to the prompts listed in the middle.

Fig. 3. The architecture for training and tuning LDM to perform façade design tasks. Random
seed is also included to add more variety in generated contents.

2.1.2 Hypernetwork

Hypernetwork is a novel concept used to fine-tunemodels without touching anyweights.
This technology iswidely used in style transfer and has better generalization performance
compared to textual inversion. In Stable Diffusion refers to an additional layer that is
processed after an image has been rendered through themodel. It tends to skew all results
from the model towards the training data, essentially changing the model.

The learning rate for the Hypernetwork may be different than the learning rate for
the embedding, with a lower value for the Hypernetwork (Table 1).

1 Original architecture images are from CRCV· The second National Architectural Design
Competition of Songyang Rural Revitalization.
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Table 1. Comparison of three experiments on Hypernetwork structure2

First experiment: Turn on
the LN, Dropout, Layer
1,2,1

Second experiment: Turn on
the LN, Dropout, Layer 1, 2, 1,
activate the function Swish

Third experiment: Turn on the
LN, Dropout, Layer 1, 2, 2, 1,
activate the function Swish

For the training set we selected, the learning rate of the third experiment achieved a
good effect, about 70% of the performance can be restored. LN makes sense for training
to be more stable by preventing overfitting. Enabling Dropout can prevent hypernet-
work overfitting. Custom dropout ratio is not currently supported, with a default of 0.3.
Although the extended layer structure can obtain good training effect, the pt file with
layer structure 1, 2, 1 occupies about 83.8 MB of real-time memory, while the PT file
with layer structure 1, 2, 2, 1 occupies about 167 MB.

2.1.3 DreamBooth

DreamBooth [9] is an innovative tool for refining text-to-image diffusion models, such
as Stable Diffusion, enabling subject-driven generation. The fine-tuning process entails
retraining the model with minimal subject-specific images and identifiers, resulting in a
model adept at discerning subjects, isolating them from existing contexts, and accurately
synthesizing themwithin new desired settings. Described as a photo booth by its Google
research team creators, DreamBooth facilitates the customization of personalized diffu-
sion models with limited training data. Utilizing Imagen as its foundation, the model can
be exported as.ckpt, easily integrated into various UIs.While heralded as the preeminent
image generation model, it demands a mid-tier gaming GPU and restricts simultaneous
usage with other models.

2.1.4 LoRA: Low-Rank Adaptation for Fast Diffusion Fine-Tuning

LoRA [10] is a technique for adapting pre-trained language models to new tasks by
freezing the original model’s weights and adding trainable rank decomposition matrices
to each Transformer layer. This approach significantly reduces storage requirements
whilemaintaining input and output dimensions. Implemented as a Python package called
loralib, it integrates with PyTorch models like HuggingFace. LoRA introduces minimal
inference latency and capitalizes on the inherent low-rank characteristics of largemodels

2 Test code from https://colab.research.google.com/drive/1qzweYEMIFkG6jPa04tD1MhW
WOzgSnDvP?usp=sharing.

https://colab.research.google.com/drive/1qzweYEMIFkG6jPa04tD1MhWWOzgSnDvP?usp=sharing
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by adding a bypass matrix, simulating full fine-tuning. This method presents a simple,
effective solution for lightweight fine-tuning.

3 Experiments

We conduct three types of experiments. First one is a comparison of diffusionmodel with
GAN, pix2pix in particular; second one is a comparison of different parameter tunings
among LDM, including sampling methods, steps, CFG Scales, img2img redraw etc.; the
last one is a comparison of different training methods, Textual Inversion, Hypernetwork,
DreamBooth and LoRA on our own generated dataset. We aim to find an efficient, high
quality parameter and training methods that can fulfill the exact needs of architects.

3.1 Comparison of Façades Generated by Pix2Pix and Latent Diffusion Model

We first compare Conditional GAN Pix2Pix with the LDM model used by Stable Dif-
fusion. Pix2Pix is one of the most used generative GAN models in many different fields
and it has yielded decent quality and accuracy in the area of architectural façade design.
Qiu et al. experimented with Pix2Pix on façade design and trained their network on
CMP3 Façade dataset by Tylecek et al. for 100 epochs. We use the same dataset and
train our LDM and presents a comparison of generated façades as in Figure. As can be
seen in the comparison, LDM can achieve better quality and se-mantic understanding in
the generated façades then those of the Pix2Pix models (Figs. 4, 5 and 6).

Fig. 4. CMP Façade dataset

3 Dataset from https://cmp.felk.cvut.cz/~tylecr1/facade/, hereby declare.

https://cmp.felk.cvut.cz/~tylecr1/facade/
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Fig. 5. Homemade Façade dataset

Fig. 6. Comparison of architecture façades generated from img-to-img translation using Pix2Pix
from Qiu et al.’s work and Stable Diffusion from our tuning.
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Another advantage of LDM over Pix2Pix is that LDM is an unsupervised model that
does not require any labeling on data for training. We used only the original images in
CMP Façade dataset for training while Pix2Pix network also used the label images to
assist in training to yield optimal results.

3.2 Comparison of Images Generated by Different Prompts

Stable Diffusion, a prompt-based text-to-image model, comprises two key components:
Contrastive Language-Image Pre-Training (CLIP) [17] and the generative Diffusion
Model. CLIP, a multimodal model, is trained on text and image data to generate textual
summaries from images. It transforms input text prompts into embeddings fed into the
reverse diffusion process, conditioning generation. Prompt words stem from the model’s
natural language processing (NLP) scheme and taggedwords in initial trainingmaterials.
These prompts directly influence the final image elements, with accuracy being vital for
effective AI-generated images. Thus, prompt selection and design require meticulous
attention for optimal results (Fig. 7).

Fig. 7. Prompt + PS/Inpainting img-to-img loop iteration

The above figure illustrates the iterative process of img-to-img used in this research.
The current workflow involves the use of prompt and post-processing techniques, such as
Photoshop (PS) or inpainting. Using the figure as an example, the forward prompt used
by the author is “(masterpiece), (best quality), ((façade-one style)), three 2000-square-
foot, two-stories small modern houses, ((two layers)), with windows and a stone façade,
modern andangular, set in amountainwith forest landscape, SubsurfaceScattering,Glass
Caustics, Small modern house, photorealistic, highly detailed, real architecture, ((low
saturation)), highly detailed, HD, Cinematic”. “façade-one style” is the label/trigger
word trained by the author’s model, and using this label for image generation can achieve
desirable results. () adds emphasis to a term, [] decreases emphasis, both by a factor of
1.1. You can either stack ()/[] for increasing/decreasing emphasis or use the new syntax
which takes a number directly-it looks like this:

(word: 1.1) = (word)
(word: 1.21) = ((word))
(word: 0.91) = [word]
The negative prompt used by the author is “lowers, text, error, extra digit, low quality,

jpeg artifacts, signature, blurry, normal quality, cropped, worst quality”.
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When keeping the seed (the starting point of the random number generator)
unchanged, different image effects can be generated by changing the prompt or mod-
ifying the match degree between the prompt and the generated image, as shown in
Fig. 8.

Fig. 8. Prompt replacement—CFG Scale X-Y graphs

3.3 Comparison of Images Generated by Sampling Method, Sampling Steps,
Classifier Free Guidance Scale, Img-to-Img Redraw Amplitude

The diffusionmodel generates clear images from noisy counterparts via a forward noise-
adding process and a backward denoising process. This sampling method, crucial for
image generation, affects denoising, quantization, and operational speed. This study
compares popular methods, including Euler a, DDIM, and the DPM series. Non-linear
iterative methods like DPM a and Euler a exhibit declining quality beyond a certain
iteration count, while linear iterative methods, such as DDIM/Euler, display an oppos-
ing tendency, with quality relying on iteration count. However, marginal effects limit
significant improvements beyond a certain point (Fig. 9).

As shown in the figure, the image generation performance is better with the Euler a
sampling method and Sampling Steps between 50 and 60.

The Classifier Free Guidance Scale (CFG Scale) balances sample quality and diver-
sity by jointly training conditional and unconditional diffusion models without using a
sampler.Higher prompt relevance yields increased prompt frequency and reduced object-
environment fusion, while lower relevance allows greater AI creativity and enhanced
fusion.



44 Z. Lyu et al.

Fig. 9. Sampling Steps–Sampling Methods X-Y graphs

When the Denoising strength is less than 0.5, local modifications will be made
directly on the original image.When the Denoising strength is greater than 0.6, elements
that match the original image will be rarely seen (Fig. 10).

Fig. 10. Denoising strength—CFG Scale X-Y graphs

As shown in the figure, the image generation performance is better with the CFG
Scale is between 7 and 10, and the Denoising is 0.59.
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3.4 Comparison of Images Generated by the Training Methods: Textual
Inversion, Hypernetwork, DreamBooth, LoRA

After the training models are completed, the variables are strictly controlled and the tags
of the generated embedding and DB model are tested (Fig. 11).

Fig. 11. Training models—Hypernet Strength X-Y graphs

Hypernetworks differ from Textual Inversion as they fine-tune the model, leading
to better generalization and better training aesthetics. DreamBooth can generate good
results with just a few input images of a specific object and its corresponding class name
(e.g., dog), along with a unique identifier implanted in different textual descriptions. DB
is better than Textual Inversion as it inserts training data into the output, leading to high
similarity and great results.

LoRA approximates full fine-tuning expressiveness by setting rank r equal to pre-
trained weight matrices’ rank, with increasing trainable parameters. Consequently,
LoRA converges to the original model, whereas adapter-based methods converge to an
MLP and prefix-based methods to a model restricted by input sequence length (Fig. 12).

Fig. 12. LoRA’s datasets composition schematic

With the assistance of textual prompts, the training dataset for LoRA can be more
guided, resulting in more directed and desirable style transfer outcomes.
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LoRA offers a lightweight, efficient alternative to full model fine-tuning of Stable
Diffusion, outperforming DreamBooth in speed and adaptability. Low-rank adaptation
yields compact results (1-6MB) for easy sharing and compatibility with diffusers and
inpainting. In some cases, LoRA surpasses full fine-tuning, with potential for check-
point merging, recipe creation, and enhanced fine-tuning via CLIP, Unet, and tokens.
Offering multi-vector pivotal tuning inversion, LoRA models are smaller than 2GB +
DB counterparts, enabling rapid training, art style replication, and DB training with
minimal VRAM requirements.

3.5 Using Loopback Method to Optimize Images

Fig. 13. Using Loopback method to improve image quality

Loopback is a method by Stable Diffusion to use generated image output, in our
case, generated façades, as input for the next round of generation. The process is similar
to a cycle of repeating image-to-image translation. We set the iteration steps to 2 steps
and Fig. 13 is the yielded result. It can be seen that Loopback can provide better details
in generated façades.

3.6 Using ControlNet to Guide the Façade Generation Process

ControlNet is a method proposed by Zhang [17] to control the output of a pretrained
Diffusion model to achieve better accuracy. It is achieved by having a locked neural
network(the original pretrained model) and trainable copy of the original network at the
same time and feed the control conditions(i.e., a edge map or line sketch) to the trainable
copy and then connect the copy with the locked model layer-wise.

Best practices for using ControlNet is to convert original image into an edge map.
Edges or scratches can effectively control the output into desired results. Some edge
detection methods we have tested and resulted decent output includes:

(i) Holistically-Nested Edge Detection Boundary (HED Boundary) [18], a convolu-
tional neural network based edge detection model trained on labelled datasets that is
capable of learning the hierarchical relations and other complicated spatial relations
in image and combine these information when converting into edge maps;

(ii) Semantic Segmentation using Uniformer [19], a transformer based architecture that
utilizes 3D convolution and spatiotemporal attention mechanism to achieve better
compute efficiency and accuracy in various tasks, including segmentation on images.
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Fig. 14. Holistically-Nested Edge Detection in img-to-img

Fig. 15. Semantic Segmentation in img-to-img

ControlNet alongwith edgedetection and segmentation techniques enables architects
to generate façades designs using a sketch drawing or an existing façade image with
better accuracy and better alignment to the user’s intentions. Edge detection technology
plays a crucial role in controlling the creation of images in the Img-to-Img framework,
allowing designers to achieve the desired rendering effects in the generated images, as
shown in Fig. 14. The involvement of semantic segmentation allows for more accurate
differentiation of the various elements in the original image, facilitating better subsequent
translation: architectural elements are replaced with new architectural elements, and so
on, resulting in better facade generation and better surrounding environment, as shown
in Fig. 15.

To apply lighting to generated images, upload the light source image to the image
generation area and place the original image in ControlNet, selecting the Depth model,
as shown in Fig. 16. Depth [20], a valuable intermediate representation for actions in
physical environments, facilitates realistic rendering in scenes by comparing pixel depth
values and preventing distant objects from obscuring closer ones.

Due to the inherent principle of img-to-img, which generates images based on the
original image with added Gaussian noise, color block distribution is generally similar,
but controlling finer details is challenging. With ControlNet’s intervention, the model,
initially guided by text generation, can now comprehend information extracted from
images. Combined with img-to-img, this yields more desirable control outcomes.

ControlNet also supports the combination of multiple models, enabling multi-
condition control of images. For example, by setting up two ControlNets, the first one
controls building façade contours usingHED,while the second onemanages background
composition through Seg or Depth. Adjusting ControlNet weights, such as prioritizing
HED over Depth, ensures accurate façade structure recognition, followed by content and
style control through prompt words and style models.
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Fig. 16. Img-to-img combined with ControlNet--take Depth as an example

4 Conclusion and Discussion

Stable Diffusion outperforms earlier models like Pix2Pix in architecture façade gener-
ation, excelling in content quality and training efficiency. By adding a bypass matrix,
based on the model’s low-rank characteristics, LoRA achieves lightweight fine-tuning
effectively.

Thismethod offers potential in architectural style consistency and coherence.Despite
some non-functionality, the generated images preserve the original photo’s composition
and color tone,with the structurewell-extracted and translated, resulting in logical façade
compositions. Utilizing thismethod during the sketch stage enables designers to evaluate
color, form, and composition across multiple schemes.

However, Stable Diffusion has limitations, including potential inaccuracies in recog-
nizing environmental factors, regulations, and engineering functionality. Thus, human
experts should review and refine generated façades for feasibility.

ArchitecturalAI’s future is promising, providing assistance and inspiration for façade
designs and allowing architects to focus on innovative tasks, elevating productivity.
While serving as a valuable tool, it should not replace designers’ emotional judgment
and final decisions. The technology’s success depends on the collaborative synergy
between designers and AI tools, capitalizing on each other’s strengths and weaknesses
(Fig. 17).

Despite personal constraints in data collection and hardware configurations, this
study addresses key issues in historical and cultural preservation. It targets challenges
like updating historical core buildings, maintaining architectural style and quality, ensur-
ing seamless style transitions in transitional zones, and integrating traditional design
elements with modern urban functionality. Additionally, the research leverages digital
technologies, including diffusion models, semantic ontology methods, and rough set
screening, to develop innovative façade design strategies in preservation areas.

Future research will quantify image data for the training method, enhancing the
generation of effective, realistic architectural images. Due to the extensive data required
for optimal diffusion model training, subsequent work could explore data collection
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Fig. 17. Extra effect display

and preprocessing collaborations with academic and commercial institutions, as well as
employing automated tools for data identification and refinement. This research holds
significant implications for urban design and preservation, with potential applications
extending beyond the study’s scope.

Funding. This research was funded by the National Natural Science Foundation of China,
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